You are here

Climate Change

Projects

In this study, we determined the locations of wildfire-derived emissions and their aggregate impacts on Salt Lake City, Utah, a major urban center downwind of the fires. The USFS Rocky Mountain Research Station’s new Wildland Fire Emission Inventory Version 2 model was used to determine the location and timing of wildfire emissions.
Forest biomass is a promising feedstock (raw material to supply or fuel a machine or industrial process) for the production of bioenergy, biofuels, and bioproducts because it is renewable and widely available as a byproduct of forest management. However, there are many obstacles have that have prevented more widespread use of forest biomass. This project was set in place to quantify and evaluate these obstacles so that land managers can overcome them.
How is drought affecting the forests and rangelands of the United States? Dr. Karin L. Riley, Research Ecologist with the Human Dimensions program of the USDA Forest Service Rocky Mountain Research Station, participated in a recent effort to synthesize the current science on this topic, along with 76 other scientists from federal land management agencies, universities, and other research institutions.
The Wildfire Risk Management Team is an interdisciplinary team that explores wildfire management through the lenses of risk analysis, economics, decision science, and landscape ecology to improve the scientific basis for the full range of wildfire management decisions. Primary research topics include integrated spatial risk assessment modeling and planning, econometric modeling of fire management expenditures, effectiveness of suppression resource utilization, organizational structure and managerial incentive systems, and performance measurement.
Squirreltail (Elymus elymoides) can rapidly colonize disturbed sites, is relatively fire-tolerant, and is a potential competitor with medusahead (Taeniatherum caput-medusae) and cheatgrass (Bromus tectorum). Determining the extent to which adaptive genetic variation is related to climatic variation is needed to ensure that the proper germplasm is chosen for revegetation and restoration. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of squirreltail for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Good drought tolerance and fibrous roots make prairie junegrass (Koeleria macrantha) beneficial for revegetation and erosion control on mined lands, over septic systems, in construction areas, on burned sites, and in other disturbed areas. There is a need for greater genetic knowledge of this species to ensure adapted populations are used for restoration and revegetation projects. This study provides (1) seed zones and seed transfer guidelines for developing adapted plant materials of prairie junegrass for revegetation and restoration in the Great Basin and adjacent areas and (2) guidelines for conservation of germplasm within the National Plant Germplasm System.
Previous research funded by the Great Basin Native Plant Project found that bluebunch wheatgrass (Pseudoroegneria spicata) populations differed in traits important for adaptation to precipitation and temperature (St. Clair et al. 2013). Forest Service scientists hypothesize that in the long-term, populations from local seed zones will better establish, survive, and reproduce than those from non-local seed zones. This study examines the efficacy of seed zones for bluebunch wheatgrass to ensure successful establishment and allow for long-term adaptation by maintaining genetic diversity.
Forest management and natural disturbance can have a significant impact on storage or emission of greenhouse gases. Researchers with the Rocky Mountain Research Station designed the Forest Carbon Management Framework (ForCaMF) to model how harvested and burned stands contribute to overall carbon storage over different time scales. ForCaMF was used to conduct analyses across all 76 million ha of National Forest System land by Forest Service Region. Through informed forest management, additional forest carbon storage is achievable.
In 2012, the Southern Rockies Landscape Conservation Cooperative (LCC) identified a need for synthesis products and tools to help managers identify vulnerability assessments and literature relevant to the Interior Western U.S. In response to this need, Rocky Mountain Research Station scientists compiled climate change vulnerability literature for the western U.S. with a focus on the states and regions within the Southern Rockies LCC boundary.
The Cascabel watershed study was initiated in 1999 by Rocky Mountain Research Station Scientists as part of the Southwestern Borderlands Ecosystem Management Project. The study is a collaborative, interdisciplinary project to determine the effects of cool season and warm season prescribed burning on an oak-savanna ecosystem common to the southwestern United States and northern Mexico.

Pages