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Report Highlights 

 Two years (2011 and 2012) of monitoring trends in the distribution of White-headed 

Woodpeckers (WHWO) throughout the Pacific Northwest Region (Oregon and 

Washington) have been completed. 

 We analyzed overall occupancy trends for 30 transects sampling the entire region and 

spatial variation in occupancy dynamics, including differences among sub-regions (East 

Cascades, Blue Mountains, and North Cascades) and trends related with environmental 

variation, using multi-season occupancy models. 

 We also analyzed seasonal trends in detectability and compared those between years. 

This allowed an evaluation of whether 2012 adjustments to the survey protocol aimed at 

improving detectability (i.e., narrowing the range of dates when surveys were conducted) 

were successful. 

 We found no major differences in overall transect occupancy rates between years, but 

occupancy rates doubled in the Blue Mountains during 2012. Potential reasons for this 

increase include a long-term trend, annual variation in occupancy rates, or observer 

effects. We also found notable associations between occupancy and environmental 

covariates, the strongest of which were consistent with previous work on habitat 

relationships with nesting WHWO: a negative relationship with slope and a positive 

relationship with density of large trees. 

 Detection probabilities were slightly higher in 2012 and more importantly the hump-

shaped trend related to seasonal timing observed in 2011 was not apparent in 2012. This 

difference between years suggests changes in survey timing carried out in 2012 were 

successful, although variation in the timing of the nesting cycle could also be contributing 

to differences between the two years. 

  



INTRODUCTION 

Monitoring of White-headed Woodpeckers (Picoides albolarvatus; hereafter WHWO) to 

examine their distribution and population trends across the interior Pacific Northwest Region 

was initiated in 2011. The core component of regional monitoring consists of call-broadcast 

surveys conducted along 30 transects distributed across three sub-regions (East Cascades [n = 

14], Blue Mountains [n = 12], North Cascades [n = 4]; Figure 1). Surveys are conducted twice 

per year to facilitate analysis of distributional dynamics while accounting for imperfect detection 

of  using occupancy multi-season models (MacKenzie et al., 2003). This report follows two 

years of data collection (2011–2012) and has two objectives: 1) to analyze distributional trends 

and spatial variation in these trends apparent in 2011–2012 data, and 2) to compare detectability 

of WHWO in 2011 versus 2012 to evaluate the success of survey protocol adjustments 

implemented in 2012. 

 

METHODS 

To meet both objectives, we used multi-season occupancy models to estimate occupancy rates 

for transects during 2011 and changes in occupancy from 2011 to 2012 while correcting for 

imperfect detection (MacKenzie et al., 2003). These models estimated four fundamental 

parameters: 1) the probability of initial occupancy in 2011 (ψ), 2) the probability of occupied 

transects becoming unoccupied from 2011 to 2012 (i.e., extinction; ε), 3) the probability of 

unoccupied transects becoming occupied from 2011 to 2012 (i.e., colonization; γ), and 4) the 

probability of detecting WHWO during a survey given their occurrence along the surveyed 

transect (p). Covariates of any fundamental parameter can be incorporated via a logit link 



function:    (
             

                 
)                , where βn is the slope of the relationship 

between the logit of a fundamental parameter and xn, the n
th

 covariate. 

 We examined variation in occupancy rates and trends using models with sub-region as a 

categorical covariate of initial occupancy (ψ) and changes in occupancy between years (γ, ε). We 

also examined environmental trends in occupancy rates and dynamics by relating these 

parameters with remotely sensed environmental covariates (Table 1). Environmental covariates 

considered here were identified in previous work examining important habitat relationships for 

nesting WHWO (Wightman et al., 2010; Hollenbeck et al., 2011; Latif et al., In Review). We 

also examined seasonal variation in detection probabilities using a quadratic relationship with 

date (   (
 

   
)                   , Date being represented as day-of-season during 

analysis). Latif et al. (2011) found a hump-shaped seasonal trend whereby detectability was 

relatively low at the beginning (late April) and end (early July) of the 2011 field season. In 

response to this finding, the range of dates during which surveys were conducted was reduced by 

~1 week at either end of the field season. By eliminating the earliest and latest surveys associated 

with minimal detectability, we expected detection probabilities to increase and the hump-shaped 

relationship with date to diminish in 2012. We used an interaction between the quadratic date 

and Year effects on detectability (   (
 

   
)                           

                             ) to compare seasonal detection trends between the two 

years. 

