

Copper Naphthenate

Copper naphthenate is effective when used in ground contact, water contact, or aboveground. It is not standardized for use in saltwater applications. Copper naphthenate’s effectiveness as a preservative has been known since the early 1900s, and various formulations have been used commercially since the 1940s. It is an organometallic compound formed as a reaction product of copper salts and naphthenic acids derived from petroleum. Unlike other commercially applied wood preservatives, small quantities of copper naphthenate can be purchased at retail hardware stores and lumberyards. Cuts or holes in treated wood can be treated in the field with copper naphthenate.

Wood treated with copper naphthenate has a distinctive bright green color that weathers to light brown. The treated wood also has an odor that dissipates somewhat over time. Depending on the solvent used and treatment procedures, it may be possible to paint wood treated with copper naphthenate after it has been allowed to weather for a few weeks.

Copper naphthenate can be dissolved in a variety of solvents. The heavy oil solvent (specified in AWPA Standard P9, Type A) or the lighter solvent (AWPA Standard P9, Type C) are the most commonly used. Copper naphthenate is listed in AWPA standards for treatment of major softwood species that are used for a variety of wood products. It is not listed for treatment of any hardwood species, except when the wood is used for railroad ties. The minimum copper naphthenate retentions (as elemental copper) range from 0.04 pounds per cubic foot (0.6 kilograms per cubic meter) for wood used aboveground, to 0.06 pounds per cubic foot (1 kilograms per cubic meter) for wood that will contact the ground and 0.075 pounds per cubic foot (1.2 kilograms per cubic meter) for wood used in critical structural applications.

When dissolved in No. 2 fuel oil, copper naphthenate can penetrate wood that is difficult to treat. Copper naphthenate loses some of its ability to penetrate wood when it is dissolved in heavier oils. Copper naphthenate treatments do not significantly increase the corrosion of metal fasteners relative to untreated wood.

Copper naphthenate is commonly used to treat utility poles, although fewer facilities treat utility poles with copper naphthenate than with creosote or pentachlorophenol. Unlike creosote and pentachlorophenol, copper naphthenate is not listed as an RUP by the EPA. Even though human health concerns do not require copper naphthenate to be listed as an RUP, precautions such as the use of dust masks and gloves should be used when working with wood treated with copper naphthenate.

Oxine Copper (Copper-8-Quinolinolate)

Oxine copper is effective when used aboveground. Its efficacy is reduced when it is used in direct contact with the ground or with water. It has not been standardized for those applications. Oxine copper (copper-8-quinolinolate) is an organometallic compound. The formulation consists of at least 10-percent copper-8-quinolinolate, 10-percent nickel-2-ethylhexanoate, and 80-percent inert ingredients. It is accepted as a standalone preservative for aboveground use to control sapstain fungi and mold and also is used to pressure-treat wood.

Oxine copper solutions are greenish brown, odorless, toxic to both wood decay fungi and insects, and have a low toxicity to humans and animals. Oxine copper can be dissolved in a range of hydrocarbon solvents, but provides protection much longer when it is delivered in heavy oil. Oxine copper is listed in the AWPA standards for treating several softwood species used in exposed, aboveground applications. The minimum specified retention for these applications is 0.02 pounds per cubic foot (0.32 kilograms per cubic meter, as elemental copper).

Oxine copper solutions are somewhat heat sensitive, which limits the use of heat to increase penetration of
the preservative. However, oxine copper can penetrate difficult-to-treat species, and is sometimes used to treat Douglas-fir used aboveground in wooden bridges and deck railings. Oilborne oxine copper does not accelerate corrosion of metal fasteners relative to untreated wood. A water-soluble form can be made with dodecylbenzene sulfonic acid, but the solution corrodes metals. Oxine copper is not widely used by pressure-treatment facilities, but is available from at least one plant on the West Coast.

