You are here



Large, high-severity wildfires alter the physical and biological conditions that determine how catchments retain and release nutrients and regulate streamwater quality. The short-term water quality impacts of severe wildfire are often dramatic, but the longer-term responses may better reflect terrestrial and aquatic ecosystem recovery.
The United States Forest Inventory and Analysis (FIA) program has been monitoring national forest resources in the United States for over 80 years; presented here is a synthesis of research applications for FIA data. A review of over 180 publications that directly utilize FIA data is broken down into broad categories of application and further organized by methodologies and niche research areas.
Accurate characterization of Carbon (C) consequences of forest disturbances and management is critical for informed climate mitigation and adaptation strategies.
Restoring overstocked forests by thinning and pyrolyzing residual biomass produces biochar and other value‐added products. Forest soils amended with biochar have potential to sequester carbon (C), improve soil quality, and alter greenhouse gas (GHG) emissions without depleting nutrient stocks. Yet, few studies have examined the effects of biochar on GHG emissions and tree growth in temperate forest soils.
This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate.
LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m− 2 and a grid cell size of 5 m.
Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and forest plans affect carbon stocks.
Sonic anemometry is fundamental to all eddy-covariance studies of surface energy and ecosystem carbon and water balance. Recent studies have shown that some nonorthogonal anemometers underestimate vertical wind. Here it is hypothesized that this is due to a lack of transducer and structural shadowing correction.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long-term (> 102 years) storage.
Increasing the frequency of resistance to the non-native fungus Cronartium ribicola (causative agent of white pine blister rust, WPBR) in limber pine populations is a primary management objective to sustain high-elevation forest communities. However, it is not known to what extent genetic disease resistance is costly to plant growth or carbon economy.