 We examined the statistical evidence for covariate effects by comparing models with 

versus without covariates of interest using an information theoretic approach (Burnham & 

Anderson, 2002). We used AIC (Akaike’s information criterion) to compare models according to 



how well they fit the data penalized for complexity (i.e., the number of parameters, k; lower 

AICs indicate better performing models). When examining environmental-occupancy 

relationships, we used a series of model selection steps to identify a top model with an optimal 

combination of covariates. Focusing on one fundamental parameter at a time (i.e., initial 

occupancy [ψ], colonization [γ], or extinction [ε]), we began with a “null model” without any 

covariates for the focal parameter. The remaining fundamental parameters were assigned either 

the maximum number of covariates (LandCC + LandCC
2
 + PIPO + TPH + ED + SLP; for 

variable abbreviations, see Table 1) or the optimal combination identified previously for that 

parameter. We then monitored AIC while adding one covariate at a time, retaining covariates 

that reduced AIC. Highly correlated variables (r > 0.7) were never included in the same model 

(i.e., LandCC and LocCC: r = 0.93). Thus, we first identified the optimal covariate combination 

for ψ using a null model with all possible covariates for γ and ε. We then identified the optimal 

combination for γ using a null model with the optimal combination identified for ψ and all 

possible covariates for ε. Finally, we identified the optimal combination for ε using a null model 

previously identified combinations for ψ and γ. To examine occupancy and detection 

relationships described by selected models, we report β parameter estimates and standard errors. 

We also graphed estimates for occupancy (ψ2011, ψ2012) and detection (p2011, p2012) probabilities 

and 95% confidence bands against covariates included in selected models. Occupancy 

probabilities for 2012 were extrapolated from extinction and colonization probabilities (      

                       ). We calculated variances and resulting confidence bands 

using the delta method (Powell, 2007). For this document, we report unconditional occupancy 

probability estimates, which only reflect covariate relationships with occupancy without 

accounting for detection histories recorded at sampled transects. 



 

RESULTS 

In 2011, WHWO were detected during 18 surveys conducted along 12 transects, and in 2012, 

WHWO were detected during 27 surveys conducted along 16 transects. Overall transect 

occupancy probabilities did not change substantially from 2011 to 2012 (Table 2). A model 

describing a difference in the probability of unoccupied sites in 2011 becoming occupied in 2012 

was supported over other models (Table 3). Assuming regional differences, we estimated a 

substantially higher occupancy rate in 2012 versus 2011 in the Blue Mountains (Table 2). In this 

sub-region, 4 detections along 3 transects were recorded in 2011 whereas 14 detections along 8 

transects were recorded in 2012. A model with distinct occupancy and detection parameters for 

the Blue Mountains (ψ(BLMT), γ(BLMT), ε(BLMT), p(BLMT + Year + Year×BLMT)) also 

estimated a difference in occupancy between years for the Blue Mountains (2012: ψ = 0.27 [95% 

CLs = 0.08–0.60]; 2011: ψ = 0.68 [0.38–0.88]) along with less of a difference in detection (2012: 

p = 0.73 [0.16–0.98]; 2011: ψ = 0.86 [0.55–0.97]). Thus, the data supported a difference in 

occupancy more than a difference in detection probability between years at Blue Mountains sites. 

 The best supported model examining environmental relationships with WHWO 

occupancy described relationships with slope, density of large trees, amount of ponderosa pine, 

landscape heterogeneity (edge density), and local-scale canopy cover. This model fitted the data 

much better (AIC = 111.1) than a model without these covariates (i.e., detection covariates only; 

AIC = 141.8). Due to substantial correlations between environmental covariates (Table 4) and a 

limited sample size, however, standard errors for parameter estimates describing these 

relationships were extremely large (Table 5). These estimates indicated a highly over-fitted 

model, making estimation of occupancy probabilities from this model unreliable. Therefore, to 



examine relationships with variables appearing in this model, we used univariate models that 

contained one covariate at a time (Figure 2). This approach provided more reliable depictions of 

occupancy relationships with individual environmental covariates, although these depictions 

should be interpreted with caution since they do not account for inter-correlations among 

covariates. The AIC-supported model (Table 5) and occupancy relationship graphs (Figure 2) 

described negative occupancy relationships with slope and positive relationships with large tree 

density in both years, although the strength of these relationships appeared to diminish somewhat 

in 2012 (Figure 2). The AIC-supported model also suggested increases in 2012 occupancy 

probabilities associated with ponderosa pine (i.e., a positive relationship with colonization) and 

decreases associated with landscape heterogeneity (edge density) and local-scale canopy cover 

(i.e., positive relationships with extinction; Table 5). In both years, however, occupancy 

associations with the latter three covariates were relatively weak. 

