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Abstract
The Forest Service’s Forest Inventory and Analysis Program (FIA) is the primary source of informa-
tion about our forests’ status and trends. A network of nationally consistent field observations forms 
FIA’s core, and active collaboration with clients and peer organizations ensures that the resulting 
inventory remains agile, comprehensive, and relevant. An FIA Science Stakeholder Meeting was held 
October 24-26th, 2017, to bring key FIA personnel together with important partners and peers. The 
theme for this meeting, “Doing More with the Core,” targeted innovation around how FIA analyzes, 
augments, and delivers information derived from its central data collection operations. Meeting 
topics included: 1) maximizing the value of the “annual” sample design adopted by the Program 
approximately 15 years ago; 2) developing better delivery tools that meet client needs and that take 
advantage of ever-expanding options for data visualization and communication; 3) assuring data 
continuity that supports a variety of land manager needs; 4) integrating more powerful and efficient 
monitoring technologies and statistical techniques into established analysis lines; and 5) supporting 
FIA’s expansion in areas targeted by the most recent Farm Bill. This proceedings document includes 
details from selected papers presented at the meeting.
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Foreword
The FIA (Forest Inventory and Analysis) Science Stakeholder Meeting brings together 

a cross-section of those involved with FIA’s science delivery mission. Key clients, who 
use FIA data to support both public- and private-sector management decisions, interact 
with the FIA analysts and data delivery specialists responsible for ensuring that assess-
ments derived from FIA’s national forest inventory remain relevant and readily available. 
In turn, these groups exchange ideas with FIA scientists and their collaborators about new 
techniques and applications.

The inclusiveness of this meeting reflects longitudinal integration that has occurred within 
FIA over the last decade or so. Research into remote sensing, statistical techniques, and 
alternative data delivery platforms has become much less separate from FIA’s operations. 
As a result, FIA has become more nimble in addressing emerging priorities; more adept 
at making use of ancillary data; more precise and more local; and accessible to a wider 
range of people.

At the same time, it is universally recognized that FIA’s core field measurements comprise 
a globally unique information resource that becomes more valuable with every passing 
year of measurement continuity. The theme of this year’s meeting, “Doing More with the 
Core,” suggests the importance of building improved tools around FIA’s sample to both 
increase the sample’s relevance and to extend its value to new applications. The papers 
compiled here represent a variety of stages in the process of developing and delivering 
meaningful resource information to FIA clients, and they provide a snapshot of FIA’s ex-
panding integration of research and delivery. 
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“Doing More With the Core”—A Valuable Idea for All 
National Forest Inventories

Thomas J. Brandeis1

Abstract—The concept of “doing more with the core”—expanding the utility of a 
national forest inventory beyond its traditional stakeholder base into new areas—is par-
ticularly applicable in developing countries. Many of these countries are planning and 
implementing national forest inventories for the first time in response to the promise 
of climate change-related international aid; these inventories tend to focus on carbon 
estimation as the core information need. However, a national forest inventory has the 
potential to deliver much more information of value to stakeholders, and broadening its 
focus will allow countries to expand their client base and strengthen support for their 
efforts.

Keywords: forest inventory, international technical transfer, stakeholder engagement

Introduction
“Doing more with the core,” the theme of this year’s meeting, is a valuable idea that 

can be applied beyond the U.S. National Forest inventory realm. In the Forest Inventory 
and Analysis (FIA) context, our core mission has been the quantification of forest 
resources in ways useful to our original stakeholders: land managers, policymakers, and 
forest industry. These stakeholders require reliable estimates of the area of forest land, 
or more frequently timberland from which forest products could be harvested, as well 
as the volume of wood that could be found there. The FIA program was built around the 
need to deliver that important, but narrowly focused, information.

Outside the United States, particularly in developing countries, national forest 
inventories (NFI) are being designed around a new core information need: estimation 
of carbon status and trends. This focus on carbon estimation is directly tied a country’s 
participation in programs designed to mitigate climate change by incentivizing for-
est carbon sequestration. The Reducing Emissions From Deforestation and Forest 
Degradation (REDD+) mechanism is a major driver behind increased interest in 
forest inventory and monitoring around the world. REDD+ “incentivizes developing 

1 USDA Forest Service, Southern Research Station, Forest Inventory and Analysis, 4700 Old 
Kingston Pike, Knoxville, TN, 37919 tjbrandeis@fs.fed.us 
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countries to keep their forests standing by offering results-based payments for actions 
to reduce or remove forest carbon emissions” (UN-REDD Programme 2017). Key to 
this program is the estimation of current forest carbon stocks and monitoring their rates 
of change; thus, participation requires some form of NFI. The UN-REDD Programme 
and donor nations have provided technical assistance to countries establishing either 
their first NFI or modifying existing ones to better assess forest carbon pools. But this 
narrow focus on forest carbon estimation neglects opportunities to build the capacity to 
“do more with the core.”

Implementing an NFI means balancing the needs for statistical robustness within 
the limits of the resources we can commit to it. One way to increase the resources that 
can be made available to the NFI is by addressing the information needs of as many 
stakeholders as possible, thus garnering more support from potential funders. A criti-
cal step in NFI design is scoping information needs by engaging with a wide range of 
current and potential forest stakeholders. Typically, in countries where stakeholders are 
engaged and questioned, a broad range of information needs emerge beyond carbon 
estimation. These outreach activities build social acceptance and political support for 
committing often considerable resources to the effort. 

The FIA program is familiar with this ever-present tension between producing 
the best possible estimates within the limits of the budget. This tension is amplified 
in developing countries. There is often a lack of forest inventory “tradition” and the 
understanding of what can be asked of an NFI; thus, there is little understanding of 
its value. Resources in many countries—including well-trained, financial staff and 
functioning institutions—are often severely limited. “Doing more with the core” under 
such conditions becomes more than a favored option; rather, it is critical to establishing 
and sustaining NFIs. Experience has shown commonalities in stakeholders’ information 
needs beyond climate change-related carbon dynamics. When planned in advance, a 
well-designed NFI can address many additional questions with little or no additional 
resource commitment, and without compromising its ability to produce reliable, repeat-
able, and robust forest carbon estimates.

Examples of Expanding Beyond Carbon Estimation

Sampling Intensity
Starting with sampling, most phases of a forest inventory encounter pitfalls when 

the design is too narrowly focused on national level carbon estimation. Careful consid-
eration must be given so that the sampling design delivers statistically valid estimates 
not only at the national scale, but also at the geographic scales at which management 
and planning takes place, such as within subnational political units. Are there additional 
domains to be considered for which resource managers need estimates (e.g., areas 
with intensive forest management, threatened forest habitat types, especially high 
biodiversity, or a higher-than-normal incidence of illegal logging)? Designing the NFI 
to answer these non-traditional questions, or even building in the flexibility to modify 
sampling as future needs arise, can greatly increase the utility of the NFI.



USDA Forest Service RMRS-P-75. 2017. 3

Land Use and Land Cover Change
In addition to on-the-ground NFI plots, supplemental Land Use/Land Cover (LULC) 

monitoring systems using remotely sensed data potentially deliver wall-to-wall, spa-
tially explicit estimates of carbon loss and gain (IPCC 2003). These same systems can 
quantify and locate LULC changes due to disturbances like wildfire, pest and disease 
outbreaks, urbanization, illegal logging, etc., that are relevant to forest policy and man-
agement. Focusing solely on their utility for carbon monitoring misses opportunities to 
leverage the investment and provide information for a broader user group.  

Data Collected
When viewed from the U.S. perspective, it is ironic that the quantification of our tra-

ditional core information need, timber volume, is typically seen as less important than 
that of carbon storage in many countries currently planning their first NFI. Much more 
focus is given to the compilation and development of allometric models for biomass 
estimation than for merchantable volume estimation. Processing system plans need to 
include volume estimation and field data collection needs to consider the inclusion of 
additional variables relevant to local wood products, such as tree quality or grade, stem 
defects, and/or cull proportion.

Non-timber forest products (both on and off the NFI plot) are frequently important 
to local economies; therefore, information on their status and trends is often needed 
by forest resource stakeholders. Can their inventory and monitoring be incorporated in 
the larger sampling scheme? Related to this, the United Nations’ Food and Agriculture 
Organization (FAO) has designed and included socioeconomic surveys of forest 
resource users and the surrounding communities. Typically these surveys go beyond 
forest resource questions and delve into broader rural social and economic issues.

The FIA program recognizes the need for additional monitoring of forest health indi-
cators, wildlife, nonnative invasive species, and botanical surveys with varying degrees 
of intensity and focus. Countries in the tropics frequently express interest in using their 
NFI network to assess the high levels of biodiversity in their forests. An NFI provides a 
statically robust framework within which additional data collection can be incorporated, 
while always being mindful of the additional costs and complexities involved.

Conclusions
From the outset, care must be taken to avoid designing the NFI with limitations. 

Broadening the focus of an NFI to deliver valued products to a wider range of stake-
holders becomes especially critical in countries where resources are limited. Justifying 
the considerable expenditure necessary to implement an NFI when the only selling 
point is the possibility of future payments from international organizations can be a 
difficult argument to make to all stakeholders, from local forest communities to national 
politicians. Comprehensive, ongoing stakeholder engagement from needs assessment, 
through planning and implementation, and finally during results dissemination, helps 
create and maintain a client base for NFI information. This client base can express their 
desire to decisionmakers that the NFI receive support. 



4 USDA Forest Service RMRS-P-75. 2017.

Acknowledgments
Thanks to the reviewers, Andy Lister and Sarah Banks, and Southern Research 

Station technical editors. 

References
Intergovernmental Panel on Climate Change (IPCC). 2003. Good practice guidance 

for land use, land-use change, and forestry. Hayama, Japan: IPCC. Online at: http://
www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.
pdf

United Nations Reduced Emissions From Deforestation and Degradation (UN-REDD) 
Programme. Page last modified: 2017. Rome, Italy: United Nations Food and 
Agriculture Organization UN-REDD Programme Collaborative Online Workspace. 
http://www.unredd.net/. [Accessed 6 April 2017]. 

Papers published in these proceedings were submitted by authors in electronic media. Editing 
was done for readability and to ensure consistent format and style. Authors are responsible 
for content and accuracy of their individual papers and the quality of illustrative materials. 
Opinions expressed may not necessarily reflect the policies and opinions of the U.S. Department 
of Agriculture. The use of trade or firm names in this publication is for reader information and 
does not imply endorsement by the U.S. Department of Agriculture of any product or service.



USDA Forest Service RMRS-P-75. 2017. 5

1 Forester, USDA Forest Service, Southern Research Station, Forest Inventory and Analysis, 
4700 Old Kingston Pike, Knoxville, TN, 37919, (865) 862-2098, kjdooley@fs.fed.us

In: Healey, Sean P.; Berrett, Vicki M.; comps. 2017. Doing more with the core: Proceedings of 
the 2017 Forest Inventory and Analysis (FIA) Science Stakeholder Meeting; 2017 October 
24-26; Park City, UT. Proc. RMRS-P-75. Fort Collins, CO: U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station. 63 p.

Using the Core in Lieu of Adding More: A Forest 
Health Case Study

Kerry Dooley1

Abstract—Evolving requests of Forest Inventory and Analysis (FIA) data may prompt 
additional data (i.e., new variables) to be collected. Before implementing changes, 
careful consideration should be given to whether FIA data are a good source for the 
information; whether the data fit well within the FIA framework; and whether the infor-
mation could be gleaned from information already being collected by the FIA program 
or other sources. In this evaluation, data relating to forest health are used to illustrate 
limitations as well as highlight capabilities of the FIA program to meet evolving data 
needs.

Keywords: forest inventory and analysis, forest health, cross-agency collaboration, data 
utility

Introduction
The U.S. Department of Agriculture, Forest Service’s Forest Inventory and Analysis 

(FIA) program is the largest available source of forest data across ownerships in the 
United States. The program is national in scope and has a long history; thus, there is 
an inherent interest in getting maximal information from the FIA plot system. The 
interest may be sparked by users of FIA data or may be required by mandates, such 
as The Agricultural Act of 2014 (H.R. 2642; Pub. L. 113-79, also known as the 2014 
Farm Bill). Sometimes the interest in gaining more information leads to the addition or 
modification of collected data. There will be occasions where addition of variables is 
the only option, but it will often be preferable to use data already being collected. Here, 
the ‘damage agents’ dataset is evaluated in this context and then compared with other 
possible FIA sources of forest health data.
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Evaluation of the Damage Agent Dataset

Is FIA the Best Source for This Information?
For the damage agent dataset, data are collected on factors that have a direct nega-

tive effect on a tree’s survival, growth, or marketable products. During regular plot 
visits, individual trees are examined for threshold levels of select agents. The list of 
agents includes biotic and abiotic factors, and up to three agents may be identified per 
tree.

Forest health data, from both ecologic and economic perspectives, are often time 
sensitive. Over time, biotic agents will become established, making eradication less 
likely and more costly. Therefore, the most useful collection and monitoring methods 
are those that can be quickly deployed and focused at a time and place of concern. FIA 
plots, however, are spread miles apart and are revisited at 5- to10- year intervals.

