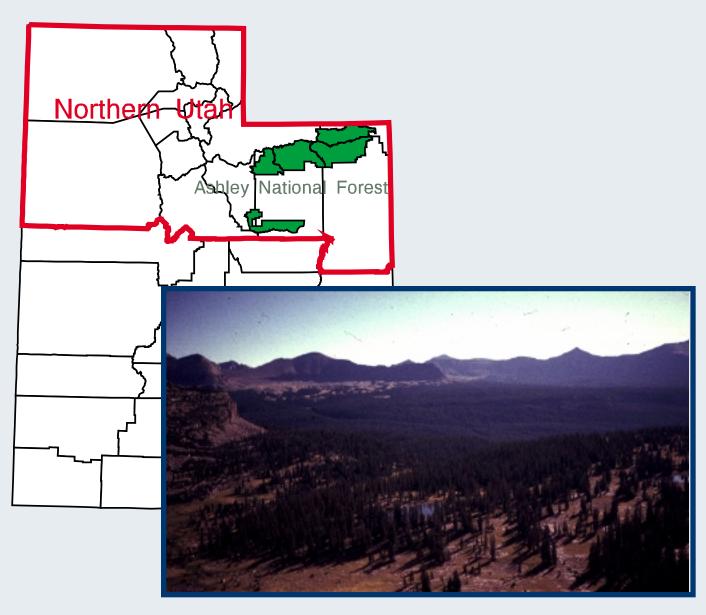


Forest Service

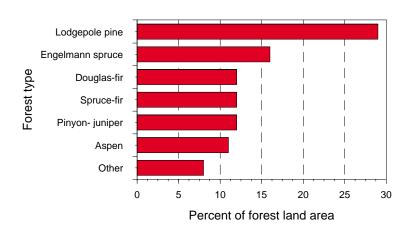

Intermountain Research Station

December 1997

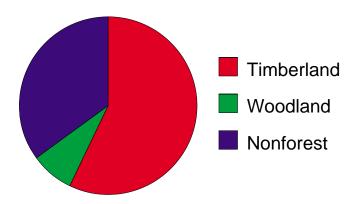
Renee A. O'Brien Ronald P. Tymcio

This summary of the forest resources of the Ashley National Forest is based on a comprehensive inventory of all forested lands in Utah. The inventory was conducted in 1995 by the Interior West Resource Inventory, Monitoring, and Evaluation (IWRIME) Program of the U.S. Forest Service, Intermountain Research Station, as part of its National Forest Inventory and Analysis (FIA) duties.

About the authors _____


Renee A. O'Brien is Lead Ecologist with the Interior West Resources Inventory and Monitoring Project.

Ronald P. Tymcio is a Computer Programmer Analyst with the Interior West Resources Inventory and Monitoring Project.


Contents	
	Page
What forest resources are found on the Ashley National Forest?	1
How does the forest change?	5
What about damage from insects?	6
Are aspen forests declining?	7
How does the Ashley compare with the rest of Utah's forests?	7
How was the inventory conducted?	
Scientific documentation	9
For further information	9

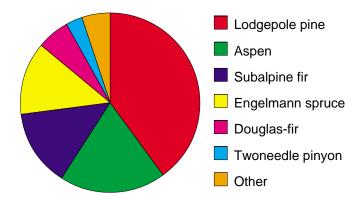
What forest resources are found on the Ashley National Forest?

The 1,372,787 acres in the Ashley National Forest encompass 887,230 acres of forest land, made up of 88 percent (779,348 acres) "timberland" and 12 percent (107,882 acres) "woodland." The other 485,557 acres of the Ashley are nonforest (fig. 1). This report discusses forest land only. In the Ashley, 21 percent of the total area and 17 percent of the forest land is in reserved status such as Wilderness or Research Natural Areas. Unless otherwise stated, lands of both reserved and nonreserved status are included in the following statistics. Field crews sampled 383 field plots on the Ashley.

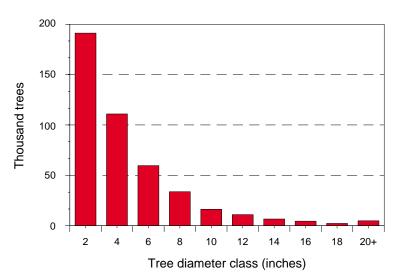
Figure 2—Percent of forest area by forest type, Ashley National Forest.

Figure 1—Area by land class, Ashley National Forest (see page 8 for definitions of timberland and woodland).

makes up 40 percent of the total number of trees; aspen 19 percent, subalpine fir 14 percent, Engelmann spruce, 13 percent, Douglas-fir, 6 percent, and twoneedle pin-yon, 3 percent (fig. 3). Ponderosa pine, white fir, Utah juniper, curlleaf mountain mahogany, blue spruce, Rocky Mountain juniper, cottonwood, Gambel oak, and limber pine contribute a total of about 5 percent. Species that are scarce may not be encountered with the sampling intensity used for this inventory.