 The data described different seasonal detectability trends in 2011 versus 2012. The data 

supported a model with detection covariates describing an interaction between Year and 

quadratic Date effects over alternative models (Table 6). Detectability in 2012 tended to be 

higher than in 2011 and the tendency for lower detectability early and late in the 2011 season 

was not apparent in 2012 (Figure 3). Instead, model estimates tended to be slightly higher early 

and late in the 2012 season compared to the middle of the season, although the relatively wide 

confidence bands suggested a weak seasonal trend in 2012 detectability. 

 

DISCUSSION 

In general, transect-occupancy rates remained relatively constant across the Pacific Northwest 

region from 2011 to 2012. We did find evidence for an increase in occupancy rates within the 



Blue Mountains sub-region from 2011–2012. The reason for this increase is unclear, and we 

cannot be sure whether it reflects a long-term trend, inter-annual variability, or observer effects. 

Blue Mountains transects differed environmentally somewhat from transects in other sub-regions 

(Table 7). These differences, however, did not clearly suggest why occupancy rates might be 

increasing or varying between years more than in other sub-regions. Changes in Blue Mountains 

surveyors between years could have played a role. The data did not support a difference in 

detection probability between the two years, but we estimated detectability with low precision 

for Blue Mountains surveys, so observer effects could not be ruled out. 

 The data collected thus far provided preliminary evidence for occupancy relationships 

with environmental variation. Results indicated a clear negative relationship with slope and a 

positive relationship with density of large trees. The data also suggested a positive relationship 

with forests dominated by ponderosa pine. All of these relationships are consistent with those 

found in previous work (Hollenbeck et al., 2011; Latif et al., In Review). Additionally, results 

suggested possible declines in 2012 occupancy associated with higher edge density and local-

scale canopy cover (i.e., positive relationships with extinction probability). Such relationships 

would be less consistent with previous research (Wightman et al., 2010; Hollenbeck et al., 2011; 

Latif et al., In Review), but the strength of these relationships was relatively weak, so more data 

are needed to determine their validity. 

 Detection probabilities were consistent with our expectations given adjustments made to 

the timing of surveys. By narrowing the range of dates when surveys were conducted, we 

expected to increase overall detection probabilities by replacing early- and late-season surveys 

with higher-detection mid-season surveys. The data suggested a somewhat higher detection 

probability in 2012 mainly attributable to a disappearance of the hump-shaped season-related 



detection trend observed in 2011. Although the seasonal trend appeared to reverse somewhat in 

2012 (i.e., detectability was slightly higher early and late in the season), confidence bands 

indicated 2012 detectability was relatively constant. Thus, our objective was achieved by 

adjusting the timing of surveys. Inter-annual variation in detectability could also arise from 

variation in nesting phenology. Data from future years will help confirm whether differences in 

detectability between 2011 and 2012 were a product of changes to the survey protocol versus 

ecological factors. 

 

FUTURE RESEARCH 

As regional monitoring progresses and new data become available, various additional lines of 

research will be carried out to investigate WHWO distributional dynamics. For this report, we 

focused on occupancy dynamics at a transect scale. Occupancy dynamics at different spatial 

scales likely reflect different aspects of population ecology (Pavlacky et al., 2012; Latif et al., In 

Review), so multi-scale models could suggest population drivers not apparent from analysis of 

transect-scale data alone. Previous work examined spatial patterns in occupancy rates within a 

single season for both transects (a coarser scale) and for points along transects (a finer scale) 

using multi-scale occupancy models (Latif et al., 2011, In Review). Future efforts will include 

development of multi-scale, multi-season models for simultaneous analysis of occupancy 

dynamics at both coarse and fine spatial scales. In addition, following the third year of 

monitoring, field measurements of habitat at survey points will be completed, providing 

additional covariates for modeling occupancy dynamics. Field-collected habitat metrics are often 

more precise than remotely sensed metrics, so the introduction of field-measured variables into 

occupancy models should improve statistical power for detecting environmental relationships. 