With the exception of group-level damage codes, FIA damage agents are very 
specific. While this may be a good match for what users want, FIA cruisers’ training in 
entomology and plant pathology varies greatly and, by the nature of the job, FIA cruis-
ers must be forestry generalists. As such, requiring crews to identify damage agents to 
the species level is an unrealistic expectation. In addition, some of the damage agent 
definitions are confusing, and some are redundant (either with other damage agents 
or with other FIA measurements). Finally, because FIA plot visits are not scheduled 
specifically to match potential damage agent cycles, the agent in question—and in 
some cases, the part of the tree affected (i.e., foliage)—may not be present. These fac-
tors all affect the ability of FIA crews to consistently and accurately identify damage by 
specific agents.

Is Collection of This Information Appropriate for FIA?
Maintaining data continuity is an important goal of the FIA program. Any addition 

or modification of variables will hinder this objective as these changes will cause cur-
rent survey cycles to differ from past cycles. In addition, data types that are dynamic 
or those that are especially complex may lead to issues of continuity with future survey 
cycles.

Invasive pests and pathogens are constantly being introduced to the United States, 
making the list of damage agents a dynamic metric. For example, even if the FIA 
program had been collecting information on damage agents since its inception, emerald 
ash borer would be a relatively new addition to the list, as it was not discovered in the 
United States until 2002 (http://www.emeraldashborer.info). Unfortunately, it is almost 
certain that introductions of forest pests and pathogens will continue. Therefore, these 
variables will likely need to be continually modified, creating a challenge to temporal 
continuity.

The FIA program is nationally administered but regionally implemented. As such, 
the various regions all collect the same ‘core data.’ Often nested within these core data 
are more specific core-optional data, which each region may or may not collect. The 
damage agent dataset is an example of this, with group-level agents being core, and 
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specific agents being core-optional. These core-optional damage agents cause breaks 
in data continuity at regional borders. Additionally, as outlined in the previous sec-
tion, several factors may influence an FIA cruiser’s ability to confidently determine 
the presence of a specific damage agent at a particular site. This may lead to the same 
observation being categorized differently by different crews, which in turn will cause 
spatial discontinuity (figs. 1 and 2).

Figure 2—Fuzzed locations of FIA plots with non-specific boring insect damage re-
corded; plots are located in Southern Research Station states and bordering states.

Figure 1—Fuzzed locations of FIA plots with red oak borer damage recorded; plots 
are located in Southern Research Station states and bordering states.
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Alternative FIA Sources of Forest Health Information
Analysis of group-level (core) damage agents can provide interesting insights. This 

is particularly true when these data are coupled with other data and information, as 
demonstrated by Morin et al. (2016) where the authors collapsed the damage agent data 
into broad categories and focused on the 20 most prevalent tree (host) genera.

Several other forest health indicators are part of the core FIA measurements, includ-
ing crown condition measurements and site or stand disturbances. Randolph (2007) 
demonstrated the power of combining these measurements with other FIA (basal area 
by species, tree and plot notes) and non-FIA (aerial sketch maps) data.

Finally, the most basic FIA measurements are some of the most useful. For example, 
identification of tree species is crucial for damage-agent-host distribution mapping and 
evaluation. This can include analyses of the impact of known, current pests or patho-
gens (see range and intensity evaluations by Morin et al., 2005); predictive assessments 
of pests and pathogens seen as potential threats, as illustrated in the Forest Health 
Technology Team’s oak splendor beetle map, reviewed by Vogt and Koch (2016); or 
spreading threats such as the predicted redbay ambrosia beetle extent map developed 
by Koch and Smith (2008).

As an alternative to the FIA program collecting specific-level damage data, FIA’s 
core data can be coupled with complementary datasets, such as those acquired by the 
Forest Health Monitoring (FHM) program under Forest Health Protection, State and 
Private Forestry. These data are not sample-based, but document actual forest-health 
incidents in near real-time and are spatially explicit, damage-agent specific, and col-
lected annually by forest health professionals in State and Federal Governments.

Conclusions
FIA’s real strength comes from the consistently measured, long-term, and geographi-

cally broad data it collects and provides. FIA must allow for some adaptability to meet 
legislative mandates and user requests, but addition or modification of variables should 
be carefully considered and alternatives, such as collaboration with other programs and 
connections with other data, should be sought when possible.

Acknowledgments
Gratitude to Anita Rose and Chris Asaro for reviewing this paper, and to the confer-

ence steering committee and editors of the General Technical Report for their efforts.

References
Emerald Ash Borer Information Network. 2017. East Lansing, MI: Michigan State 

University and U.S. Department of Agriculture Forest Service. Online: http://www.
emeraldashborer.info [Accessed 3 May 2017].



USDA Forest Service RMRS-P-75. 2017. 9

Koch, Frank H.; Smith, William D. 2008. Spatio-temporal analysis of Xyleborus 
glabratus (Coleoptera: Circulionidae: Scolytinae) invasion in eastern U.S. forests. 
Environmental Entomology. 37(2): 442-452.

Morin, Randall S.; Pugh, Scott A.; Steinman, Jim. 2016. Mapping the occurrence of tree 
damage in the forests of the Northern United States. Gen. Tech. Rep. NRS-GTR-162. 
Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern 
Research Station. 19 p.

Morin, Randall S.; Liebhold, Andrew M.; Luzader, Eugene, R.; [et al.]. 2005. Mapping 
host-species abundance of three major exotic forest pests. Res. Pap. NE-726. 
Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern 
Research Station. 11p.

Randolph, KaDonna C. 2007. A comparison of tree crown condition in areas with and 
without gypsy moth activity. In: McRoberts, Ronald E.; Reams, Gregory A.; Van 
Deusen, Paul C.; McWilliams, William H., eds. Proceedings, Seventh Annual Forest 
Inventory and Analysis Symposium; 2005 October 3-6; Portland, ME. Gen. Tech. 
Rep. WO-77. Washington, DC: U.S. Department of Agriculture, Forest Service: 
107-113.

Vogt, James T.; Koch, Frank H. 2016. The evolving role of Forest Inventory and 
Analysis data in invasive insect research. American Entomologist. 62(1): 46-58. 

Papers published in these proceedings were submitted by authors in electronic media. Editing 
was done for readability and to ensure consistent format and style. Authors are responsible 
for content and accuracy of their individual papers and the quality of illustrative materials. 
Opinions expressed may not necessarily reflect the policies and opinions of the U.S. Department 
of Agriculture. The use of trade or firm names in this publication is for reader information and 
does not imply endorsement by the U.S. Department of Agriculture of any product or service.



10 USDA Forest Service RMRS-P-75. 2017.

1 Research Assistant, School of Forest Resources, University of Maine, Orono, ME, 04469-
5755, jereme.frank@maine.edu

2 Associate Professor, School of Forest Resources, University of Maine
3 Research Associate, Department of Forest Resources and Environmental Conservation, 

 Virginia Tech University
4 Associate Professor, Department of Forest Resources and Environmental Conservation, 

 Virginia Tech University
5 Research Forester, USDA Forest Service, Northern Research Station
6 Associate Professor, Department of Forestry, Michigan State University
7 Associate Professor, W.A. Franke College of Forestry and Conservation, University of 

 Montana
8 Professor, Department of Forest Engineering, Resources, and Management, Oregon State 

 University

In: Healey, Sean P.; Berrett, Vicki M.; comps. 2017. Doing more with the core: Proceedings of 
the 2017 Forest Inventory and Analysis (FIA) Science Stakeholder Meeting; 2017 October 
24-26; Park City, UT. Proc. RMRS-P-75. Fort Collins, CO: U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station. 63 p.

Development and Evaluation of Multi-Species, 
Cross-Regional Stem Taper and Bark Thickness 

Models for Predicting Merchantable Volume Across 
the United States

Jereme Frank1, Aaron Weiskittel2, David Walker3, Phil Radtke4, 
James Westfall5, David MacFarlane6, David L.R. Affleck7, 

and Hailemariam Temesgen8

Abstract—Tree-level models used in large-scale inventories necessitate flexible 
modeling structures that can accommodate multiple species across varying sites and 
regions. Presently the United States Forest Service, Forest Inventory and Analysis 
Program (USFS-FIA) utilizes over 40 volume models of different forms specific to 22 
geographic regions. Recently much of the data used to create these volume models has 
been compiled into a database including nearly 250,000 trees. This database provides 
the opportunity to formally assess tree-level variation in volume and taper among and 
within eco-physical regions and at varying taxonomic levels. In this analysis, we devel-
oped national-scale, non-linear, mixed effects outside bark taper and bark-thickness 
models to calculate merchantable volume in a consistent manner between regions and 
taxonomic groups. We assessed these models in terms of accuracy and precision and 
compared them to merchantable volume models currently used by FIA. The mixed 
effects taper-based approach performed well when compared to the conventional 
approach for estimating merchantable wood volume. Using a single, wide scale volume 
modeling system should lead to improved estimates of volume for some species particu-
larly where little data is available. 
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Introduction
Presently, to estimate merchantable wood volume (from a 1-foot stump to a 4-inch 

top diameter), the USFS-FIA uses over 40 volume models across 22 different regions 
(Woodall et al. 2011). These models vary in terms of the extent and number of trees 
sampled within a region, and in the model form. Furthermore, some of these models 
are based on volume tables rather than actual data, compromising error estimates. 
Much of the actual data used to develop these models have recently been compiled 
into a national legacy tree database (Radtke et al. 2016) and augmented with additional 
data collected as part of an ongoing effort to validate the current USFS-FIA approach 
for estimating volume and biomass across the United States. Recent work showed 
that depending on the region, FIA volume models may under-predict by as much as 
19.2 percent (Radtke et al. 2017). Preliminary efforts showed that a broad-scale multi-
species taper model could 1) provide merchantable volume estimates on par with 
current regional volume models; 2) provide a unified, compatible framework across the 
eastern United States; and 3) allow for volume estimates to a flexible stump and top 
limit (Weiskittel et al. 2016a). In this analysis, we expand our scope from the eastern 
United States to the entire United States.

Methods
The legacy database contains taper measurements from nearly 250,000 trees, 

118,403 of which were measured for outside bark diameter and suitable for fitting an 
outside bark taper function. These data span 17 eco-divisions (fig. 1) across the United 
States and Canada, with the highest representation occurring in the subtropical division 

Figure 1—Spatial distribution for all sampled trees where a) inside bark only measurements are available (black 
circles); b) outside bark only measurements are available (blue circles); and c) where both inside and outside bark 
measurements are available (green circles). The panel on the right shows Canada along with five broad regions in the 
United States, while the left panel shows all eco-divisions (Bailey 1973). The five eco-divisions with the greatest num-
ber of sampled trees are illuminated.
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(Bailey 1983). Fewer merchantable trees (70,493) were available with both diameter 
inside and outside of the bark measurements (table 1) and suitable for developing 
a bark thickness model and merchantable volume verification. These trees spanned 
26 families with the number of species per family ranging from one to 35 in the pine 
family (Pinaceae). The most prominent species with both inside and outside bark mea-
surements was loblolly pine (FIA species code 131) with 12,710 trees. 

Table 1—Summary statistics. Total number (no.) of trees and taper measurements for 19 of the 26 families (those with over 100 
observations) along with average (avg.) tree d.b.h., height, and merchantable (merch.) volume. Number of species and number of 
trees for the most prominent species (FIA species [spp.] codes as presented in Appendix F in the FIA database) are also given for 
each family.

