You are here

Assessments

Publications

Understory vegetation structure and its relationship with forest canopies and site conditions are important determinants of carbon stocks, wildlife habitat, and fuel loading for wildland fire assessments. Comprehensive studies are needed to assess these relationships through the use of consistently collected field-based data.
Despite the widespread use of ponderosa pine as an important hydroclimate proxy, we actually understand very little about its climate response in the Northern Rockies. Here, we analyze two new ponderosa pine chronologies to investigate how climate influences annual growth.
Context: Land-use change is a global phenomenon with potential to generate abrupt spatial changes in species’ distributions.
Aim: Deterministic niche theory predicts that increasing environmental heterogeneity increases species richness. In contrast, a recent stochastic model suggests that heterogeneity has a unimodal effect on species richness since high levels of heterogeneity reduce the effective area available per species, thereby increasing the likelihood of stochastic extinction (the ‘area-heterogeneity trade-off’).
High rates of triploidy have recently been described in quaking aspen (Populus tremuloides Michx.) of the Intermountain West, raising questions about the contributions of triploidy to stand persistence and dynamics. In this study, we investigated cytotype differences between diploid and triploid aspen clones using dendrochronological techniques.
1. Biodiversity conservation is a primary function of protected areas. However, protected areas also attract people, and therefore, land use has intensified at the boundaries of these lands globally. In the USA, since the 1970s, housing growth at the boundaries (
The temporal depth and spatial breadth of observations from platforms such as Landsat provide unique perspective on ecosystem dynamics, but the integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential map errors in broader ecosystem assessments.
Climate change stands to cause animal species to shift their geographic ranges. This will cause ecosystems to become reorganized across landscapes as species migrate into and out of specific locations with attendant impacts on values and services that ecosystems provide to humans. Conservation in an era of climate change needs to ensure that landscapes are resilient by devising adaptation strategies to deal with such dynamism.
Climate change in the 21st Century is projected to cause widespread changes in forest ecosystems. Climate-FVS is a modification to the Forest Vegetation Simulator designed to take climate change into account when predicting forest dynamics at decadal to century time scales.

Pages