Size distribution of individual trees indicates structural diversity. Figure 4 displays the tree size distribution on the Ashley. Another stand structure variable, stand-size class, is based on the size of trees contributing to the majority of

Forest diversity


Forest type—one indicator of forest diversity—refers to the predominant tree species in a stand, based on tree stocking. On the Ashley, the most common forest type in percentage of area is lodgepole pine with 29 percent, followed by Engelmann spruce 16 percent, Douglas-fir, spruce-fir, and pinyon-juniper, each with 12 percent, and aspen 11 percent (fig. 2). Other forest types that make up the remaining 8 percent are ponderosa pine, blue spruce, limber pine, and white fir.

The composition of the forest by individual tree species is another measure of forest diversity. Lodgepole pine

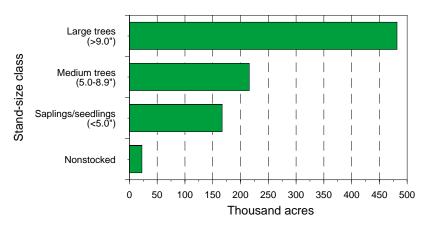
Figure 3—Percent of total number of trees by species, Ashley National Forest.

Figure 4—Number of live trees on forest land by diameter class, Ashley National Forest.

the stocking. Figure 5 gives a breakdown of forest land by stand-size classes. This figure shows that relatively few stands are composed mostly of small trees, such as stands that have been clear cut or burned.

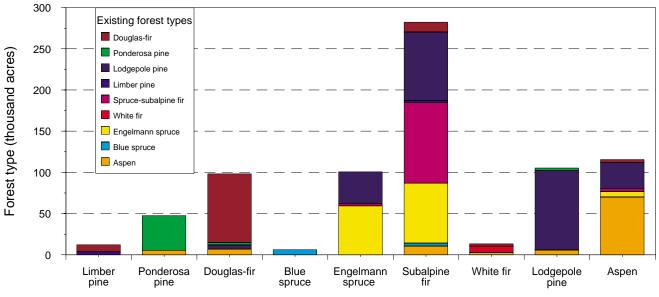
Dead trees—an important component of forest ecosystems—contribute to diversity and serve a variety of functions including wildlife habitat and nutrient sinks. There are roughly 32.5 million standing dead trees (snags) on the Ashley National Forest. This number includes both hard and soft snags of all species and diameters. Many wildlife species are dependent upon these standing dead trees. The species, size, and density of snags required vary according to the species of wildlife.

Large diameter snags are generally somewhat scarce, making them more valuable than smaller snags. Considering snags 11 inches in diameter or larger, an estimated 9.5 per acre occur on Ashley forest land. Of the large snags (19 inches in diameter or larger) only an average of one per acre occurs on the Ashley. The most abundant species of snags in the 19 inch and larger category is Engelmann spruce, followed by lodgepole pine.

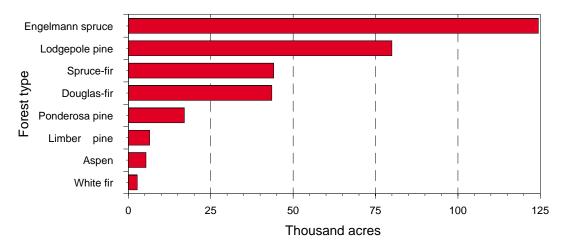

Forest successional stage

Habitat types describe lands potentially capable of producing similar plant communities at successional climax. The climax plant community, which is the theoretical end result of plant succession, reflects the integration of environmental factors that affect vegetation such as soils, cli-

mate, and landform. Habitat type classifications are named for the predominant overstory and understory plant species at the time of successional climax. In Utah, habitat type classifications have been defined for most forest types traditionally considered to be "timberland" (Mauk and Henderson 1984). However, because well-defined successional states are not known for aspen, classification schemes for aspen are called community types instead of habitat types (Mueggler 1988). Most "woodland" types also remain unclassified in Utah.


The use of potential vegetation to classify forests does not imply an abundance of climax vegetation in the current Utah landscape. In fact, most forest landscapes reflect some form of disturbance and various stages of succession. Fire is a natural disturbance that affects the successional stage of forests. Forest management activities do so as well. For the Ash-

ley National Forest, figure 6 compares existing forest types with habitat type series and gives a general indication


Figure 5—Forest land area by stand-size class, Ashley National Forest.