       No. of No. of
       trees taper 
       per meas. per No. of FIA No. of trees
Family Avg. SD Avg. SD Avg. SD family family spp. spp. code per spp.

 d.b.h. Height Merch. volume
 - - inches - - - - -feet - - - - - - cu. ft. - - -
Aceraceae 11.3 4.9 64.3 15.0 20.8 23.4 2,042 22,947 6 316 1,538
Altingiaceae 11.4 4.8 71.6 19.3 24.0 27.4 2,494 39,160 1 611 2,494
Betulaceae 10.6 4.5 65.3 12.7 19.0 20.9 1,272 11,791 6 370 363
Cannab. 13.9 5.5 69.7 15.0 30.6 27.4 183 2,966 2 460 163
Cornaceae 11.7 4.7 63.0 17.7 20.8 19.8 1,757 26,145 4 694 889
Cupress. 9.3 3.6 43.9 15.1 9.7 10.6 550 4,631 4 68 232
Fabaceae 10.4 4.2 62.9 18.2 14.6 15.0 385 4,899 3 901 380
Fagaceae 12.5 5.2 65.7 16.9 25.5 26.9 12,131 178,120 24 802 2,727
Hippocast. 12.5 5.4 66.3 17.7 27.0 26.8 104 1,540 1 330 104
Jugland. 12.2 4.7 69.9 17.8 25.3 26.4 1,994 29,684 6 400 1,727
Magnoli. 12.9 5.0 79.4 20.0 31.9 31.9 2,788 48,498 4 621 2,452
Oleaceae 12.4 5.3 74.6 17.6 27.7 27.9 901 9,322 4 541 397
Pinaceae 10.8 4.8 61.8 19.2 21.7 39.4 40,465 502,737 35 131 12,710
Platanaceae 12.4 4.4 76.1 17.3 26.9 21.0 332 5,735 1 731 332
Rosaceae 13.1 6.6 70.6 24.0 38.6 46.5 175 2,158 2 762 173
Salicaceae 9.7 3.5 68.0 14.2 15.5 16.5 962 8,779 7 746 761
Taxodiaceae 12.4 5.8 70.4 23.2 26.3 36.3 567 8,762 3 222 318
Tiliaceae 14.8 5.7 81.1 16.0 45.4 40.3 417 5,425 2 950 352
Ulmaceae 12.4 5.3 66.7 17.0 26.2 27.5 432 6,664 3 970 421
All species 11.3 4.9 64.2 19.1 22.9 34.6 70,493 924,882 - - -



USDA Forest Service RMRS-P-75. 2017. 13

We used the legacy database to fit an outside bark variable exponent taper model in a 
hierarchical framework with random effects on variables ∝!	and 𝛽𝛽!	(Li et al. 2012):

𝑑𝑑𝑑𝑑𝑑𝑑 =  (∝!+ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅!) 𝐷𝐷∝!𝐻𝐻∝!𝑋𝑋
!!!!!!! !

!
!
!

 !(!!! !"#$%&𝟑𝟑)!!.!!!! !
! !!!!!!!!!

 ,	

where
X = 1 – z1/3 /1 – 1/3,1/3,

Q = 1 – z1/3 ,

p = 1.3/H ,

z = h/H ,

dob = diameter outside bark,

D = diameter at breast height (d.b.h.),

h = height within the tree where diameter was measured, and

H = total tree height.

The fullest model used the following hierarchy: 1) evergreenness (conifer or decidu-
ous); 2) taxonomic family; 3) taxonomic genus; 4) taxonomic species; 5) eco-division 
(Bailey 1983); and 6) tree. Five additional models were built dropping the lowest level 
in each subsequent model. The best performing model in terms of AIC was used to 
estimate stem diameter outside bark and converted to stem diameter inside bark using 
a simple bark thickness power function (Weiskittel et al. 2016a). Section volumes were 
calculated using Smalian’s formula on the taper-estimated and measured diameters and 
summed to provide taper-estimated and measured merchantable volumes. The latter we 
used as a baseline for error comparisons by region and species in terms of root mean 
square error (RMSE), and mean bias.

Results
The best performing model in terms of AIC, RMSE, and mean bias was the fullest 

model that included a tree-level random effect. However, since it is generally impracti-
cal to predict at the tree level without taper measurements, we chose the second highest 
performing model at the level of species and eco-division for further analysis. When 
compared to the baseline Smalian’s volume estimate, mean bias was -1.3 percent using 
the FIA approach and 0.8 percent using the taper model, while RMSE was 25.8 percent 
using the FIA models and 24.5 percent using the taper model (table 2). The taper model 
performed as well or better for all regions in terms of RMSE. The FIA models had 
lower mean bias in the southern states and the Pacific Northwest while the taper func-
tion performed better in the Northeast, Central States, and Intermountain West.

Overall, model performance was similar, with both methods generally predicting 
below 5 percent mean bias for each species with higher within species variation (fig. 2). 
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Figure 2—Comparison between the current FIA and the Kozak taper merchantable volume estimates in terms of mean bias 
and standard deviation for 10 prominent species.

Examining 10 species, the Kozak taper function improved precision for all species 
except loblolly pine (Pinus taeda L.), Douglas-fir (Pseudotsuga menziesii [Mirb.] 
Franco), and sugar maple (Acer saccharum Marsh.). In terms of mean bias, the FIA 
approach predicted better for species such as loblolly pine and Douglas-fir. However, 
the taper function approach improved estimates for species such as ponderosa pine 
(Pinus ponderosa Dougl. Ex Laws.) and quaking aspen (Populus tremuloides Michx.). 

Discussion
The results presented here suggest that a broad-scale mixed species model may 

perform as well as separate models for species and region. However, the taper function 
used a hierarchical fitting approach on new data to develop new coefficients, while 
the FIA models that we verified were not refit and relied on previously fit coefficients 
generated using least squares regression. Since the taper function was fit to the veri-
fication dataset, subsequent analyses will require cross validation or bootstrapping to 

Table 2—Sample size, mean volume, taper-estimated volume and FIA-estimated volume and 
associated mean bias and RMSE for five regions across the United States.

 Mean merch. volume Mean bias RMSE
Region Actual Taper FIA Taper FIA No. of trees

 - - - - - - - - - - - - - - - - - - Cubic feet- - - - - - - - - - - - - - - - -
Central 23.6 1.1 -3.0 5.3 6.1 2,898
Intermountain West 48.3 -1.6 -2.2 11.2 13.7 3,360
Northeast 18.2 0.0 0.3 3.5 3.9 3,342
Pacific Northwest 45.5 -2.4 -0.9 14.8 15.0 2,786
Southeast 20.6 0.4 -0.1 4.2 4.2 58,107

All data 22.9 0.2 -0.3 5.6 5.9 70,493
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improve upon the within taper model verification presented here. We also note that for 
a single prominent species (e.g., Douglas-fir for which the FIA model performed best), 
a species-level equation may still be more appropriate. One additional limitation in this 
analysis is the relatively limited data for certain species and regions. Their influence 
will be similar to gaps described in biomass sampling efforts (Weiskittel et al. 2016b). 
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Number of Points Needed for  
Image-Based Change Estimation 

Tracey S. Frescino1 and Paul L. Patterson1

Abstract—The Image‑based Change Estimation (ICE) project is an ancillary data 
collection project to enhance the USDA Forest Service Forest Inventory and Analysis 
(FIA) program’s field‑based inventory for monitoring changes on our Nation’s lands. 
The ICE is designed to capture change at a more frequent interval than FIA’s current 
remeasurement schedule by taking advantage of the USDA Farm Service Agency 
National Agriculture Imagery Program (NAIP)’s frequently acquired, high‑resolution 
digital photography. The ICE sample design includes a point sample grid of 45 points 
within an approximate 1‑acre circle surrounding each FIA plot center. All 45 points are 
interpreted on plots where a change is observed between 2 different years, and only 
5 points are interpreted on plots where no change is observed. We examine the conse‑
quences of reducing these 5 points to 1 point for characterizing land use at the state and 
county level. 

Keywords: photo‑based interpretation, change estimation, land use, land cover

Introduction
The Image‑based Change Estimation (ICE) project is an alternative data collec‑

tion mechanism to enhance the USDA Forest Service, Forest Inventory and Analysis 
(FIA) program’s monitoring of our Nation’s lands. ICE emerged in response to several 
requests for FIA to expand its capacity to produce timely estimates of land use, land 
cover, and agent of change. ICE is designed to capture change at a more frequent inter‑
val than FIA’s current remeasurement schedule by taking advantage of the extensive 
and freely available resource of digital ortho photography provided by the USDA Farm 
Service Agency National Agriculture Imagery Program (NAIP). The NAIP acquires 
high‑resolution aerial imagery across the continental United States during the peak 
growing seasons, every 2 to 3 years (https://www.fsa.usda.gov/programs‑and‑services/
aerial‑photography/imagery‑programs/naip‑imagery/).



USDA Forest Service RMRS-P-75. 2017. 17

The current ICE methods and estimation strategies were developed based on a photo‑
based inventory pilot for the state of Nevada (Frescino et al. 2009; Patterson 2012). The 
ICE sample design includes a point sample grid of 45 points within an approximate 
1‑acre circle surrounding each FIA plot center. Interpreters observe all FIA plots during 
the growing season in 2 separate years and determine if a change has occurred within 
the photo‑plot extent. If there is no change, 5 of the 45 points are classified with a land 
use and land cover class. If a change is observed, all 45 points are classified with a land 
use and land cover class as well as an agent of change. In the interest of improving 
efficiency and reducing cost, we consider here whether there is sufficient information 
gathered by interpreting only 1 point instead of 5 points for plots where no change 
occurred. We specifically examine the consequences for the amount of information cap‑
tured at the state level and county level and for the precision of state‑wide population 
estimates.

Data and Methods
For each FIA plot location, using 1‑meter resolution aerial photography, a 144 foot 

(1.449 acre) co‑located photo‑plot is established on both the Time 1 (T1) and Time 2 
(T2) images. At each plot location, the T1 and T2 areal images are compared to see 
if any change has occurred. If change has occurred, 45 point locations are interpreted 
on both T1 and T2 plots (fig. 1). For each point, a land use and land cover is recorded. 

Figure 1—Shows the 5 points (with circles around them) that are a 
subset of the 45 points. When interpreting only 1 point, the center 
point is used. 
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For points where change is observed, an agent of change is recorded. If no change is 
observed on the overall plot, a subset of 5 of the 45 (fig. 1) points are interpreted for 
land use and land cover. In this study, we used ICE data from completed states of Utah 
(UT) with 9,170 plots, New Hampshire (NH) with 992 plots, and Vermont (VT) with 
1,037 plots. The dates of the NAIP imagery are 3 years apart for Utah, with T1 acquired 
in 2011 and T2 in 2014. For NH and VT, the imagery was from 2012 and 2014.

We used the R statistical programming software (https://cran.r‑project.org/) to 
summarize the interpreted data by state and county and an R package, FIESTA, 
(Frescino et al. 2012) to generate population estimates for all three states. The sample 
design and associated estimators are based on an infinite sampling paradigm where 
a simple random sample of points is interpreted within a support region around each 
point in an independent stratified sample of plot centers (Patterson 2012). Under the 
current ICE protocols and methods, estimates are based on the 5 points for the plots 
with no change and 45 points for the plots with change. In this study, we generate a sec‑
ond set of estimates and associated estimated standard errors by using only one point 
for all plots with no change. The two sets of estimates of percent cover for all land use 
categories and associated estimated standard errors were compared.

Results
Table 1 shows the percent difference between the number of plots containing 

each land use category using 5 points compared to using only 1 point. In all 
three states, the number of plots that included Non‑census Water and Right of 
Way land use categories increased by more than 50 percent when 5 points were 
interpreted. In New Hampshire and Vermont, the number of plots on which 
Wetland/Riparian, Cultural classes, and Farmland categories were observed 

Table 1—The percent difference between the number of plots containing each 
land use category using 5 points compared to using only 1 point. Since 
the 1 point is a subset of the 5 points, the percent difference will always 
positive. NA values represent classes that were not observed in the state.

Land use Utah New Hampshire Vermont

Forest 6 7 5
Wetland/riparian 21 43 35
Non-census water 59 73 70
Census water 5 6 3
Farmland 9 36 26
Agricultural woody cropland 0 NA 100
Windbreak/shelterbelt 40 100 0
Cultural 14 42 50
Right-of-way 58 68 63
Recreation 8 0 60
Strip mines/quarries/gravel pits 17 0 0
Rangeland 6 NA NA
Other non-vegetated land 6 NA NA
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increased by 25 to 50 percent when 5 points were interpreted. In Vermont, inter‑
pretation of 5 points resulted in a 100‑percent increase in the number of plots on 
which Agricultural Woody Cropland was observed. Little difference was seen 
for Forest and Census Water categories. 

At a county level, figure 2 shows the difference between the number of 
unique categories captured using 5 points, and the number of unique categories 
from data based on just 1 point. In both Utah and Vermont, the use of data 
based on 1 point instead of 5 points resulted in missed land use categories in 
roughly two‑thirds of the counties; in New Hampshire, one third of the coun‑
ties had a difference. The categories missed for all three states combined are: 
Right of Way, Wetland/Riparian, Census Water, Windbreak/Shelterbelt, Cultural, 
Other Non‑vegetated Land, Recreation, and Strip Mines/Quarries/Gravel Pits, 
Farmland, and Agricultural Woody Cropland.

Figure 2—The difference between the number of unique categories from summarized data using 5 points 
where no change was observed and summarized data based on 1 point where no change was observed: 
a. Utah; b. New Hampshire; c. Vermont.

Table 2 presents the estimates and standard errors using 5 points and the 
difference between the estimate and standard errors with 1 point and 5 points 
for Utah and New Hampshire. A positive difference means the estimate for 
1 point was larger and similarly for the standard error. The estimates generated 
by 5 points and 1 point are close to each other, resulting in small differences 
(“Est Diff” field in table 2), although for the less prevalent categories, the rela‑
tive difference is larger. For most of the categories, the difference in the standard 
errors is non‑negative, meaning the estimates using 5 points appear to be slightly 
more precise. The results for Vermont were similar.

a b c
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Discussion and Conclusion
The ICE project is moving from prototype to production stage in FIA as an ancillary 

dataset for monitoring change of land use and land cover. There are several consider‑
ations and decisions to make with regards to the balance between the efficiency of the 
interpretation work and meeting strategic goals for monitoring change of land use and 
land cover in a timely manner. The interpretation of 5 points versus 1 point for plots 
with no change between 2 points in time is part of this discussion. 

