You are here

Landscape ecology


Climate change and associated ecological impacts have challenged many conventional, observation-based approaches for predicting ecosystem and landscape responses to natural resource management. Complex spatial ecological models provide powerful, flexible tools which managers and others can use to make inferences about management impacts on future, no-analog landscape conditions.
We developed and applied a wildfire simulation package in the Envision agent-based landscape modelling system. The wildfire package combines statistical modelling of fire occurrence with a high-resolution, mechanistic wildfire spread model that can capture fine scale effects of fire feedbacks and fuel management, and replicate restoration strategies at scales that are meaningful to forest managers.
Landscape scale restoration is a common management intervention used around the world to combat ecological degradation. For wilderness managers in the United States, the decision to intervene is complicated by the Wilderness Act’s legal mandate to preserve wilderness character and demonstrate managerial restraint (16 U.S.C. § 1131-1136).
A major aim of landscape genetics is to understand how landscapes resist gene flow and thereby influence population genetic structure. An empirical understanding of this process provides a wealth of information that can be used to guide conservation and management of species in fragmented landscapes and also to predict how landscape change may affect population viability.
Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time.
Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values.
The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome.
Local communities in the Gudbrandsdalen region in Norway are increasingly exposed to climateinduced hazards such as floods and landslides. A core question is how community members respond to climate change and what factors contribute to more resilient communities. The authors used a contextual approach to analyze data from semi-structured interviews along five dimensions.
Applications of entropy and the second law of thermodynamics in landscape ecology are rare and poorly developed. This is a fundamental limitation given the centrally important role the second law plays in all physical and biological processes. A critical first step to exploring the utility of thermodynamics in landscape ecology is to define the configurational entropy of a landscape mosaic.
Landscape genetics has advanced the field of evolutionary ecology by providing a direct focus on relationships between landscape patterns and population processes, such as gene flow, selection, and genetic drift. This chapter discusses the current and emerging challenges and opportunities, which focus and facilitate future progress in the field. It presents ten conclusions drawn about the current state-of-the-art in landscape genetics.