Wood treated with oxine copper presents fewer toxicity or safety and handling concerns than oilborne preservatives that can be used in ground contact. Sometimes, it is used as a preservative to control sapstain fungi or incorporated into retail stains for siding, shingles, and cabin logs. Oxine copper is listed by the U.S. Food and Drug Administration (FDA) as an indirect additive that can be used in packaging that may come in direct contact with food.

Precautions such as wearing gloves and dust masks should be used when working with wood treated with oxine copper. Because of its somewhat limited use and low mammalian toxicity, there has been little research to assess the environmental impact of wood treated with oxine copper.

IPBC and Insecticides

IPBC (3-iodo-2-propynyl butyl carbamate) is not intended for use in ground contact or for horizontal surfaces that are fully exposed to the weather. It does provide protection for wood that is aboveground and partially protected from the weather. IPBC contains 97-percent 3-iodo-2-propynyl butyl carbamate that includes a minimum of 43.4-percent iodine. IPBC industrial fungicides are broad-spectrum fungicidal additives used in architectural coatings and construction applications (such as paints, stains, adhesives, caulks, and sealants), textiles, and plastic products to prevent dry film fungal growth. The IPBC preservative is included as the primary fungicide in several water-repellent-preservative formulations under the trade name Polyphase and sold at retail stores. Although oil-soluble formulations are discussed in this report, water-based formulations also may be used.

IPBC is colorless. Depending on the solvent and formulation, it may be possible to paint treated wood. Some formulations may have noticeable odor, but others may have little or no odor. IPBC is not an effective insecticide and is not used as a stand-alone treatment for critical structural members.

IPBC is listed as a preservative in AWPA standards, but no pressure-treated wood products have been standardized for IPBC. Dip-treating (a nonpressure process) with IPBC was standardized recently for ponderosa-pine millwork at a minimum retention of 950 parts per million (about 0.023 pounds per cubic foot [0.37 kilograms per cubic meter]). Soil block tests indicate that IPBC can prevent fungal attack of hardwoods and softwoods when it is used at a retention of 0.022 pounds per cubic foot (0.35 kilograms per cubic meter) or higher. After 9 years of aboveground exposure tests with pressure-treated Douglas-fir, ponderosa pine, and western hemlock results indicate that mixtures of IPBC and chloropyrifos can protect wood from decay at IPBC retentions as low as 0.05 pounds per cubic foot (0.8 kilograms per cubic meter).

Some pressure-treating facilities use a mixture of IPBC and an insecticide, such as permethrin or chloropyrifos, to treat structural members used aboveground that will be largely protected from the weather, although this practice is not a standardized treatment. These facilities are using IPBC retentions of 0.035 pounds per cubic foot (0.56 kilograms per cubic meter) or higher, with mineral spirits as the solvent. The advantage of this treatment is that it is colorless and allows the wood to maintain its natural appearance. This treatment is being used on Western species that are difficult to treat. Very few facilities are conducting pressure treatments with IPBC.
IPBC has relatively low acute toxicity for mammals and is not classified as an EPA RUP. However, workers should follow standard precautions, such as wearing gloves and dust masks, when working with wood treated with IPBC. Because IPBC typically has not been used for pressure treatment, there has been little evaluation of the environmental impact of wood treated with IPBC. It appears that IPBC degrades rapidly in soil and aquatic environments. It has low toxicity for birds, but is highly toxic to fish and aquatic invertebrates. The relatively low IPBC concentrations used in the wood and its rapid degradation in the environment would be expected to limit any environmental accumulations caused by leaching. Because IPBC usually is used with a light solvent, the preservative is not likely to bleed or ooze out of wood.

Waterborne Preservatives

Waterborne preservatives react with or precipitate in treated wood, becoming “fixed.” They resist leaching. Because waterborne preservatives leave a dry, paintable surface, they are commonly used to treat wood for residential applications, such as decks and fences. Waterborne preservatives are used primarily to treat softwoods, because they may not fully protect hardwoods from soft-rot attack. Most hardwood species are difficult to treat with waterborne preservatives.