Finally, simulation studies have revealed systematic biases in model parameters when sample 

sizes and detection probabilities are low (MacKenzie et al., 2002; McKann et al., 2013). With 

respect to regional monitoring data, sample sizes at transect scales and detection probabilities at 

point scales are low enough to incur biased estimation. Moreno and Lele (2010) developed 

penalized likelihood estimation for improving numerical stability and reducing biased estimation 

for single-season models fitted to limited datasets. In collaboration with S. Lele and M. Moreno, 

we will implement simulation work to examine and correct for biases associated with multi-

season and multi-scale occupancy models fitted to WHWO monitoring data. 
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TABLES 

 

Table 1. Environmental variables considered as covariates of WHWO occupancy. Habitat 

variables were derived from Gradient Nearest Neighbor (GNN) data.  All variables were 

extracted at 30×30-m pixel resolution. Values for pixels containing survey points along each 

transect were averaged (mean) to generate one value per transect. Topographic variables were 

derived from digital elevation model layers (DEM; USGS Seamless Server) and forest structure 

variables from gradient-nearest-neighbor data (GNN; Landscape Ecology, Modeling, Mapping, 

and Analysis [LEMMA 2012]). Pixels classified as “non-forest” by GNN were excluded. 

 

Variable name 

(abbreviation) 

Description 

Slope (SLP)
 

pixel slope as % rise over run 

Local-scale canopy cover 

(LocCC)
 

percent canopy cover for 1-ha (3×3-cell) neighborhood 

Landscape-scale canopy 

cover (LandCC)
 H 

percent canopy cover for 314 ha (1-km-radius) 

neighborhood 

Ponderosa pine (PIPO)
H 

Percent ponderosa-pine-dominated forest for 314 ha 

(1-km-radius) neighborhood 

Density large trees (TPH)
 

Number of large trees (> 50 cm dbh) within 1 ha 

neighborhood. 

Edge density (ED)
H 

Length of edge between alternate patch types 

characterized according to canopy cover class (0-10%, 

10-40%, and 40-80%) within 314 ha (1-km-radius) 

neighborhood. 
H
 314 ha (1-km radius) neighborhoods approximated the home range size reported by Garret et 

al. (1996). 

  



Table 2. Estimates of White-headed Woodpecker occupancy probabilities from multi-season 

models fitted to regional monitoring data. Estimates for the overall region were derived from a 

model without any covariates (2
nd

 model, Table 3). Estimates for sub-regions were derived from 

a model with categorical covariates identifying the three sub-regions (6
th

 model, Table 3). 

 

Region (no. transects) 
Transect occupancy rates (95% CLs) 

2011 2012 

All (30) 0.50 (0.27, 0.72) 0.55 (0.36, 0.72) 

East Cascades (14) 0.56 (0.27, 0.81) 0.44 (0.21, 0.70) 

Blue Mountains (12) 0.33 (0.10, 0.69) 0.68 (0.38, 0.88) 

North Cascades (4) 0.50 (0.12, 0.88) 0.50 (0.12, 0.88) 

 

  



Table 3. Model selection results from analysis occupancy dynamics. Lower AICs identify better-

performing models. ΔAIC = the difference in AIC between a given model and the top model. K 

= the number of estimated parameters associated with a model. “Region” represents covariates 

that identify transects belonging to different sub-regions (East Cascades, Blue Mountains, North 

Cascades). All models accounted for seasonal trends in detection probabilities that varied among 

years: p(Year + Date + Date
2
 + Year×Date + Year×Date

2
). 

 

Model AIC ΔAIC K 

ψ(.)ε(.)γ(Region) 141.5 0.0 11 

ψ(.)ε(.)γ(.) 141.8 0.3 9 

ψ(.)ε(Region)γ(Region) 143.8 2.3 13 

ψ(.)ε(Region)γ(.) 143.9 2.4 11 

ψ(Region)ε(.)γ(Region) 144.6 3.1 13 

ψ(Region)ε(.)γ(.) 145.1 3.6 11 

ψ(Region)ε(Region)γ(Region) 146.8 5.3 15 

ψ(Region)ε(Region)γ(.) 147.3 5.8 13 

 

  



Table 4. Correlations (Pearson’s r) among environmental variables considered as covariates of 

occupancy. For full variable names and descriptions, see Table 1. 

