You are here

Fire, Fuel and Smoke

Projects

Tree-ring based fire histories from Utah and Nevada reveal multi-century fire patterns for quaking aspen, mountain sagebrush and Great Basin bristlecone pine communities.
The Fire and Smoke Model Evaluation Experiment (FASMEE) is a large-scale interagency effort to identify how fuels, fire behavior, fire energy and meteorology interact to determine the dynamics of smoke plumes, the long-range transport of smoke and local fire effects such as soil heating and vegetative response. FASMEE is designed to collect observations from large prescribed fires by combining Light Detection and Ranging (LiDAR), radar, ground monitoring, aircraft and satellite imagery, and weather and atmospheric measurements. Knowing more about how wildland fire operates helps land managers better predict fire behavior, smoke impacts, and the short- to long-term effects of fire. It also promotes increased public and firefighter safety and aids in the allocation of firefighting resources.
Land managers frequently use prescribed burning to help maintain grassland communities. Semiarid grassland dynamics following fire are linked to precipitation, with increasing soil moisture accelerating the rate of recovery. Prescribed fires are typically scheduled to follow natural fire regimes, but burning outside the natural fire season could be equally effective and more convenient for managers, depending on their management objectives. 
In a collaboration with the US Environmental Protection Agency (EPA), the Wildland Fire Sensor Challenge was conducted to solicit and evaluate next-generation air measurement technology in pursuit of an easy to deploy, reliable, and accurate on-demand smoke monitoring network. During the initial phase of the challenge, three prototype systems were identified for further development and testing. Second generation sensors will be evaluated by the USFS/EPA research team in spring 2019.
Large wildfires are inherently more complex; often affecting multiple jurisdictions and requiring a balance of strategic long-term planning and nimble tactical solutions to meet dynamic conditions on the ground.  With this increase in complexity comes increased uncertainty.
The increasing complexity of the wildfire management environment has also created challenges for managing the exposure of wildfire responders to operational hazards.  Firefighting is an inherently high-risk occupation and the fire environment is fraught with hazards that consistently cause injuries and fatalities each year.  While some number of these hazards can be mitigated with improved safety equipment, communications, and safety protocols once responders are deployed.  It is up to the fire command staff to determine, where and under what conditions the risk/benefit trade off of deploying boots on the ground makes sense.
District and Forest Fire staff recently met with local cooperators and resource specialists to develop maps of potential control lines that they could use while managing a fire. Maps of control lines and potential operational delineations (PODs) are being developed for the entire Forest with the assistance of researchers from USFS Rocky Mountain Research Station and the Colorado Forest Restoration Institute.
Post-fire resiliency of plant communities in northern mixed-grass prairie and eastern sagebrush steppe depends largely on plant regeneration from aboveground and belowground buds. Canopy and stem regeneration occurs more quickly via the bud bank than via seedling recruitment. To better predict plant community responses to fire, we need an enhanced understanding of the immediate and long-term bud responses of key forb, grass, and shrub species to fire.  
The Lassen and Modoc National Forests are revising their Forest Plans, guided by the 2012 Planning Rule. This requires public and tribal input throughout the process and embraces the fact that ecological, social, and economic objectives are interrelated. Because ecological, social, and economic conditions have changed since the original forest plans were written and new science is available, preparing a science synthesis, guided by input from the public, tribes, and forest staffs, is the first step in a multi-step process that eventually leads to revised forest plans.
Grand fir and western hemlock mortality and regeneration dynamics after wildfire and salvage.

Pages