These preservatives can increase the risk of corrosion when metals contact treated wood used in wet locations. Metal fasteners, connectors, and flashing should be made from hot-dipped galvanized steel, copper, silicon bronze, or stainless steel if they are used with wood treated with waterborne preservatives containing copper. Aluminum should not be used in direct contact with wood treated with waterborne preservatives containing copper. Borates are another type of waterborne preservative. However, they do not fix in the wood and leach readily if they are exposed to rain or wet soil. Borate treatment does not increase the risk of corrosion when metals contact preservative-treated wood.

Chromated Copper Arsenate (CCA)

CCA protects wood used aboveground, in contact with the ground, or in contact with freshwater or seawater. Wood treated with CCA (commonly called green treated) dominated the treated wood market from the late 1970s until 2004. Chromated copper arsenate has been phased out voluntarily for most applications around residential areas and where human contact is prevalent. The allowable uses for CCA are discussed in more detail in the **Recommended Guidelines** section.

The three standardized formulations are: CCA Type A, CCA Type B, and CCA Type C. CCA Type C (CCA–C) is the formulation used by nearly all treatment facilities because of its resistance to leaching and its demonstrated effectiveness. CCA–C is comprised of 47.5 percent chromium trioxide, 18.5 percent copper oxide, and 34.0 percent arsenic pentoxide dissolved in water.

CCA–C has decades of proven performance. It is the reference preservative used to evaluate the performance of other waterborne wood preservatives during accelerated testing. Because it has been widely used for so many years, CCA–C is listed in AWPA standards for a wide range of wood products and applications. The minimum retention of CCA–C in wood ranges from 0.25 pounds per cubic foot (4 kilograms per cubic meter) in aboveground applications to 2.5 pounds per cubic foot (40 kilograms per cubic meter) in marine applications. Most ground-contact applications require minimum retentions of 0.4 pounds per cubic foot (6.4 kilograms per cubic meter). Critical structural applications require minimum retentions of 0.6 pounds per cubic foot (9.6 kilograms per cubic meter). It may be difficult to obtain adequate penetration of CCA in some difficult-to-treat species. The chromium serves as a corrosion inhibitor. Corrosion of fasteners in wood treated with CCA is not as much of a
Types of Wood Preservatives

Concern as in wood treated with other waterborne preservatives that contain copper but do not contain chromium.

CCA contains inorganic arsenic and is classified as an RUP by the EPA. Producers of treated wood, in cooperation with the EPA, created the Consumer Information Sheet which has been replaced with the Consumer Safety Information Sheet that gives guidance on handling and site precautions at sites where wood treated with inorganic arsenic is used (appendix B). The consumer safety information sheet should be available to all persons who handle wood treated with CCA.

Ammoniacal Copper Zinc Arsenate (ACZA)

Ammoniacal copper zinc arsenate (ACZA) contains copper oxide (50 percent), zinc oxide (25 percent), and arsenic pentoxide (25 percent). ACZA is a refinement of an earlier formulation, ACA, which is no longer available in the United States. The color of the treated wood varies from olive to bluish green. The wood may have a slight ammonia odor until it has dried thoroughly. ACZA is an established preservative that is used to protect wood from decay and insect attack in a wide range of exposures and applications. Exposure tests showed that it protected stakes and posts that contacted the ground.

ACZA is listed in the AWPA standards for treatment of a range of softwood and hardwood species and wood products. The minimum ACZA retention is 0.25 pounds per cubic foot (4 kilograms per cubic meter) for above-ground applications and 0.4 pounds per cubic foot (6.4 kilograms per cubic meter) for wood that contacts the ground. A slightly higher retention, 0.6 pounds per cubic foot (9.6 kilograms per cubic meter), is required for wood used in highway construction and for critical structural components that are exposed to high decay hazard. The ammonia in the treating solution, in combination with processing techniques such as steaming and extended pressure periods at elevated temperatures, allow ACZA to do a better job of penetrating difficult-to-treat species of wood than many other water-based wood preservatives.

