You are here

Publications

Recent Publications

Rangeland landscapes occupy roughly 662 million acres in the coterminous U.S. (Reeves and Mitchell 2011) and their vegetation responds quickly to climate and management, with high relative growth rates and inter-annual variability. Current national decision support systems in the U.S.
The mountain pine beetle (MPB) (Dendroctonus ponderosae) is one of the most prevalent disturbance agents in western conifer forests. It utilizes various species of pines (Pinus spp.) as host trees. Eruptive populations can cause extensive tree mortality. Since the late 1990s, extensive outbreaks have occurred from the southern Rockies to British Columbia. In Colorado, lodgepole pine (P. contorta) forests have been the most affected.
In the subalpine zone of the Rocky Mountains, climate change is predicted to result in an increase in the frequency and severity of spruce beetle outbreaks. Climate change itself may affect vegetation, potentially leading to changes in species composition. The direct and indirect effects of climate and disturbances on forest composition, biomass, and dynamics open the possibility for non-linear ecosystem responses.
The genus Enlinia Aldrich, 1933 is recorded from French Guiana for the first time and six new species are described: E. loboptera n. sp., E. bova n. sp., E. colossicornis n. sp., E. mitarakensis n. sp., E. touroulti n. sp., and E. dalensi n. sp. A seventh unnamed species belonging to the E. armata Robinson, 1969 species group, and represented by a single female specimen, is also reported.
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services.
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates.
The American marten (martes americana) is a species that is dependent on old conifer forest at middle to high elevations and is highly sensitive to habitat loss and fragmentation in a scale dependent fashion (e.g., Hargis et al. 1999; Wasserman et al. 2012a, b), and forest management is often influenced by considerations of how management will affect extent and pattern of marten habitat.
Despite the widespread use of ponderosa pine as an important hydroclimate proxy, we actually understand very little about its climate response in the Northern Rockies. Here, we analyze two new ponderosa pine chronologies to investigate how climate influences annual growth.
Contemporary forest planning has tasked managers with developing goals associated with resistance and resilience. In practice, silviculturists use forest structure and tree species composition to characterize goals and desired future conditions, write prescriptions, and monitor outcomes associated with resistance and resilience.
The demand for large-scale and long-term information on tree growth is increasing rapidly as environmental change research strives to quantify and forecast the impacts of continued warming on forest ecosystems. This demand, combined with the now quasi-global availability of tree-ring observations, has inspired researchers to compile large tree-ring networks to address continental or even global-scale research questions.

Pages