You are here

Journal Publications

In recent years airborne Light Detection and Ranging (LiDAR) technology has received a great deal of attention. Using airborne LiDAR, analysts have successfully related height measurements to forest characteristics such as tree size, basal area, and number of trees.
Dry mixed-conifer forests are widespread in the interior Pacific Northwest, but their historical fire regimes are poorly characterized, in particular the relative mix of low- and high-severity fire. We reconstructed a multi-century history of fire from tree rings in dry mixed-conifer forests in central Oregon. These forests are dominated by ponderosa pine (Pinus ponderosa Lawson & C.
The number of global initiatives for forest restoration, and the scope of these initiatives, continues to increase. An important tool for meeting objectives of these global initiatives is reforestation, achieved by natural processes or by tree planting. Worldwide, organizations are challenged to most efficiently and effectively direct resources to the most critical reforestation needs.
New technologies may enhance management by enabling quantitative testing of assumptions of vegetation response to climate and management. State-and-transition simulation models can keep track of interactions that are too complicated for us to comprehend using only conceptual models. This tool takes conceptual state-and-transition models to the next level, fostering greater communication and dialogue with stakeholders.
Population growth and climate change will combine to pose substantial challenges for water management in the United States. Projections of water supply and demand over the 21st century show that in the absence of further adaptation efforts, serious water shortages are likely in some regions. Continued improvements in water use efficiency are likely but will be insufficient to avoid future shortages.
The wildfires that burned in the Northern Rockies region of the USA during the 2017 fire season provided an opportunity to evaluate the suitability of using broadscale and temporally limited infrared data on hot spot locations to determine the influence of several environmental variables on spotting distance.
There is evidence that forest resiliency is declining in the western US due to recent increases in both areas burned by wildfire and the number of large fires. Fire refugia may increase forest resiliency; however, for land managers to incorporate fire refugia into their management plans, methods need to be developed to identify and rank criteria for what make fire refugia important.
Accurate census is essential for endangered plant management, yet lack of resources may make complete on-the-ground census difficult to achieve. Accessibility, especially for species in fragile habitats, is an added constraint.
Risk management typologies and their resulting archetypes can structure the many social and biophysical drivers of community wildfire risk into a set number of strategies to build community resilience. Existing typologies omit key factors that determine the scale and mechanism by which exposure from large wildfires occur.
Research Highlights: Two genets of Armillaria altimontana Brazee, B. Ortiz, Banik, and D.L. Lindner and five genets of Armillaria solidipes Peck (as A. ostoyae [Romagnesi] Herink) were identified and spatially mapped within a 16-year-old western white pine (Pinus monticola Doug.) plantation, which demonstrated distinct spatial distribution and interspecific associations. Background and Objectives: A. solidipes and A.