ACZA is used frequently in the Western United States to treat Douglas-fir lumber and timbers used to construct secondary highway bridges, trail bridges, and boardwalks. The ACZA treatment can accelerate corrosion in comparison to untreated wood, requiring the use of hot-dipped galvanized or stainless steel fasteners. Treatment facilities using ACZA are located in Western States, where many native tree species are difficult to treat with CCA.

ACZA contains inorganic arsenic and is classified as an RUP by the EPA. Producers of treated wood, in cooperation with the EPA, have created consumer information sheets that suggest appropriate handling precautions and precautions at sites where wood treated with inorganic arsenic (appendix B) will be used. These sheets should be available to all personnel who handle wood treated with ACZA.

Alkaline Copper Quaternary (ACQ) Compounds

Alkaline copper quat (ACQ) is one of several wood preservatives that have been developed in recent years to meet market demands for alternatives to CCA. The fungicides and insecticides in ACQ are copper oxide (67 percent) and a quaternary ammonium compound (quat). Many variations of ACQ have been standardized or are being standardized. ACQ type B (ACQ–B) is an ammoniacal copper formulation, ACQ type D (ACQ–D) is an amine copper formulation, and ACQ type C (ACQ–C) is a combined ammoniacal-amine formulation with a slightly different quat compound.

Wood treated with ACQ–B is dark greenish brown and fades to a lighter brown. It may have a slight ammonia odor until the wood dries. Wood treated with ACQ–D has a lighter greenish-brown color and has little noticeable odor; wood treated with ACQ–C varies between the color of ACQ–B and that of ACQ–D, depending on
Types of Wood Preservatives

the formulation. Stakes treated with these three formulations have demonstrated their effectiveness against decay fungi and insects when the stakes contacted the ground.

The ACQ formulations are listed in the AWPA standards for a range of applications and many softwood species. The listings for ACQ–C are limited because it is the most recently standardized. The minimum ACQ retentions are 0.25 pounds per cubic foot (4 kilograms per cubic meter) for aboveground applications, 0.4 pounds per cubic foot (6.4 kilograms per cubic meter) for applications involving ground contact, and 0.6 pounds per cubic foot (9.6 kilograms per cubic meter) for highway construction. The different formulations of ACQ allow some flexibility in achieving compatibility with a specific wood species and application. An ammonia carrier improves the ability of ACQ to penetrate into wood that is difficult to treat. For wood species that are easier to treat, such as southern pine, an amine carrier will provide a more uniform surface appearance.

All ACQ treatments accelerate corrosion of metal fasteners relative to untreated wood. Hot-dipped galvanized copper or stainless steel fasteners must be used. The number of pressure-treatment facilities using ACQ is increasing.

In the Western United States, the ACQ–B formulation is used because it will penetrate difficult-to-treat Western species better than other waterborne preservatives. Treatment plants elsewhere generally use the ACQ–D formulation. Researchers at the USDA Forest Service’s Forest Products Laboratory in Madison, WI, are evaluating the performance of a secondary highway bridge constructed using Southern pine lumber treated with ACQ–D (Ritter and Duwadi 1998).

Copper Azoles (CBA–A and CA–B)

Copper azole is another recently developed preservative formulation that relies primarily on amine copper, but with additional biocides, to protect wood from decay and insect attack (figure 3). The first copper azole formulation

Figure 3—Pressure-treated lumber stockpiled at a lumberyard. Lumber treated with ACQ–D and CA–B has become widely available.
developed was the copper azole type A (CBA–A), which contains 49-percent copper, 49-percent boric acid, and 2-percent tebuconazole. Type A is no longer used in the United States. The copper azole type B (CA–B) formulation was standardized recently. CA–B does not contain boric acid. It is comprised of 96-percent copper and 4-percent tebuconazole. Wood treated with either copper azole formulation has a greenish-brown color and little or no odor.