We examined the effect of reducing the number of points interpreted on plots with 
no observable change on the precision of statewide estimates of land use and, at the 
county level, the number of land use categories missed to determine the magnitude of 
the procedure change. In this analysis, we found that some of the more rare and linear 
land use categories, including Wetland/Riparian and Right of Way, are being missed 
when using only 1 point. It appears that 1 point is insufficient to characterize the 
photo‑plot. The amount of time‑saving achieved by only interpreting 1 point has to be 
balanced against missing some rare and linear feature attributes. 

Our analysis is based on the current sample strategy and does not address the effect 
of changing the sample strategy through intensification. In the case of intensification, 
further analysis is needed to determine the information captured and precision gain 
versus cost of interpreting more plots and the issue of 5 points vs. 1 point would be 
germane to that discussion. 

Table 2—The estimates and standard errors of all land for Utah and New Hampshire. “Diff” values represent the 
difference of the results using 1 point for lands with no change from the results using 5 points. Positive values for SE 
Diff indicate higher precision for estimates based on 5 points.

 Utah New Hampshire
Land Use Est 5pt Est Diff SE 5pt SE Diff Est 5pt Est Diff SE 5pt SE Diff
Forest 38.79 0.02 0.497 0.011 81.74 0.46 1.079 0.125

Wetland/riparian 0.46 0.02 0.065 0.006 2.24 -0.12 0.411 0.045

Non-forest chaparral 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000

Non-census water 0.14 -0.04 0.026 0.005 0.35 -0.04 0.097 0.078

Census water 3.13 0.00 0.179 0.002 3.12 0.20 0.533 0.036

Farmland 4.05 -0.03 0.200 0.005 2.71 -0.04 0.446 0.058

Agricultural woody cropland 0.02 0.00 0.014 0.001 0.00 0.00 0.000 0.000

Windbreak/shelterbelt 0.01 0.01 0.004 -0.002 0.02 0.02 0.020 -0.020

Cultural 1.49 0.00 0.121 0.005 7.67 -0.12 0.697 0.130

Right-of-way 0.54 0.01 0.053 0.021 1.69 -0.36 0.259 0.091

Recreation 0.11 0.00 0.034 0.000 0.26 0.04 0.152 0.022

Strip mines/quarries/gravel pits 0.22 0.01 0.048 0.001 0.20 0.00 0.139 0.000

Rangeland 47.51 -0.03 0.517 0.014 0.00 0.00 0.000 0.000

Other non-vegetated land 4.53 0.02 0.214 0.004 0.00 0.00 0.000 0.000
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A Forest Grid of México: Building Capacities  
for the Analytical Synthesis of the  

Mexican Forest and Soils Inventory
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Abstract—We present a national framework for building analytical and institutional 
capacities for the management and synthesis of the Mexican National Forest and Soils 
Inventory (Inventario Nacional Forestal y de Suelos de la Comision Nacional Forestal, 
INFyS‑CONAFOR). The main objectives were to 1) improve the efficiency in data 
management and processing, 2) develop a standardized and curated database based 
on the best information available, and 3) predict and validate forest variables across 
non‑response sites and inaccessible plots. Based on data‑sharing among institutions, 
transparent methods, and the use of open source, we improved data management effi‑
ciency. Error measurements were identified based on expert knowledge along with land 
use/cover type maps. We provided a first curated version of the INFyS‑CONAFOR 
database that included more than 2.5 million registers of more than 100 forest and site 
variables. This database represents 19,820 plots (and three replicates) systematically 
distributed across México. Tree height, tree density, and tree diameter were selected 
to compare different approaches of modeling and to quantify their spatial variability. 
Gridded environmental information (for example, climate, soils, remote sensing, 
and topography) was used to predict these variables using machine learning (random 
forests). Continuous maps were generated across México in a 1x1 km grid to populate 
non‑response sites, which make up almost 10 percent of the national inventory. 
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The explained variance (R2) varied from 0.54 ±0.04 for tree height, 0.40 ±0.05 for 
tree density, and 0.27 ±0.05 for tree diameter, suggesting a moderate to low prediction 
capacity. Therefore, the uncertainties of these maps were also mapped (represented by 
the standard deviation of the full conditional distribution of the response variables to its 
predictors). These maps revealed spatial knowledge gaps that will inform future sam‑
pling strategies and modeling approaches. The results will improve accuracy and spatial 
detail in future predictions, while informing decision support systems for the protection 
and conservation of Mexican forest resources.

Keywords: Mexican National Forest and Soils Inventory, INFyS‑CONAFOR database, 
Mexican forest resources

Introduction
To support land degradation mitigation strategies and combat climate change, there 

is an increasing demand for information about forest distribution and dynamics. We 
present a data‑driven approach to support the establishment of a measurement, report‑
ing, and verification system of forest resources. In México, the INFyS‑CONAFOR 
(Inventario Nacional Forestal y de Suelos de la Comision Nacional Forestal, or the 
Mexican forest and soils inventory) is the main source of information about the vari‑
ability and structure of forest resources. Dynamic creation of appropriate organizational 
knowledge (Nonaka 1994) is required to continuously translate tacit knowledge into 
explicit knowledge and to facilitate the development of institutional capacities for the 
management and synthesis of INFyS‑CONAFOR data. Organizational learning will 
enhance CONAFOR’s capacity to provide the best information available on Mexican 
forests and to avoid interoperability barriers (Vargas et al. 2017) to enable the monitor‑
ing of forest conditions and carbon storage capacity.

This study focuses on the development and synthesis of a curated version of the 
INFyS that would be useful for nationwide modeling efforts. Forest reports would aid 
in policy decisions about Mexican forest resources (for example, carbon and water). 
Predictive modeling could address the increasing levels of inaccessibility to sampling 
plots due to their remote locations and land ownership issues or insecurity. It is impor‑
tant to fill these information gaps because they can lead to differences in estimates of 
forest carbon stocks and services (Domke et al. 2014). 

The main objectives here are to: 1) improve the efficiency in data management and 
processing levels of INFyS‑CONAFOR, 2) develop a standardized and curated database 
based on the best information available, and 3) predict and validate forest variables 
across non‑response sites and inaccessible plots. This effort will soon provide a user 
friendly and curated database that can be used for several applications (for example, 
environmental assessments). The new knowledge will strengthen CONAFOR’s capac‑
ity to provide estimates in places where no information is available at reasonable time 
frames and spatial resolution.
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Methods
All processes were migrated to open source code (R Core Team 2016). All methods 

were shared and previous versions of databases were archived. These efforts were based 
on principles such as data‑sharing and transparent methods. The raw databases were 
cleaned by forest experts from CONAFOR, and finger errors and/or unreliable observa‑
tions were removed. Discussions among experts were required to define maximum 
and minimum acceptable values. Databases were standardized, with consideration 
of the rare extreme but reliable values. Environmental predictors for forest variables 
were gathered and harmonized to a 1x1 km regular grid. We used climate information 
(precipitation and temperature, Zavala et al. 2010), the MODIS enhanced vegetation 
index (Broxton et al. 2014), soil organic carbon and clay content (Hengl et al. 2017), a 
soil depth map (Guerrero et al. 2014), and a USGS geological age map provided by the 
WorldGrids initiative (http://worldgrids.org/doku.php/start). Tree height, tree diameter, 
and tree density were modeled using a quantile regression form of random forests 
(Meinshausen 2006), which is a data‑driven method that allows for the estimation of 
uncertainty. The uncertainty in this case is represented by the range of the full condi‑
tional distribution of each variable as a function of the aforementioned environmental 
factors. Continuous maps of these variables were estimated using the mean and median 
value of this distribution. Because these were calculated by pixel, it made implementa‑
tion a computational challenge. Therefore, the range of the distribution estimated for 
each pixel captures the uncertainty of the estimate.

Results
We provide forest data and forest covariates. A first curated version of the INFyS‑

CONAFOR database includes more than 2.5 million registers of more than 100 forest 
and site variables. A total of 2.8 million trees were measured between 2004 and 2014. 
This database represents 19,820 plots (and three replicates) systematically distributed 
across México. We also provide a set of environmental factors to contextualize the spa‑
tial variability of forest structural variables and for further synthesizing applications and 
ecological interpretations.

We provide models and spatial predictions of forest structural data in places where 
no information is available (for example, non‑response). The internal out‑of‑bag valida‑
tion of the quantile regression forest showed that the explained variance (R2) varied 
from 0.54 ±0.04 for tree height, 0.40 ±0.05 for tree density, and 0.27 ±0.05 for tree 
diameter, suggesting a moderate to low prediction capacity. According to CONAFOR 
field experts, these predictions are very useful in different forest scenarios. 

Figure 1 shows a visual example of the spatial integration of the three predicted 
variables. The forest grid (represented by tree height, tree density, and tree diameter) is 
represented by pixels of 1x1 km. A red, green and blue (RGB) composite was generated 
to illustrate the spatial variability of forest parameters across México. This figure also 
shows a close‑up of a fragment of the southeastern part of the country to illustrate the 
spatial detail that was achieved by mapping forest structural variables at the spatial res‑
olution of 1x1 km. The red values indicate a dominance of high diameter values, green 
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values indicate the dominance of a higher tree density, and blue values indicate where 
the trees are taller. Light areas indicate a higher dominance of higher values of all three 
variables while darker areas indicate a dominance of lower values. Note that across the 
southeastern proximity with Central America, the spatial detail is achieved by mapping 
forest characteristics at a spatial resolution of 1x1 km.

Figure 1—The forest grid of Mexico. This figure shows an integrated visualization of the three mapped 
variables. An RGB composite was created to illustrate the spatial variability of forest parameters across 
(a) Mexico, and (b) a close-up of a fragment of the southeast part of the country. Red values indicate a 
dominance of diameters, green values indicate the dominance of a higher tree density, and blue values 
indicate where the trees are taller. Light areas indicate a higher dominance of higher values on the three 
variables while darker areas indicate a dominance of lower values. Note in (b) the spatial detail that is 
achieved by mapping forest characteristics at 1x1 km of spatial resolution. 
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We provide a spatially explicit measure of uncertainty for testing the reliability of 
predictions (fig. 2). These uncertainties are different between maps, suggesting a dif‑
ferent spatial variability for each variable. There are large areas of the country where 
information is less available (for example, in non‑forested plots). By separating the 
uncertainties estimated for each variable, figure 2 better illustrates and delineates well‑
represented and poorly represented areas. 

Figure 2—Uncertainty of spatial predictions of forest variables. (a) tree height, 
(b) tree density, and (c) tree diameter. These uncertainties were derived by es-
timating the full conditional distribution of these variables as a response of the 
predictors used. Note that the higher uncertainty of these is not the same on 
each map. To have spatially explicit measures of uncertainty allows for future 
planning of sampling strategies. 
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Discussion
We provide a set of data, methods, and analytical and visualization tools to 1) 

enhance the data management capacities and synthesis activities of the INFyS and 2) 
facilitate the generation of socially relevant science about Mexican forests. This is a 
dynamic effort and it is very likely that the dataset and the national‑level predictions 
will improve and newer versions will be released. We argue that this database repre‑
sents the best information currently available for validating and increasing the accuracy 
of national‑to‑global modeling efforts. It includes land use change (Hansen et al. 2013; 
Gebhardt et al. 2014), tree density (Crowther et al. 2015), and tree height (Simard et al. 
2011). We argue that data‑sharing principles and reproducible scientific research led by 
CONAFOR (assisted by academic groups) will reduce interoperability barriers for suc‑
cessfully mitigating climate change (Vargas et al. 2017). 

These principles will also allow for the establishment of a functional and accurate 
measurement system for reporting and monitoring forest resources. Accurate forest 
estimates are required for successful implementations of climate change mitigation 
policies and decision making related to land use evaluation and planning (Saatchi et al. 
2011). Country‑specific capacities are important for reducing uncertainties from global 
models. Although our modeling performance is slightly lower than previous efforts for 
mapping vegetation parameters (Walker et al. 2007; Simard et al. 2011), we provide 
a spatial measure of uncertainty that will support decisions for improving future field 
sampling strategies and modeling efforts.

Conclusion
We provide forest estimates and a reproducible framework across México. We 

present a first official version of the INFyS dataset that includes more than 2.5 mil‑
lion registers of more than 100 forest and site variables from a total of 2.8 million 
measured trees. We predict forest structural parameters and highlight important levels 
of uncertainty across large areas of the country. Data‑sharing among institutions, trans‑
parent methods, and organizational learning activities led by mandated institutions will 
enhance our capacity to reduce this uncertainty and enable the monitoring of our forest 
resources.
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Quality Assurance in National Forest Inventories: 
Lessons Learned From International Partnerships

Sara A. Goeking1, Kerry Dooley2, Heather L. Hayden3,  
Dana Lambert4, and Andrew Lister5

Abstract—National forest monitoring systems ensure data quality by means of quality 
assurance and quality control (QA/QC) programs, which strive not only to maintain 
high data quality, but also to provide objective assessments of data quality in reports 
and estimates. In response to international incentives to monitor forest carbon, numer-
ous countries have recently implemented or are currently implementing, national 
forest monitoring systems that include QA/QC processes to varying degrees. Forest 
monitoring specialists from throughout the U.S. Forest Inventory and Analysis (FIA) 
program have provided technical assistance regarding QA/QC processes in several 
countries. This paper summarizes lessons learned from international technical transfer, 
where these lessons can be applied not only in other countries, but also within the FIA 
program.

