You are here

Landscape ecology

Projects

Squirreltail (Elymus elymoides) can rapidly colonize disturbed sites, is relatively fire-tolerant, and is a potential competitor with medusahead (Taeniatherum caput-medusae) and cheatgrass (Bromus tectorum). Determining the extent to which adaptive genetic variation is related to climatic variation is needed to ensure that the proper germplasm is chosen for revegetation and restoration. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of squirreltail for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Good drought tolerance and fibrous roots make prairie junegrass (Koeleria macrantha) beneficial for revegetation and erosion control on mined lands, over septic systems, in construction areas, on burned sites, and in other disturbed areas. There is a need for greater genetic knowledge of this species to ensure adapted populations are used for restoration and revegetation projects. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of prairie junegrass for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Previous research funded by the Great Basin Native Plant Project found that bluebunch wheatgrass (Pseudoroegneria spicata) populations differed in traits important for adaptation to precipitation and temperature (St. Clair et al. 2013). Forest Service scientists hypothesize that in the long-term, populations from local seed zones will better establish, survive, and reproduce than those from non-local seed zones. This study examines the efficacy of seed zones for bluebunch wheatgrass to ensure successful establishment and allow for long-term adaptation by maintaining genetic diversity.
The National Stream Internet (NSI) is a network of people, data, and analytical techniques that interact synergistically to create information about streams. The NSI is needed because accurate, high-resolution status and trend information does not exist for most biological and water quality attributes across the 5.5 million stream kilometers in the United States.
The northern goshawk (Accipiter gentilis) is an apex predator in most forests in the United States and Canada. Natural resource managers need information on how 3-dimensional forest structure impacts habitat quality for northern goshawk. Scientists with the Rocky Mountain Research Station are addressing this need by combining 21 years of demographic research with recently acquired high-resolution LiDAR data.
External DNA released by animals in aquatic environments, called environmental DNA (eDNA), can be used to determine whether a species is present without actually capturing or seeing an individual. Because of its greater efficiency and reduced cost, eDNA sampling may revolutionize the monitoring and assessment of freshwater species.
Climate change will affect wildlife directly through temperature and moisture changes and indirectly through habitat availability as vegetation types and ecosystem productivity changes. Our study focuses on the western United States, on an annual time frame, and at a 0.083 degree grid cell spatial scale.
The development of ecological restoration treatment prescriptions based on historical forest structure is needed to inform management activities within the Collaborative Forest Landscape Restoration (CFLR) and other restoration efforts. Our goal is to provide managers with locally derived, historically realistic, and climatically sustainable targets for desired future stand and landscape conditions for the Colorado Front Range and South Dakota Black Hills. 
Rocky Mountain Research Station (RMRS) scientists have been at the forefront of efforts to understand the ecology of the threatened Mexican spotted owls (Strix occidentalis lucida) for more than 25 years. These scientists and their cooperators have produced most of the existing scientific information on this species. Today, RMRS scientists continue to be actively involved in developing new knowledge on this owl, synthesizing existing information, and working with managers to integrate habitat requirements for the owl and its important prey species into land management plans.
Canada lynx, and their primary prey snowshoe hares, live in high-elevation spruce-fir forests, which are increasingly modified by spruce-bark beetle outbreaks. The goal of our research is to combine lynx use of insect-impacted forests with measures of forest condition.  Our results will inform forest prescriptions that facilitate timber-salvage and lynx conservation.

Pages