Tests showed that the copper azole formulations protected stakes in the ground from attack by decay fungi and insects. The formulations are listed in the AWPA standards for treatment of a range of softwood species. Minimum CA–B retentions in the wood are 0.10, 0.21, or 0.31 pounds per cubic foot (1.6, 3.4, or 5 kilograms per cubic meter) for wood used aboveground, contacting the ground, or in critical structural components, respectively.

Copper azole is an amine formulation. Ammonia may be added at the treating plant when the copper azole is used on Western species that are difficult to treat. This formulation is often used to treat Douglas-fir. Formulations with ammonia slightly darken the surface appearance and initially affect the odor of the treated wood.

Copper azole treatments increase the rate of corrosion of metal fasteners relative to untreated wood. Appropriate hot-dipped galvanized steel, copper or stainless steel fasteners, connectors, and flashing are recommended. Although copper azole was introduced to North America recently, almost 100 treating facilities now use this preservative.

Borates

Borate compounds are the most commonly used unfixed waterborne preservatives. Unfixed preservatives can leach from treated wood. They are used for pressure treatment of framing lumber used in areas with high termite hazard, and as surface treatments for a wide range of wood products, such as cabin logs and the interiors of wood structures. They are also applied as internal treatments using rods or pastes. At higher rates of retention, borates also are used as fire-retardant treatments for wood.

Boron has some exceptional performance characteristics, including activity against fungi and insects, but low mammalian toxicity. It is relatively inexpensive. Another advantage of boron is its ability to diffuse with water into wood that normally resists traditional pressure treatment. Wood treated with borates has no added color, no odor, and can be finished (primed and painted).

While boron has many potential applications in framing, it probably is not suitable for many Forest Service applications because the chemical will leach from the wood under wet conditions. It may be a useful treatment for insect protection in areas continually protected from water.

Inorganic boron is listed as a wood preservative in the AWPA standards, which include formulations prepared from sodium octaborate, sodium tetraborate, sodium pentaborate, and boric acid. Inorganic boron is also standardized as a pressure treatment for a variety of species of softwood lumber used out of contact with the ground and continuously protected from water. The minimum borate (B₂O₃) retention is 0.17 pounds per cubic foot (2.7 kilograms per cubic meter). A retention of 0.28 pounds per cubic foot (4.5 kilograms per cubic meter) is specified for areas with Formosan subterranean termites.

Borate preservatives are available in several forms, but the most common is disodium octaborate tetrahydrate (DOT). DOT has higher water solubility than many other forms of borate, allowing more concentrated solutions to be used and increasing the mobility of the borate through the wood. With the use of heated solutions, extended pressure periods, and diffusion periods after treatment,
DOT can penetrate species that are relatively difficult to
treat, such as spruce. Several pressure treatment facilities
in the United States use borate solutions.

Although borates have low mammalian toxicity, workers
handling borate-treated wood should use standard pre-
cautions, such as wearing gloves and dust masks. The
environmental impact of borate-treated wood for con-
struction projects in sensitive areas has not been evalu-
ated. Because borate-treated wood is used in areas pro-
tected from precipitation or water, little or no borate
should leach into the environment. Borates have low
toxicity to birds, aquatic invertebrates, and fish. Boron
occurs naturally at relatively high levels in the envi-
ronment. Because borates leach readily, extra care should
be taken to protect borate-treated wood from precipita-
tion when it is stored at the jobsite. Precipitation could
deplete levels of boron in the wood to ineffective
levels and harm vegetation directly below the stored wood.

Borate-treated wood should be used only in
applications where the wood is kept free from
rainwater, standing water, and ground contact.