Keywords: forest inventory, international technical transfer, quality assurance, quality 
assessment, quality control
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Introduction
The goal of quality assurance in national forest inventories (NFIs) is to maximize 

data quality to the extent that is economical and logistically feasible (FAO 2015) and to 
provide transparency in reporting (Penman et al. 2000). Quality assurance and quality 
control (QA/QC) processes allow quantification of uncertainties in measurements of 
forest attributes and suggest areas of improvement in NFI documentation, training, field 
protocols, automation, or analysis. 

The United Nations’ Reducing Emissions from Deforestation and forest Degradation 
(REDD+) program has motivated several countries to implement NFIs that include 
QA/QC processes (UN‑REDD 2017). At the request of the U.S. Forest Service’s 
International Programs, several Forest Inventory and Analysis (FIA) specialists have 
collaborated with NFI partners in other countries as they develop QA/QC programs. 
This paper seeks to summarize challenges and lessons learned from these outreach 
partnerships, including those that may apply to the U.S. NFI. 

QA/QC Challenges
Many NFIs implement QA/QC programs as linked yet separate processes from 

data collection and data flow, and thus support for QA/QC is often sought after NFI 
data collection has begun. While this sequence of steps may allow for post‑hoc qual-
ity assessment of field data quality, it neither integrates quality control within all NFI 
processes nor provides necessary feedback to NFI documentation and training. Given 
that most countries strive to not only estimate current forest attributes but also quantify 
change over time, it is important to consider that the lessons learned during first‑cycle 
data collection can improve data quality in future inventory cycles (or even in latter 
parts of the first cycle).

While QA/QC is often implemented as a feedback to NFI data collection, quality 
control processes are relevant to all phases of an NFI, including planning, implementa-
tion, feedback, and reporting. The planning phase includes development of a field 
manual and possibly a QA manual. The implementation phase includes field testing 
and training; logic checks that occur during data collection if a digital data recorder is 
used; data collection and analysis from QA/QC verification plots; and validation that 
databases, analyses, and estimation procedures are operating as planned. The feedback 
phase consists of using the information gathered during the implementation phase to 
improve inventory processes, e.g., by revising the field manual, improving training, or 
modifying the data model or compilation process. The reporting phase typically con-
sists of publication of the results of quality assessment, which represent the uncertainty 
in NFI data based on quality control measures conducted.
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Once QA/QC has begun, the next challenge is to identify sources of error and thus 
suggest process improvements that may minimize future errors. A prime example of the 
need to close the feedback loop between quality assessment and field data collection 
is the challenge in relocating plot centers and individual trees, not only during blind 
checks, but also for future remeasurement of permanent plots. In some countries, asking 
the question, “Why is it difficult to relocate plots and individual trees?” has led to iden-
tification of unclear protocols in the field manual and crew training, which in turn has 
led to manual revisions, improved training, and modified compliance standards for plot 
and tree location data. In this scenario, protocol improvements might include: 1) using 
durable, non‑rotting markers for plot centers (e.g., concrete or rebar); and 2) clearly 
specifying the point on each tree‑‑particularly on plot reference trees‑‑to which crews 
should measure distances and azimuths.

A final challenge is the difficulty in planning for QA/QC processes within the analy-
sis and estimation workflows of an inventory in the absence of data. Even when NFI 
and QA coordinators recognize the importance of integrating QA/QC throughout all 
inventory phases, actual data often present unforeseen analytical challenges.

Lessons Learned: Application to the U.S. NFI
The lessons learned in other countries also apply to FIA’s QA/QC program. First, 

transparency could be increased by making quality assessment data available in the 
public FIA database (FIA is currently developing this capability). Second, ongoing 
national‑scale QA reporting (e.g., Pollard et al. 2006; Westfall 2009) would improve 
upon the consistency and transparency of the U.S. NFI; currently most quality assess-
ments are conducted at the state or regional level (e.g., Gormanson et al. 2017). Finally, 
a national mechanism to incorporate feedback from national QA results (e.g., quality 
assessment results provide feedback for targeted field manual revisions and training 
improvements) may further improve FIA’s data quality. 

Conclusions
The main lessons learned from international technical transfer work are that QA/QC 

processes should be integrated early, often, and in all phases of the NFI workflow; that 
identifying and quantifying errors, and determining where and why they occur, are 
equally important; and finally, quality control of data storage, analysis, and reporting 
remain challenging, especially for countries that do not yet have data. Most of these 
challenges exist not only in first‑cycle NFIs, but also ongoing inventories such as FIA.
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Developing Remotely Sensed Methods for 
Estimating Tall Shrub Biomass in Forest and 

Subalpine Communities: Linking  
Plot-Level Measures to LiDAR

Eric Lewis-Clark1, Dr. Roman Dial1, and Bethany Schulz2

Abstract—Tall shrub expansion is a hallmark of recent vegetation change across subal-
pine, boreal, and arctic ecosystems, offering both conservation challenges and potential 
resource opportunities. The lack of allometric equations for individual shrubs makes 
biomass estimates at larger scales difficult. We developed estimates for tall shrub bio-
mass in two areas of south‑central Alaska for two tall alder species (Alnus sp.). These 
estimates were based on 1) development of individual shrub allometric models giving 
dry‑weight as a function of simple field measurements; 2) application of the allometric 
equations to Forest Inventory and Analysis (FIA) design sample plots to estimate sub-
plot‑scale tall shrub biomass; 3) development of LiDAR‑based models of subplot‑scale 
biomass; and 4) application of the LiDAR models to estimate tall shrub biomass across 
the landscape. We determined that diameter at root collar (d.r.c.) measurement was 
sufficient to produce allometric equations and that different species required different 
equations, but not for the different areas sampled. LiDAR models developed to estimate 
landscape level biomass estimations worked well for one area, but not the other.

Introduction
Biomass estimates of tall (> 4.5 feet [1.37 m]) shrubs are necessary for accurate 

carbon accounting in forest and subalpine ecosystems and anticipating shifts in vegeta-
tive community dominance. Tall shrub expansion in south‑central Alaska has been 
documented (Dial et al. 2016; Klein et al. 2005). However, methods for including 
shrub species, which often approach tree size but are not considered “tally” trees in FIA 
protocols, are poorly developed. Scaling up from the FIA plot to the landscape scale to 
estimate and forecast shrub biomass is a necessary but undeveloped modeling effort. 
We provide an example from a well‑sampled region with historic aerial imagery and an 
Alaska Native village forest where shrub biomass could provide a renewable resource.
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Methods
We used two study sites in south‑central Alaska. One site was near Port Graham 

on the Kenai Peninsula in the Chugach‑St Elias Coastal Rainforest Ecoregion 
about 20 miles southwest of Homer, Alaska. The other was on Joint Base 
Elmendorf‑Richardson (JBER) in the Cook Inlet Basin Ecoregion about 2‑5 miles 
north of downtown Anchorage. Alders at Port Graham were sampled from subalpine 
coastal thickets with nearby forest dominated by Sitka spruce (Picea sitchensis). Alders 
(Alnus sp.) from JBER were sampled from lowland coastal thickets with nearby forest 
dominated by white spruce (P. glauca) and Alaska paper birch (Betula neoalaskana). 
LiDAR was flown in 2009 across the JBER site with a nominal spacing of 2.9 feet 
(0.8 m; Dial et al. 2016) and across the Port Graham Site in 2016 at a nominal spacing 
of 1.1 feet (0.35 m).

We sampled JBER in May and June 2016 from five FIA‑style plots with four sub-
plots each. Three subplots lacked tall shrubs, here defined as shrubs with d.r.c. > 0.8 in 
and height > 4.5 feet. From two of the 20 total FIA‑style subplots we destructively 
sampled a total of 16 Sitka alders (Alnus viridis ssp. sinuata) and one thinleaf alder 
(A. incana ssp. tenuifolia). In October 2016 we destructively sampled 54 Sitka alders 
and 18 thinleaf alders from six FIA subplots near Port Graham. The d.r.c. and height 
were measured before the individual tall shrub was cut and weighed. Sample stem 
“cookies” were cut, weighed, dried, then weighed again to estimate the dry‑weight 
fraction. Previously we found that d.r.c. and height are sufficient variables to identify 
weight (R2 > 0.9). 

Linear models were tested with biomass as the dependent variable, study site, 
species, height, and d.r.c. as independent variables using R (v 3.3.2). We chose not 
to apply non‑linear fitting because the error distribution was heteroscedastic without 
log‑transformation. While we fit linear models with log‑transformed variables, we 
report the equivalent power functions. To determine if models differed by species, we 
used a likelihood ratio test (LRT) of two biomass models that each included covariates 
log‑height and log‑d.r.c.; however, one model included species in an interaction with 
each covariate. To determine if study site mattered, we used LRT comparing biomass 
models for Sitka alder with and without study site. We treated study site as a fixed 
effect included as an interaction with covariates. To find the best model we used AIC. 
If ∆AIC < 3 when comparing models, then we selected the model with fewer variables, 
because such a small difference in AIC suggests similar likelihoods.

In a preliminary analysis, we applied the allometric equations to estimate tall shrub 
biomass for 753 alders among 20 FIA‑style subplots, each of area 1,809 feet2 at JBER 
and 862 alders among 18 subplots at Port Graham. After summing the total tall shrub 
biomass in each subplot, we regressed biomass against standard LiDAR metrics to best 
predict the tall shrub biomass in each subplot. We refer to subplots used to construct 
models as “training subplots.” For each training subplot we calculated a handful of 
likely candidate LiDAR metrics: 95 percent height, cover above one meter, cover above 
0.5 meter, cover above the mean height, and mean height less than 23 feet (maximum 
alder height in training subplots). We used a backwards stepping model approach to 
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find a combination of these metrics to best explain variability in biomass among the 
training subplots. We did this separately for JBER and Port Graham. Using the 
best fit landscape model, we first predicted the total tall shrub biomass across all 
pixels with LiDAR at a patch size of 1,819 feet2 (13 m pixel), as this was the approxi-
mate area of the training subplots, then aggregated across pixels by summing over a 
5 pixel by 5 pixel area (1.044 acres) to arrive at an estimate of shrub biomass in pounds 
(lbs) acre-1.

Results
We found significant differences between the allometric model predicting log‑

biomass that included species as a fixed factor interaction term and one that did not in 
(LRT, X 2 = 84.8, df = 6, p < 0.001), suggesting different allometric models for each 
species. There was no significant difference between biomass models for Sitka alder 
with and without study site as an interaction term (LRT, X 2 = 2.3, df = 3, p = 0.51); 
similar results held when including study site as an additive term (LRT, X 2 = 0.6, df = 1, 
p = 0.43), suggesting one allometric equation for biomass is sufficient for Sitka alder at 
both study sites. Insufficient sample size for thinleaf alder at the JBER site prevented 
a similar comparison. The addition of the height variable did not substantially improve 
the model for either species over the single variable d.r.c.‑model (table 1).

Table 1—Allometric equations for pounds of biomass by species 
using DRC (inches) with and without height (h) (feet), and 
their R2 and ∆AIC values.

Species Equation R2	 ∆AIC

Sitka alder  B = 0.86 DRC2.41 0.92 2.5
(n = 70) B = 0.33 DRC2.31h0.42 0.93 0.0
thinleaf alder B = 0.033 DRC2.11 0.88 2.4
(n = 19) B = 0.028 DRC1.63h1.31 0.90 0.0

Overall, subplots at JBER had less tall shrub biomass and more variability than 
subplots at Port Graham (JBER: B =15,924  lbs acre-1, sd = 16,019 lbs acre-1, n = 17 
subplots; Port Graham: B = 20,2548, lbs acre-1, sd = 9,387 lbs acre-1, n = 19 subplots). 
Moreover, we found that LiDAR better predicted tall shrub biomass at JBER than at 
Port Graham (table 2) and did so with two variables: cover and log‑transformed mean 
height 3.28 feet (1 m) above ground level. In contrast, Port Graham used only mean 
height below 23 feet. By applying the JBER LiDAR‑biomass equation to forested 
regions across 40,000 acres of forest land on Joint Base Elmendorf‑Richardson and 
averaging, we arrived at a mean point estimate of 12,856 lbs acre-1 of shrub biomass 
with standard deviation across all pixels of 11,550 lbs acre-1.
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Table 2—Models for estimating tall shrub biomass in pounds per 1,819.1 feet2  pixels using LiDAR.

