You are here

Prescribed fire

Projects

The Fire and Smoke Model Evaluation Experiment (FASMEE) is a large-scale interagency effort to identify how fuels, fire behavior, fire energy and meteorology interact to determine the dynamics of smoke plumes, the long-range transport of smoke and local fire effects such as soil heating and vegetative response. FASMEE is designed to collect observations from large prescribed fires by combining Light Detection and Ranging (LiDAR), radar, ground monitoring, aircraft and satellite imagery, and weather and atmospheric measurements. Knowing more about how wildland fire operates helps land managers better predict fire behavior, smoke impacts, and the short- to long-term effects of fire. It also promotes increased public and firefighter safety and aids in the allocation of firefighting resources.
Land managers frequently use prescribed burning to help maintain grassland communities. Semiarid grassland dynamics following fire are linked to precipitation, with increasing soil moisture accelerating the rate of recovery. Prescribed fires are typically scheduled to follow natural fire regimes, but burning outside the natural fire season could be equally effective and more convenient for managers, depending on their management objectives. 
Post-fire resiliency of plant communities in northern mixed-grass prairie and eastern sagebrush steppe depends largely on plant regeneration from aboveground and belowground buds. Canopy and stem regeneration occurs more quickly via the bud bank than via seedling recruitment. To better predict plant community responses to fire, we need an enhanced understanding of the immediate and long-term bud responses of key forb, grass, and shrub species to fire.  
The research objective is to develop western white pine management strategies focused on regeneration establishment and young forest development by 1) developing canopy opening size thresholds where western white pine can establish and grow, 2) developing alternative tending methods to enable managers to continue to manage western white pine plantations, 3) evaluating plantation resilience to wildfire, and 4) evaluating understory plant diversity under 30-year or older western white pine plantations.  
Through fire management and riparian ecosystem restoration RMRS researchers Terrie Jain, Kate Dwire, and Travis Warziniack are partnering with the University of Idaho and the Idaho City Ranger District to develop, implement, and evaluate different adaptive management strategies to improve the fire resiliency of the Boise National Forest. 
The Lassen and Modoc National Forests are revising their Forest Plans, guided by the 2012 Planning Rule. This requires public and tribal input throughout the process and embraces the fact that ecological, social, and economic objectives are interrelated. Because ecological, social, and economic conditions have changed since the original forest plans were written and new science is available, preparing a science synthesis, guided by input from the public, tribes, and forest staffs, is the first step in a multi-step process that eventually leads to revised forest plans.
Fuel treatment impacts in ponderosa pine - Douglas-fir forests in the Northern Rockies.
Mortality reconsidered: Testing and extending models of fire–induced tree mortality across the United States.
Wildland fires emit significant amounts of greenhouse gases, particulate matter, and ozone precursors. This can have a significant negative effect on public health at multiple scales.
RMRS researchers Terrie Jain, Kate Dwire, and Travis Warziniack are partnering with managers on the Boise National Forest and scientists at the University of Idaho to develop, implement, and evaluate place-based adaptive management strategies with the goal of improving the resilience of Northern Rockies ponderosa pine stands to fire and other disturbances.

Pages