Other Waterborne Preservatives
Other waterborne preservatives have been introduced
recently on the commercial market. They have not been
on the market long enough to have long-term perfor-
ance studies completed. Their effectiveness or perfor-
ance has not been established. This publication only
describes preservatives that have been evaluated and
standardized by the American Wood-Preservers’ Associ-
ation (AWPA), the primary standard-setting body for
pressure-treated wood. To become standardized by the
AWPA, preservative-treated wood must undergo a series
of rigorous tests to ensure its durability. These tests
include several years of outdoor exposure in a climate
with severe biodeterioration hazards. The results of these
tests are reviewed by AWPA members who represent
government agencies, universities, commercial chemical
suppliers, and treatment companies. Be wary of pur-
chasing wood that has been treated with a preservative
that has not been standardized for that application by
either the AWPA or another major standard-setting body,
such as the American Society for Testing and Materials
(ASTM).

Preservatives That Are No Longer Available
Commercially
Several preservative formulations that have been used in
the past were not available commercially in 2005. The
wood preservative industry has become more dynamic
because of economic factors and regulations. The follow-
ing preservative formulations are included in this report
because they may become available in the future and
because they have been used to treat existing structures.

Ammoniacal Copper Arsenate (ACA)
ACA was an older formulation of ACZA that didn’t contain
zinc. It has not been available in the United States for
many years and is not likely to be produced in the future.
ACA should be replaced with ACZA in older guidelines
and specifications.

Acid Copper Chromate (ACC)
Acid copper chromate (ACC) has been used as a wood
preservative in Europe and the United States since the
1920s. ACC contains 31.8-percent copper oxide and
68.2-percent chromium trioxide. The treated wood has
a light greenish-brown color and little noticeable odor.
During tests, stakes and posts that were impregnated with
ACC held up well when exposed to decay and termite
attack, although they may have been susceptible to attack
by some species of copper-tolerant fungi.
Types of Wood Preservatives

ACC is listed in the AWPA standards for a wide range of softwoods and hardwoods, with a minimum retention of 0.25 pounds per cubic foot (4 kilograms per cubic meter) for wood used aboveground and 0.5 pounds per cubic foot (8 kilograms per cubic meter) for wood that contacts the ground. In critical structural applications, such as highway construction, AWPA listings for ACC are limited to signposts, handrails and guardrails, and glue-laminated beams used aboveground. It may be difficult to obtain adequate penetration of ACC in some of the wood species that are difficult to treat, such as white oak or Douglas-fir. The high chromium content of ACC prevents much of the corrosion that might otherwise occur with an acidic copper preservative.

ACC does not contain arsenic, but the treatment solution does use hexavalent chromium. The chromium is converted to the more benign trivalent state during treatment and storage of the wood. This process of chromium reduction is the basis for fixation in ACC, and depends on time, temperature, and moisture. Fixation standards or BMPs (best management practices) have not been developed for ACC, because of its relatively low usage. As a general guide, the fixation considerations discussed for CCA can be applied to ACC, but the fixation times must be extended because of ACC’s higher chromium content. In 2005, only one manufacturer had a registration for ACC, and it was not being marketed.

Ammoniacal Copper Citrate (CC)
Ammoniacal copper citrate (CC) uses copper oxide (62 percent) as the fungicide and insecticide, and citric acid (38 percent) to help distribute copper within the wood structure. In 2004, CC was withdrawn from the AWPA standards because it was not being used.

Copper Dimethyldithiocarbamate (CDDC)
Copper dimethyldithiocarbamate is a reaction product formed in wood that has been treated with two different solutions. It contains copper and sulfur compounds. CDDC protects against decay fungi and insects. It has not been standardized for use in seawater. CDDC is standardized for treatment of southern pine and some other pine species at copper retentions of 0.1 pound per cubic foot (1.6 kilograms per cubic meter) for wood used aboveground or 0.2 pound per cubic foot (3.2 kilograms per cubic meter) for wood that contacts the ground. CDDC-treated wood has a light brown color and little or no odor. CDDC was introduced several years ago, but because of the expense of converting plants for its use and of the two-step treatment process, CDDC-treated wood was not available commercially in 2005.
Summary of Preservative Properties

Table 1 summarizes the properties of the most commonly used preservatives.