   Training sample 
Study site Landscape biomass model R2 size (subplots)

JBER LiDAR Estimation B = 4,220.7 – 1,580.1 ln H1 + 1,491.1C 0.82 n = 20

where 
H1 = mean height above 3.28 feet in feet
C = fraction representing the number of first 
  returns in a 3.28 ft resolution LiDAR 
  higher than 3.28 ft out of all pixels.

Port Graham LiDAR Estimation B = 44.67 + 84.48H22.96 0.59 n = 18
where 

H22.96 = mean height below 22.96 ft.

Discussion
Tall shrubs have been documented as increasing in cover and abundance in south‑

central Alaskan landscapes (Dial et al. 2016). Tall shrubs may also be increasing in 
forests; however, to date we are unaware of any study to address this phenomenon. In 
particular, FIA‑style plots are not currently well‑suited to detect such an increase. 

We found that d.r.c. > 0.8 in generates satisfactory allometric equations for estimat-
ing tall alder biomass in two tall shrub species common in south‑central Alaska. Models 
fit young, small alders well; however, as alders age their history of damage and growth 
reduces model predictive ability. We also found that while species specific equations 
were necessary, the two study areas 250 miles apart and in adjacent but different ecore-
gions did not differ in their allometric equations when estimating biomass as a function 
of d.r.c. for Sitka alder. In addition, we found that these allometric equations could be 
applied to an alder census in FIA‑style subplots to estimate total tall alder biomass. 
Total alder biomass regressed against LiDAR metrics using linear models provided a 
model applied at the landscape scale. Models differed between the two study areas, one 
of which was a lowland forest and the other a subalpine upland. We applied the lowland 
forest model to estimate mean biomass density of tall shrubs across 40,000 acres of 
forest.
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Automated Change Detection With  
High-Resolution Image Chips in Support of  

Image-Based Change Estimation (ICE)

Greg C. Liknes1 and James Garner2

Abstract—The USDA Forest Service Forest Inventory and Analysis (FIA) program 
and the National Forest System have implemented Image‑based Change Estimation 
(ICE) to improve FIA estimates of land use and land cover change. The ICE proj‑
ect involves human photo‑interpretation of permanent locations on a design‑based 
sample grid of FIA plots. Interpreters use high‑resolution aerial photography from the 
National Agriculture Imagery Program (NAIP). Because such a small proportion of 
the landscape experiences change in any given year, huge gains in efficiency could be 
realized by screening plots for potential changes in an automated fashion. We tested 
four approaches to change detection (mean square error, normalized root mean square 
error, structural similarity index, and hashing) using NAIP image pairs (2012, 2014) 
for FIA locations in Vermont. Results indicate that none of the methods result in clear 
differences between changed and unchanged locations. However, additional investiga‑
tions into change detection approaches are warranted because of the large potential cost 
savings to the FIA program. We describe limitations of current approaches and imagery, 
and we recommend additional analyses be conducted whether using NAIP or other 
high‑resolution imagery.

Keywords: machine vision, structural similarity index, change detection, perceptual 
hashing, land use change, land cover change

Introduction
With Landsat imagery freely available via the internet and increased access to high‑

performance computing, there has been a proliferation of forest canopy disturbance 
mapping over large geographic extents (e.g., Hansen et al. 2013). These mapping 
efforts highlight harvest, fire, and other disturbances and lead to high profile reports of 
forest loss across the United States. While disturbances do temporarily remove forest 
cover, the land area impacted by permanent forest land use change is much smaller. 
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To address ongoing inquiries about changes to land use and land cover, the USDA 
Forest Service Forest Inventory and Analysis (FIA) program and the National Forest 
System have embarked on the Image‑based Change Estimation (ICE) project. 

The project involves human photo‑interpretation of permanent plot locations on 
FIA’s design‑based sample grid. Interpretation proceeds using high‑resolution aerial 
photography from the National Agriculture Imagery Program (NAIP). The protocol 
applied at each plot location is estimated to take 10 minutes on average. Summed over 
hundreds of thousands of plot locations, the ICE project represents a large investment in 
human image interpretation. Once image interpretation for all plots has been completed, 
no determination of land use and land cover will need to be made on plots going for‑
ward, unless they have experienced land use or land cover change. As such, updates in 
the ICE project using new imagery should proceed more quickly but would still require 
that an interpreter examine each new image pair for change.

Because such a small proportion of the landscape experiences change in any given 
year, huge gains in efficiency could be realized by screening plots for potential changes 
in an automated fashion. For example, estimates from ICE indicate that less than 3 per‑
cent of the Vermont land area experienced change between 2012 and 2014. However, 
NAIP imagery presents challenges to change detection due to inconsistencies in view 
angle, collection dates, camera characteristics, and so on. As such, traditional remote 
sensing change detection methods are not well‑suited for use with NAIP. There are, 
however, a growing number of techniques in the realm of machine vision designed for 
use with high‑resolution video and imagery that compensate for small differences from 
frame‑to‑frame or image‑to‑image. 

We examined the prospect of using both traditional and alternative approaches to 
detect changes in NAIP imagery with the aim of improving the efficiency of the ICE 
project. Specifically, the overall goal is to develop a change detection method for NAIP 
image pairs that can identify plots that have experienced change without any omission 
errors and with as few commission errors as possible. That is, we want to correctly 
identify all change plots while excluding as many non‑change plots as possible. In this 
first phase of the research, we developed a workflow to process the image chips and to 
calculate a number of metrics and have evaluated results qualitatively.

Methods
Using NAIP image chips (88 m x 88 m) that were prepared for the state of Vermont 

from two image dates, 2012 and 2014, we calculated multiple change metrics using four 
different approaches (fig. 1). The first, mean square error (MSE), is an accumulation of 
per‑pixel differences and is an intuitive, straightforward change detection approach. The 
second is a slight modification of MSE for which images are first normalized prior to 
the calculation of root MSE; we will refer to this approach as NRMSE. 
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Figure 1—Flowchart for four change detection methods applied to NAIP image chips.
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The third approach comes from machine vision literature and was designed to evalu‑
ate the quality of an image compared to a reference. The structural similarity index 
(SSIM index) (Wang et al. 2004) compensates for differences in illumination between 
image pairs and focuses on contrast and the structure of objects in the image. The SSIM 
index was calculated for a range of pixel window sizes and using four bands of imagery 
for each pair, as well as a number of derived images (table 1). 

Table 1—Change detection approaches applied to NAIP image chips from Vermont, USA, to find 
differences between images taken in 2012 and 2014. The first column indicates the statistic or 
index that was calculated using each window size listed in the second column. An “X” in a cell 
indicates which band combinations or derived images were used for each approach.

Approach
Window sizes 
(pixels) 4-band 3-band Grayscale

Histogram-
matched

Red 
ratio

Green 
ratio

MSE 1 X X X
NRSME 1 X X X
SSIM index 3, 5, 7, 9, 11, 

13, 15, 21, 33
X X X X X X

Hashing 3, 5, 7, 9, 11, 
13, 15

X X

The fourth method, hashing, is derived from the fields of cryptography, multimedia, 
internet security, and others (see Menezes et al. 1996). Hashing is a technique that 
involves simplifying an image and developing a “fingerprint” for the image in order 
to facilitate rapid comparison with a database of images. We created a custom imple‑
mentation of this concept that involved 1) converting four‑band color imagery to a 
single band; 2) downscaling to a coarser version of the image; 3) tracking each pixel’s 
relationship to its neighbor to the right and also to its neighbor below; 4) comparing the 
neighbor relationships between time 1 and time 2; and 5) determining the proportion of 
neighbor relationships that were maintained through time. The downscaling proceeded 
using a range of window sizes. 

For all four approaches, calculations were made using the Python scripting language 
and the scikit‑image library (van der Walt et al. 2014). The approaches are summarized 
in table 1 along with image details and window sizes.

The values or indices calculated for each approach were then qualitatively compared 
for locations that experienced change and those without change, as assessed by human 
image interpretation applying a well‑defined ICE protocol. Values were also split out by 
the interpreted land use class at time 1 (2012) in order to determine if better separation 
between change and non‑change plots could be achieved in particular landscapes. We 
included only forest, agriculture, and developed land uses since other classes were not 
land (e.g., water, uninterpretable), were not represented in the sample (e.g., rangeland), 
or had very small sample sizes (e.g., natural/semi‑natural).
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Results
Because of the large number of change indices tested, we present only general 

observations of the results. None of the approaches tested provided good separation 
between locations that experienced change between 2012 and 2014 and those without 
change (fig. 2). More specifically, only 0–4 percent of non‑change plots fell outside 
the range of change plots for any given metric, with little difference between simple 
pixel difference approaches (MSE, NRMSE) and more complicated approaches (SSIM 
index, hashing). In general, the indices provided better separation between change and 
non‑change plots in agricultural land use compared to those in forest and developed 
land uses, with the exception of hashing, which provided slightly better separation in 
forest land use. The number of image bands used had minimal effect; for example, 
results using four‑band or single band grayscale imagery produced similar SSIM index 
outputs. The window sizes tested for both the SSIM index and hashing did have an 
impact on results, and in general, better separation between change and non‑change 
locations occurred in middle ranges, with best results at 13‑m window size for hashing, 
and 15‑m window size for SSIM, which are the results displayed in figure 2.

Conclusions
The goal of this research is to develop an automated method that can identify all 

change plots from image pairs while minimizing the number of non‑change plots that 
would need to be viewed by an image interpreter. The proportion of non‑change plots 
eliminated from manual interpretation could be quite small, and a time savings could 
still be realized because of the comparatively small amount of time required for the 
automated screening process. (The Python script that calculated all indices for the 
analysis in this study takes less than 3 minutes to execute for over 1,000 image pairs.) 

Because of the properties of the NAIP image collection (inconsistent image acqui‑
sition dates, differing view angles, etc.), it is challenging to distinguish actual land 
change from image changes that are due to image anomalies. These initial results 
indicate little difference between simple pixel difference approaches (MSE, NRMSE) 
and more complicated machine vision approaches such as the SSIM index. Because 
the potential time savings via automated screening is so large, additional investigation 
into automated change detection approaches should continue. New high‑resolution 
data sources are becoming available, and they may be alternatives to NAIP for change 
detection.
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A Sentinel Satellite-Based Forest Ecosystem 
Change Detection System

Andrew J. Lister1 and Laura P. Leites2

Abstract—Forest monitoring using traditional remote sensing methods requires signifi‑
cant overhead in terms of data management and processing expertise. As an alternative 
to traditional methods, we propose a new approach to monitoring using point sampling 
with high‑resolution, frequently updated Sentinel satellite imagery. By classifying the 
probability of different land cover transitions using spectral indices and machine learn‑
ing techniques at specific locations, analysts can prioritize areas for change monitoring 
and other activities. The advantages of this approach include the use of existing forest 
inventory sampling tools and photointerpretation procedures, automated classification, 
and integration with existing forest inventory monitoring workflows.

Keywords: forest inventory, photointerpretation, Sentinel monitoring, forest change 
detection, forest monitoring

Background and Objectives
Analysts need forest change monitoring systems that are more cost‑effective and 

timely than existing options. Traditionally, vegetation monitoring has been done at 
the landscape scale using remote sensing (RS), ground inventory, or a combination. In 
monitoring that uses RS‑based models, satellite imagery is often combined with ground 
data in a geographic information system (GIS), and models are built based on the 
relationship between the ground, RS, and other GIS data. The model is then applied at 
all locations in order to create maps of the resource of interest. Maps can be made from 
either uni‑ or multi‑temporal imagery. Current multi‑temporal RS methods include a 
suite of options derived from time series of Landsat images (Hansen et al. 2013; Moisen 
et al. 2016; Schroeder et al. 2014). Resulting map products are used as tools for land 
management—either as graphical aids that focus attention on areas of interest, or as 
sources of estimates created by GIS summaries of pixel values for a given geographic 
area such as a watershed. Olofsson et al. (2013) present methods for producing valid 
error estimates of these map‑based estimates.



46 USDA Forest Service RMRS-P-75. 2017.

There are pros and cons of each monitoring strategy, but certain fundamental 
principles guide monitoring choices. First, there must be a well‑defined criterion for 
successful monitoring. Generally, success is defined as the generation of information 
with which a manager feels confident to make a decision, such as estimates of total 
or average amounts of the forest resource, change, and uncertainty metrics such as 
confidence intervals. Second, monitoring systems need to provide this information in 
a cost‑effective way. There is little value to collecting more information than is needed 
to make decisions, and similarly, underestimating data requirements will not lead to 
successful monitoring. Finally, monitoring systems need to be scientifically defensible. 
For example, RS maps or tabular inventory outputs produced with designs that violate 
statistical assumptions provide information that appears useful, but since the underlying 
design is flawed, that information is not suitable as a basis for management decisions.