 

  LocCC LandCC PIPO SLP TPH ED 

LandCC 0.939 1.000 

    PIPO -0.544 -0.603 1.000 

   SLP 0.245 0.344 -0.421 1.000 

  TPH 0.507 0.456 -0.284 0.217 1.000 

 ED -0.388 -0.393 0.494 0.201 -0.206 1.000 

 

  



Table 5. Parameter estimates and standard errors for the model with environmental and detection 

covariates that minimized AIC. Other than “Intercept” parameters, all parameters describe the 

relationship between a given variable and the logit of a fundamental parameter (initial occupancy 

[ψ], colonization [γ], extinction [ε], and detection [p]). For full variable names and descriptions, 

see Table 1. 

 

Parameter Est. S.E. 

ψ(Intercept) 49.1 214.0 

ψ(TPH) 114.8 454.0 

ψ(SLP) -78.3 318.0 

   γ(Intercept) -48.5 70.5 

γ(PIPO) 142.5 207.2 

γ(SLP) 57.9 84.2 

   ε(Intercept) -2.1 204.0 

ε(ED) 72.2 322.0 

ε(LocCC) 73.0 345.0 

ε(TPH) -81.7 368.0 

   p(Intercept) 0.51 0.48 

p(Year2012) 0.60 0.83 

p(Date) -0.58 0.45 

p(Date
2
) -0.73 0.46 

p(Date×Year2012) 0.97 0.74 

p(Date
2
×Year2012) 1.28 0.84 

 

  



Table 6. Comparison of models with alternative parameterizations for describing detection 

probabilities. Lower AICs identify better-performing models. ΔAIC = the difference in AIC 

between a given model and the top model. K = the number of estimated parameters associated 

with a model. All models contained covariates for occupancy parameters (ψ, γ, and ε) listed in 

Table 5. 

 

Model AIC ΔAIC K 

p(Yr + Dt + Dt
2
 + Yr×Dt + Yr×Dt

2
) 111.1 0.0 16 

p(Year) 116.5 5.4 12 

p(Year + Date + Date
2
) 119.6 8.5 14 

p(.) 120.8 9.7 10 

p(Date + Date
2
) 124.4 13.3 13 

 

  



Table 7. Descriptive statistics (medians and 95
th

 median-unbiased percentiles) for environmental 

variable values within sub-regions. For complete variable names and descriptions, see Table 1. 

 

Variable East Cascades Blue Mountains North Cascades 

LocCC 38.4 (18.9, 57.2) 38.8 (34.7, 46.5) 51.5 (40.5, 53.3) 

LandCC 38.1 (17.8, 60.7) 41.4 (32.4, 43.1) 49.9 (36.3,55.5) 

PIPO 0.64 (0.39, 0.82) 0.56 (0.35, 0.78) 0.15 (0.10, 0.49) 

SLP 9.8 (2.6, 19.2) 21.6 (9.1, 47.8) 18.8 (16.4, 23.8) 

TPH 16.8 (7.4, 24.1) 16.1 (8.7, 24.1) 14.1 (5.8, 29.8) 

ED 89.9 (50.1, 106.4) 111.5 (99.5, 120.1) 46.7 (23.6, 119.2) 

 

  



FIGURES 
 

Figure 1. Locations of transects surveyed yearly to monitor White-headed Woodpeckers across 

the Pacific Northwest Region. 

 

 
  



Figure 2. Occupancy relationships with environmental covariates described by univariate 

models. The models used to produce each plot contained only the specified variable as a 

covariate of all three fundamental parameters describing occupancy (ψ, γ, and ε). Solid lines 

depict maximum likelihood estimates and dotted lines depict 95% confidence bands. All models 

contained detection covariates listed in Table 5. 
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Figure 3. Seasonal trends in WHWO detectability estimated with the model described in Table 5. 

Solid lines depict maximum likelihood estimates and dotted lines depict 95% confidence bands. 

 

 
 