Table 1—The properties and uses of common preservatives.

<table>
<thead>
<tr>
<th>Standardized use</th>
<th>Preservative</th>
<th>Solvent characteristics</th>
<th>Surface/handling restrictions</th>
<th>Color</th>
<th>Odor</th>
<th>Fastener corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>All uses</td>
<td>Creosote</td>
<td>Oil-type</td>
<td>Oily, not for frequent human contact</td>
<td>Dark brown</td>
<td>Strong, lasting</td>
<td>No worse than untreated</td>
</tr>
<tr>
<td>All uses</td>
<td>Ammoniacal copper zinc arsenate</td>
<td>Water</td>
<td>Dry, but contains arsenic</td>
<td>Brown, possible blue areas</td>
<td>Mild, short term</td>
<td>Worse than untreated wood</td>
</tr>
<tr>
<td>All uses</td>
<td>Chromated copper arsenate</td>
<td>Water</td>
<td>Dry, but uses are restricted by the EPA*</td>
<td>Greenish brown, weathers to gray</td>
<td>None</td>
<td>Similar to untreated wood</td>
</tr>
<tr>
<td>All uses (except in seawater)</td>
<td>Pentachlorophenol in heavy oil</td>
<td>No. 2 fuel oil</td>
<td>Oily, not for frequent human contact</td>
<td>Dark brown</td>
<td>Strong, lasting</td>
<td>No worse than untreated wood</td>
</tr>
<tr>
<td>All uses (except in seawater)</td>
<td>Copper naphthenate</td>
<td>No. 2 fuel oil</td>
<td>Oily, not for frequent human contact</td>
<td>Green, weathers to brownish gray</td>
<td>Strong, lasting</td>
<td>No worse than untreated wood</td>
</tr>
<tr>
<td>All uses (except in seawater)</td>
<td>Alkaline copper quat</td>
<td>Water</td>
<td>Dry, okay for human contact</td>
<td>Greenish brown, weathers to gray</td>
<td>Mild, short term</td>
<td>Worse than untreated wood</td>
</tr>
<tr>
<td>All uses (except in seawater)</td>
<td>Copper azole</td>
<td>Water</td>
<td>Dry, okay for human contact</td>
<td>Greenish brown, weathers to gray</td>
<td>Mild, short term</td>
<td>Worse than untreated wood</td>
</tr>
<tr>
<td>Aboveground, fully exposed</td>
<td>Pentachlorophenol in light oil</td>
<td>Mineral spirits</td>
<td>Dry, okay for human contact if coated</td>
<td>Light brown, weathers to gray</td>
<td>Mild, short term</td>
<td>No worse than untreated wood</td>
</tr>
<tr>
<td>Aboveground, fully exposed</td>
<td>Oxine copper</td>
<td>Mineral spirits</td>
<td>Dry, okay for human contact</td>
<td>Greenish brown, weathers to gray</td>
<td>Mild, short term</td>
<td>No worse than untreated wood</td>
</tr>
<tr>
<td>Aboveground, partially protected (such as millwork)</td>
<td>IPBC + permethrin</td>
<td>Mineral spirits</td>
<td>Dry, okay for human contact</td>
<td>Colorless</td>
<td>Mild, short term</td>
<td>No worse than untreated wood</td>
</tr>
<tr>
<td>Indoors (usually for insect protection)</td>
<td>Borates</td>
<td>Water</td>
<td>Dry, okay for human contact</td>
<td>Colorless, blue dye often added</td>
<td>None</td>
<td>No worse than untreated wood</td>
</tr>
</tbody>
</table>

*A few uses of chromated copper arsenate are still allowed for treatment of sawn products less than 5 inches thick (12.7 centimeters, such as dimension lumber). Pilings, poles, large timbers, and plywood are still allowed for highway construction.—Courtesy of USDA Forest Service, Forest Products Laboratory