Technology associated with the recently launched Sentinel satellites (Drusch et al. 
2012 can help meet monitoring needs better than existing RS data such as Landsat. The 
Sentinel spacecraft are sun‑synchronous Earth observation satellites with 13 spectral 
bands and spatial resolutions of 10 m (four visible and near‑infrared bands), 20 m 
(six red‑edge/shortwave‑infrared bands) and 60 m (three atmospheric correction 
bands). They present a great opportunity to make RS‑based monitoring, used in the 
context of point sampling, much more efficient. On the one hand, Sentinel imagery 
offers a higher resolution than alternatives like Landsat (10‑ to 20‑m vs. 30‑m pixels). 
Secondly, it offers a more frequent revisit time for each location within its orbital path 
(5 to 10 vs. 14 days), creating more options for obtaining cloud‑free views. Finally, 
Sentinel satellite data, like those from Landsat, are free, and can be accessed via a 
unique cloud‑based image retrieval and processing platform that allows a user to sub‑
mit requests to a server for a polygon of interest (POI) and retrieve summary statistical 
information. Using this service and the open source statistical software R (R Core Team 
2015), summarized RS data can be easily converted to information like that shown in 
figure 1, which depicts a temporal distribution of values for a Sentinel‑derived vegeta‑
tion index (NDVI ‑ normalized difference vegetation index) within the indicated POI. 
This process eliminates the need for downloading and processing imagery, something 
that introduces significant overhead to forest monitoring tasks and limits opportunities 
for automation and operationalization of the technology. Sentinel data can thus be very 
useful for applications in research and monitoring where efficiency and automated 
procedures are valued.

Including NDVI, there are over 60 vegetation indices provided with the Sentinel 
Web services, and a total of at least 250 that could be generated (Henrich et al. 2009. 
We plan to use these Sentinel products, along with ground‑ and photo‑based POIs for 
model calibration and validation, to create a cost‑effective, POI‑based change prob‑
ability monitoring system. For each POI, a vector of pixel‑based histogram metrics will 
be generated, including values for chosen percentiles, measures of central tendency, 
and variance. Kernel density estimates (i.e., non‑parametric, nonlinear models) of the 
probability density functions of pixel values will also be generated for each sampling 
location. These data will serve as the predictor variables for change monitoring models. 
Forest change will be evaluated or modeled in various pilot areas following one of two 
methods:
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1) Change detection models: Training data for stables areas and for areas that have 
changed between 2015‑2016 or 2016‑2017, will be used to develop a change probability 
model that will use the vegetation indices and their histogram metrics as predictor 
variables in a machine learning algorithm such as Random Forests or Support Vector 
Machines.

2) Land classification models: A sample of locations will be classified into land 
classes using 2015 as the baseline and will serve to train a model that will predict land 
class. The vector of histogram metrics for the 60 vegetation indices will serve as predic‑
tors in a classification algorithm using a machine learning technique. The model will 
then be used to predict land class at the second time period (2016). The difference in 
class probability between the baseline and that from the second time period will be used 
to label change likelihood. For each of these techniques, traditional error metrics like 
confusion matrices with user’s, consumer’s, and overall accuracies will be computed 
under different change probability threshold scenarios.

The change detection procedures described here are a small subset of the myriad 
traditional RS change detection methods that could be applied. We will discuss the 
feasibility of using this technology for change monitoring and for identifying plots 
that have changed between time periods, as well as various practical ways that forest 
monitoring systems like FIA and other countries’ national forest inventories can use this 
approach for forest monitoring.
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The FIA Analytical Hypervolume: Exploring New 
Dimensions with New Tools

Andrew Lister1, Bonnie Ruefenacht2, and Rachel Riemann3

Abstract—A New Workflow For Combining Geographic Information Systems (GIS) 
and forest inventory data from the USDA Forest Service’s Forest Inventory and 
Analysis Program (FIA) will be presented. The workflow exploits a recently released 
data distribution tool called the Analysis Tool for Inventory and Monitoring (ATIM). 
The goal of the project is to increase the analytical capabilities of FIA staff and data 
consumers to make fuller use of the FIA dataset to answer management, planning, and 
policy questions.

Keywords: forest inventory data analysis, ATIM, Spatial Intersection Tool, GIS analysis

Background and Objectives
The Forest Service’s Forest Inventory and Analysis Program (FIA) conducts the 

National Forest inventory of the United States by gathering information on forest 
attributes from approximately 300,000 plots. This dataset contains information not only 
on trees, but also on land type attributes. These land attributes consist of information 
such as owner class, forest type and type group, topographic variables, geographic 
location, land cover, and land use. Generally, this information is assigned to plots by 
the field data collection teams during a ground visit to the plot or, for plots not visited, 
by photo interpreters who examine the plots using high resolution imagery provided 
by the National Aerial Imagery Program (NAIP) in a geographic information system 
(GIS). Data are organized, stored in a corporate Oracle database, and summarized and 
distributed in a combination of online tools, annual update reports, and comprehensive 
inventory‑cycle reports.
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FIA analysts create many diverse products using the standard FIA database. For 
example, analysts commonly create cross‑tabulation summaries, which can be joined 
with GIS data layers such as county boundaries that are cross‑referenced to county 
identifiers found in the database. Other examples include tables and figures describing 
the total number of trees by species by slope class and ownership class, or total for‑
est tree volume by forest type and county. Land type attribute summaries can include 
total area by land cover class, land use class, ownership class, and all combinations of 
these. The classification variables used to construct these types of tables and figures 
are referred to as domain variables (Bechtold and Patterson 2005), which partition the 
overall estimate into subsets or domains. It is these domain variables that provide rich‑
ness to the FIA analyses by turning data into information that FIA data consumers can 
use to make management, planning, and policy decisions.

Over the past two decades, both computing power and the availability of large 
area GIS datasets have experienced explosive growth. Previously, GIS data layers 
were distributed in a piecemeal fashion, i.e., county‑by‑county or state‑by‑state. This 
was primarily due to computer processing, storage, and Internet speed limitations. 
Currently, these limitations have been surmounted and agencies have responded by pro‑
viding increasingly detailed datasets to users via either direct download or Web services 
platforms streamed directly into GIS applications. There has not been commensurate 
growth of exploitation of these new datasets by many Federal agencies due mainly to 
the challenges associated with integration with legacy database and summary tools.

To bridge this gap, FIA has developed a new data distribution system called the 
Design and Analysis Tool for Inventory and Monitoring (DATIM) (USDA Forest 
Service 2017). The DATIM analysis tool, ATIM, allows users, via a simple Web inter‑
face, to generate traditional cross‑tabulation summary tables as previously described. 
Something that differentiates ATIM from previous reporting tools is a new utility called 
the Spatial Intersection Tool (SIT). SIT allows users to intersect plot data with GIS data 
layers to assign new classification variables to each FIA plot, and then it makes these 
classification variables available to ATIM for use in table‑making. For example, by 
intersecting the FIA plots with a GIS data layer consisting of a habitat quality category, 
FIA data users can generate summaries such as “total biomass by species group and 
habitat quality class,” and use the information to answer questions that inform manage‑
ment decisions. The general workflow for this process is shown in figure 1.

To take full advantage of this new capability, FIA needs standardized, national‑scale 
GIS and remote sensing derived data layers to conduct consistent, multivariate analyses 
at both regional and national scales. A major challenge, however, is obtaining, prepro‑
cessing, and standardizing the ancillary GIS and remote sensing data layers in a way 
that makes them useful and easily accessible to analysts who are not GIS or database 
experts. To address this need, FIA and the Forest Service’s Geospatial Technology and 
Applications Center (GTAC) have begun to assemble GIS data layers that meet the 
aforementioned requirements. The set of layers, termed the “analytical hypervolume” 
because it is a multidimensional space within which new analyses can be created, are 
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stored in a corporate Oracle database, giving FIA staff access to a large suite of new 
categorical variables (or continuous variables that can be broken into categories) to per‑
form different types of analyses. The GIS layers available as of spring 2017 are shown 
in table 1. In addition, online map services that provide Web coverage services or Web 
feature services capabilities allow users to stream GIS data directly into GIS tools and 
thus perform SIT operations without needing local copies of the GIS data. All of these 
new capabilities will expand creative, national‑scale reporting capacity by allowing FIA 
to use nonstandard GIS data layers, including those from other agencies. Furthermore, 
it will allow FIA to respond more quickly to emerging national‑scale data requests and 
analysis priorities.

Figure 1—Workflow for use of the SIT and ATIM with GIS data layers.

Table 1—List of GIS data layers available as of spring 2017 in the Forest Inventory and Analysis analytical 
hypervolume GIS dataset.

Dataset Description and reference

Population
Landscan population data, which are disaggregated population estimates derived by Oak 
Ridge National Laboratory (http://web.ornl.gov/sci/landscan/landscan_documentation.shtml)

Soils
Gridded Soil Survey Geographic Database (gSSURGO), consisting of summarized soil 
attributes from the NRCS Soil Survey Geographic Database (https://www.nrcs.usda.gov/
wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628)

Topography
Topographic data based on 30-m DEM, including aspect, cosine of aspect, sine of aspect, 
and slope in degrees

Cropland
The Cropland Data Layer, depicting agricultural land cover types of the United States (http://
nassgeodata.gmu.edu/CropScape/)

Fires
Monitoring Trends in Burn Severity (MTBS) burn perimeters for fires > 1,000 acres (in the 
West) and > 500 acres (in the East), for fires between 1984-2014

Forest Change
Forest cover change classification between 2000-2014, developed by the University of 
Maryland (http://earthenginepartners.appspot.com/science-2013-global-forest/download_
v1.2.html)

Fragmentation
Several landscape fragmentation pattern maps derived by staff at the Eastern Forest 
Environmental Threat Assessment Center (https://forestthreats.org/research/tools/
landcover-maps/lcm)

NLCD
The National Land Cover Dataset, including land cover, impervious surface and canopy 
cover from 2001, 2006, and 2011 (https://www.mrlc.gov/faq_lc.php)
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The two goals of the current project are to identify the benefits of this approach to 
increasing analysis capacity and to develop the SIT workflow within ArcGIS for con‑
ducting the analysis. Project components include the distribution of a user guide for the 
process, the generation of analysis examples, and development of a data management 
strategy for keeping datasets current.
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Calibration Estimators in South Texas

Joseph M. McCollum1 and Dennis M. Jacobs2

Abstract—The Forest Inventory and Analysis’ (FIA’s) estimates for South Texas are 
presented. Various cover types such as water, cropland, urban, and wetland‑beach are 
clearly overestimated. A possible solution is presented involving calibration estimators.

Keywords: calibration estimators, nonresponse

Introduction
The 4th survey unit of Texas is over 26 million acres—larger than 14 of the 50 states, 

including South Carolina and Kentucky. This unit has a nonresponse rate of 30 percent, 
the highest in the Southern Station’s FIA region, thereby subject to nonresponse bias in 
the program’s estimation procedures. The purpose of this paper is to demonstrate the 
overestimation errors in FIA’s area estimates, which are caused by nonresponse bias in 
this survey unit, and then to propose a solution. 

Figure 1 shows the dominant land use in the neighborhood of each plot as calculated 
by a Thiessen expansion of the plurality condition of each plot, and table 1 shows esti‑
mates of surface area, some diagnostics, and the results of calibration.

Standard errors were computed from FIA’s own estimates, under the assumption that 
standard errors for individual strata are independent. Other nonforest land consists of 
land that is most likely to mimic forest: orchards, Christmas tree plantations, wildlife 
openings, recreation, and low canopy tree land.

The estimate for cropland is taken from the Census of Agriculture (U.S. Department 
of Agriculture 2014). On one hand, this estimate includes “pastured cropland,” but on 
the other hand, FIA’s estimate includes “idle farmland” and “general agricultural.”
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Table 1—Estimates of various land cover for South Texas (in acres).

 FIA estimate Standard error Outside source FIA calibrated

Forest 8,031,773 200,794  9,482,773
Pasture/rangeland 5,633,549 204,355  5,727,545
Cropland, etc. 5,348,733 192,917 4,078,777 4,676,097
Urban 2,423,654 13,4029 2,027,942 2,147,641
Wetland/beach 1,147,055 9,6941  997,686
Other nonforest 783,946 78,630  933,047
Surface water 3,256,897 154,512 2,556,438 2,660,818
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The estimate for urban land cover is taken from the Census Bureau’s PLACES layer 
in its TIGER files (U.S. Census Bureau 2012). These are city boundary lines. On one 
hand, other land types, such as wetland, forest, or water, can occur within a city. On the 
other hand, urban‑like features can occur outside a city—including a right of way or an 
industrial park in an otherwise rural area. Finally, the estimate for surface water is taken 
from the Census Bureau’s water layer in its TIGER files. The National Hydrography 
Database gives a similar estimate (U.S. Geological Survey 2009).

For cropland, urban, wetland‑beach, and surface water, FIA’s estimates are clearly 
too high. Take a close look at the map (fig. 1). Nearly all the water is in the eastern part 
of the unit. However, the nonresponse plots are in the western part of the unit. There 
is very little surface water there. Wetland and beach often adjoin surface water, so this 
stratum is overestimated as well.

The major urban centers of this unit are also in the east. Exurban Houston is in 
the northeast, Corpus Christi is in the east central, and Brownsville‑McAllen is in the 
southeast. The western part of the unit is much more rural. What cities there are, such as 
Laredo in the west central and Eagle Pass in the northwest, have no nonresponse plots. 
Exurban San Antonio in the north central contributes some urban plots but relatively 
few nonresponse plots. The nonresponse plots are not in urban areas.

Near each of the major urban centers is a cluster of cropland. The climate becomes 
drier to the west, and according to the Census of Agriculture, the major agricultural 
product in the western part of the unit is beef cattle, not crops.

Eighty‑four percent of the surface area falls on private land and the National Land 
Cover Database (NLCD) 2001 zero percent canopy (Homer et al. 2007). However, plots 
in this unit are not identically distributed, nor does nonresponse occur randomly. The 
assumption that plots are identically distributed has led to overestimates of several land 
use classes, as described above, and anything that follows from those inaccurate results. 
For example, the northeastern part of the unit has high volume live oak (Quercus virgin-
iana), while the rest of the unit has low volume honey mesquite (Prosopis glandulosa). 
Unfortunately, there are fewer forested acres in the northeastern part of the unit than 
FIA claims, so consequently, volume is off considerably. Another problem is that if 
a user’s request does not coincide with evaluation group lines, he or she can get an 
answer that does not make sense. 

For instance, FIA claims a surface area of 4.35 million acres for the 28th 
Congressional District of Texas within the 4th survey unit of Texas, with a sampling 
error of 4 percent. This district is larger than 33 of the Southern Research Station’s 
66 survey units. Examination of a shapefile shows this district to be 6.0 million acres, 
with 5.9 million acres within the 4th unit. Thus, FIA is nearly 9 standard deviations 
away from reality. This should happen less often than one in every quintillion (1018) 
attempts. At the other extreme is the 27th District. FIA estimates it to be 6.91 million 
acres, with a sampling error of 3 percent. In reality it is 5.43 million acres, which is over 
9 standard deviations off the mark. Perhaps rare events have been witnessed, but a bet‑
ter explanation is that FIA has used an inappropriate formula for computing the estimate 
and its error.
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Goeking and Patterson (2013) offer a solution to a similar problem in New Mexico. 
However, a major difference between South Texas and New Mexico is that South Texas 
has very little public land, about 2 percent, and even that has a nonresponse rate of 9 
percent, higher than the 5 percent goal sought in Goeking‑Patterson. If the Goeking‑
Patterson solution is applied to South Texas, the forest area of the unit increases to 
nearly 9.1 million acres. Surface water decreases to 2.49 million acres. Yet, the 28th 
Congressional District is still far too small; its recomputed size is 4.63 million acres. 
The 27th District is still too large at 6.50 million acres.

Calibration estimators allow for satisfaction of several constraints at once. Among 
the first papers on calibration estimators was Deming and Stephan (1940). Their 
method was eventually called “raking,” because it resembles raking a field in one direc‑
tion and then the other. For instance, the raking variables might be county and stratum. 
First, the stratum is divided by the number of observed plots in the stratum. But county 
sizes are shown to be incorrect. Expansion factors are adjusted to make the county sizes 
correct. But then the stratum sizes are off. They are adjusted. County sizes are again 
incorrect, but not as bad as they were on the previous iteration. The process continues 
until convergence occurs. It is possible that convergence will not occur.

Under Deming’s method, expansion factors can become very large. Deville and 
Särndal (1992) offer a variation on raking based on logistic regression, as well as 
 several other possible variants. One of those variants involves linear regression.

The regression equation is:

Ax = b ,

where
A is a p x n matrix of zeros and ones, or even fractions (to account for partially 

observed plots or unequal inclusion probabilities), where each row corresponds to a 
plot, and each column corresponds to a constraint;

x is an n x 1 vector of expansion factors; and

b is a p x 1 vector corresponding to the size of each constraint.

A disadvantage to this approach is that it is possible that an expansion factor for 
a plot might be negative or very large. To deal with this problem, there is a variation 
called “truncated linear.” Like the logistic, this one has a maximum and minimum 
value. Of course, it is possible that this one might not have a solution at all, and 
therefore an FIA statistician or analyst must evaluate which approach has a reasonable 
solution.
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Calibrators
There are a number of classification variables in EVALIDator (Miles 2016) that 

could be used as calibrators. Among these are: Congressional District, County, 
Distance to Road, Ecozone, Elevation, EMAPHEX, HUC, and Public Ownership. An 
EMAPHEX is 160,300 acres, but this number could vary slightly due to the choice 
of projection. Due to border effects, the size of a remnant EMAPHEX could be much 
smaller. However, there is no way that an EMAPHEX could be as large as 230,000 
acres, which is what the current processing system reports the largest EMAPHEX in the 
4th unit of Texas to be. On average, a complete EMAPHEX will contain 27 plots, which 
may be too small to report on.

Ecozone and Hydrologic Unit Code are hierarchical. The smallest HUC8 within 
Unit 4 is 12040203, at 287 acres. No plot falls in this polygon, so calibration will fail. 
One solution could be combining this polygon with a neighbor and reporting the HUC6 
as 120402xx, even if HUC8 is requested. Similarly, Ecozone could be reported at only 
the section or province level for certain plots, even if subsection is requested.

Elevation is reported in EVALIDator at 1,000 foot contours. There are several 
publicly available Digital Elevation Models, and while they do not all agree, they are 
similar. However, in this case, the entire unit is in the 0‑1,000 foot interval.

There are several publicly available road layers. Distance to road is estimated by the 
field crews rather than calculated from a road layer. Also, the method should produce a 
similar answer whether public or true coordinates are used.

Results
With County, Congressional District, and Public Ownership as calibrators, the 

amount of forest increased by 7 standard deviations to 9.48 million acres, up from 
the current estimate of 8.03 million acres. The estimate of census water decreased 
nearly 4 standard deviations, from 3.16 million acres to 2.56 million acres, while 
cropland and related decreased over 3 standard deviations from 5.35 million acres to 
4.68 million acres.
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Adding New Classification Variables to Reports Via 
the Spatial Intersection Tool

Thomas A. Weber1 and Andrew Lister1

Abstract—The EVALIDator Web application is a popular program used to generate 
population estimates and their associated sampling errors from data stored in the Forest 
Inventory and Analysis Database (FIADB). EVALIDator can produce estimates for a 
wide variety of forest attributes, allowing the user to select from a predetermined list 
of classification variables to use in output tables. For example, a user may choose to 
estimate the area of forest land in Pennsylvania by forest type and ownership group, 
which are two of several available classification variable choices provided in the tool. 
However, there is interest in adding new classification variables to FIA’s table‑making 
abilities. The current project details a new tool, called the spatial intersection tool (SIT), 
that offers this capability. An example of its ability to generate tables with non‑standard 
classification variables is provided using the available water storage attribute within 
the gridded soil survey geographic database (gSSURGO) from the Natural Resources 
Conservation Service.

Project Background and Objectives
The analysis tool for inventory and monitoring (ATIM) is a module within the 

Design and Analysis Toolkit for Inventory and Monitoring (DATIM) that, similar to 
the EVALIDator, allows the user to produce estimates from data stored in the FIADB. 
However, ATIM provides users with a simple way to add new classification variables 
to an analysis through the spatial intersection tool (SIT). The SIT allows DATIM to 
intersect plot‑based data with geospatial layers by providing a link between ATIM and 
spatial data through the SIT tool add‑in for ArcMap (Esri 2017). These results are then 
stored in DATIM for analysis in ATIM.
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This paper presents a workflow for using SIT to add new classification variables 
to an analysis. In this example, we intersect data from the Pennsylvania 2010‑2015 
analysis with the gridded soil survey geographic database (gSSURGO) from the 
Natural Resources Conservation Service for the region (NRCS 2017). This dataset is 
publicly available (http://websoilsurvey.sc.egov.usda.gov), but it is also available to 
Forest Service employees via a corporate “T drive” (T:\FS\RD\Collaboration\NRSFIA_
SHARED\Hypervolume_Datasets). The gSSURGO database is one of many useful 
spatial datasets in this hypervolume_datasets folder. All of the datasets located in this 
folder have been preprocessed and standardized in a way that makes them easily acces‑
sible to analytical staff members that are not GIS or database experts.

Methods
The SIT can be downloaded from http://apps.fs.usda.gov/DATIM/ArcMapAddin.

aspx. Once installed, SIT will appear as a tool within the ArcMap toolbar. The SIT 
interface guides the user through two tasks (figure 1). The first task instructs the user 
to select an evaluation (identified by state and inventory years, in our example) from 
which a point layer will be created. The user will also select a GIS layer to define the 
geographic projection of the analysis point layer. This projection layer must be loaded 
into ArcMap before opening SIT. Once an evaluation and projection layer are selected, 
the “Create Point Layer” button is clicked and a point layer representing the plots in the 
Pennsylvania 2010‑2015 analysis is created.

Figure 1—The SIT user interface. 
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The second task intersects the analysis point layer with a spatial dataset through the 
Setup Intersection button. In this example, the plots were intersected with the avail‑
able water storage attribute within the gSSURGO dataset. After clicking the “Setup 
Intersection” button, SIT directs the user to 1) select an analysis from the dropdown 
menu (Pennsylvania 2010‑2015); 2) create a name for the new ATIM classification vari‑
able (available water storage); 3) select the GIS layer that contains the attribute that will 
become the classification variable (gSSURGO layer in this example); 4) select the point 
dataset that was created in the first task; 5) select the attribute to use as the classification 
variable (available water storage); and 6) click the “Run Intersect” button and a new 
classification variable is created and loaded into ATIM. To create a report using this 
variable, login to ATIM and the variable will be available in the page, row, and column 
dropdown menu (figure 2).

Figure 2—Classification variable created using SIT 
available within ATIM.

At the time of writing, SIT is not able to work with raster datasets. As a work around, 
we used a combination of tools within ArcMap to extract the raster values to a polygon 
layer. First, we buffered the analysis point layer using a 30‑m radius buffer, then we 
used the lookup table tool to reclassify the gSSURGO raster, and lastly we used the 
zonal statistics as a table tool to add the soils raster values to the buffered point layer. 
Another thing to note is that for an attribute to work within ATIM as a classification 
variable, it must be a categorical variable. Therefore, we classified the available water 
storage into unique classes: 0‑49.9 mm, 50‑99.9 mm, 100‑149.9 mm, 150‑199.9 mm, 
200‑249.9 mm, and > 250 mm prior to doing the intersection.
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Table 1—Area of forest land for major forest type groups by available soil water storage, Pennsylvania, 2010-2015 
(acres). 

Estimate in acres:
Available water storage (millimeters)

Forest type group 0-50 50-100 100-150 150-200 200-250 >250 Total area
Oak/hickory 350,657 3,735,371 4,392,890 51,5894 6,741 4,851 9,006,404
Maple/beech/birch 82,986 2,147,313 3,017,231 234,975 1,897 - 5,484,402
Elm/ash/cottonwood 5,171 93,450 147,382 112,711 11,253 17,942 387,910
White pine 8,988 171,621 169,117 31,704 - 1,574 383,003
Aspen/birch 60,312 113,100 106,117 42,005 - - 321,535

Sampling error percent:
Available water storage (millimeters)

Forest type group 0-50 50-100 100-150 150-200 200-250 >250 Total area
Oak/hickory 12.85% 3.41% 3.12% 10.21% 89.73% 116.75% 1.73%
Maple/beech/birch 25.51% 4.83% 3.85% 15.15% 97.40% - 2.63%
Elm/ash/cottonwood 99.88% 23.88% 19.54% 22.57% 76.32% 57.34% 11.84%
White pine 87.08% 17.78% 18.10% 45.75% - 104.53% 11.97%
Aspen/birch 31.66% 21.54% 22.39% 38.29% - - 13.00%

Results and Discussion
For this example, we created a report estimating area of forest land by forest‑

type group and available soil water storage in Pennsylvania, 2010‑2015 (table 1). 
Available water storage represents the volume of water that the soil can store and make 
available to plants. It can contribute to a species’ physiological response to drought 
(Phillips et al. 2016). For example, most oak species in the eastern United States are 
considered drought tolerant based on their high abundance on xeric sites (Hanson et al. 
2001), but many oak species demonstrate some of the highest sensitivity to drought in 
terms of reduced growth relative to other hardwoods on sites with a low water holding 
capacity (Maxwell et al. 2015; Orwig and Abrams 1997). A similar response has been 
documented for eastern white pine (Clark et al. 2011), while the opposite pattern has 
been documented for Virginia pine (Orwig and Abrams 1997). Breaking forest type out 
by available water storage helps identify how much forest area is likely to experience 
reduced physiological function during drought conditions. As this example shows, 
the SIT tool within ATIM will allow FIA analysts and other data users to expand their 
analysis capabilities by adding non‑standard classification variables from GIS data to 
FIA data analyses.
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