Habitat type series (dominant tree species at successional climax)

Figure 6—Area of forest type by habitat type series, Ashley National Forest.

Figure 7—Area of mature forest condition by forest type, Ashley National Forest.

of forest successional status. The use of classifications based on climax vegetation does not suggest that climax conditions should be a management goal. By summarizing inventory data by habitat type, a picture can be drawn of Ashley forests that theoretically will not change with disturbance or advancing succession.

How we define and assess "old growth" forest is important for many reasons. To improve communication about old growth, the Forest Service produced a report on the characteristics of old growth forests in the Intermountain Region (USDA Forest Service 1993). The physical characteristics of old growth are fairly easy to quantify, inventory, and map, but determining functionality with

any acceptable agreement or consistency is difficult. Consequently, we prefer to present inventory data using the term "mature" forest, defined as sites with stand age in excess of 100 years. For the Ashley, figure 7 shows an estimate of the area of mature forest by forest type, components of which may be candidates for the designation of old growth.

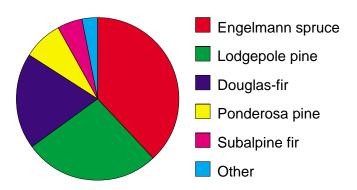
Tree biomass

Total biomass of wood in live trees on the Ashley National Forest is estimated at almost 25 million tons. Biomass estimates include boles (trunk and stem), bark,

branches, and foliage of all live trees including saplings and seedlings. Here is a breakdown of tree biomass by species:

Species	Thousand tor
Lodgepole pine	9,166
Engelmann spruce	6,390
Douglas-fir	2,901
Subalpine fir	1,496
Aspen	1,495
Ponderosa pine	1,089
Utah juniper	846
Twoneedle pinyon	836
White fir	163
Rocky Mountain juniper	103
Limber pine	103
Blue spruce	89
Curlleaf mountain mahogany	31
Other poplar	11
Gambel oak	7
Total	24,726

Wood volume


Wood produced on the Ashley National Forest is valuable. The total volume of wood in live trees is estimated to be in excess of 1.2 billion cubic feet. This includes trees 3.0 inches in diameter and larger for woodland species and 5.0 inches and larger for timber species. Here is a breakdown of cubic-foot volume by species:

Species	s Thousand cubic feet		
Lodgepole pine	447,418		
Engelmann spruce	362,033		
Douglas-fir	131,176		
Aspen	64,913		
Subalpine fir	60,725		
Twoneedle pinyon	49,137		
Ponderosa pine	49,066		
Utah juniper	37,804		
White fir	8,327		
Limber pine	4,846		
Blue Spruce	4,238		
Rocky Mountain juniper	4,013		
Other poplar	649		
Curlleaf mountain mahoga	any 591		
Gambel oak	134		
Total	1,225,069		

Almost 60 percent of this cubic foot volume is in trees 11 inches in diameter or greater. Approximately 80 percent of Engelmann spruce, and 76 percent of Douglas-fir volume are in trees larger than 11 inches in diameter. About 90 percent of aspen volume and 57 percent of lodgepole pine volume are in trees less than 11 inches in diameter.

The volume of sawtimber trees on timberland not reserved from timber harvest is estimated to be 2.4 billion

board feet (Scribner rule). Engelmann spruce, lodgepole pine, and Douglas-fir account for 83 percent of the total sawtimber volume. Figure 8 shows percent distribution of sawtimber on nonreserved timberland by species.

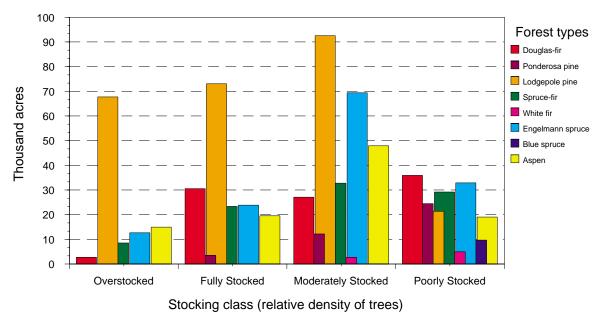
Figure 8—Percent of sawtimber volume on nonreserved timberland by species, Ashley National Forest.

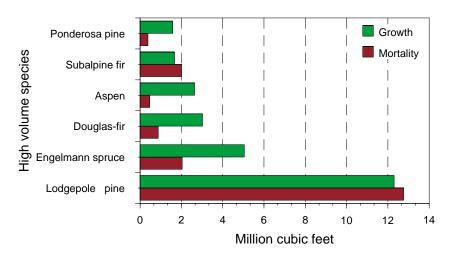
How does the forest change?

Many factors influence the rate at which trees grow and thrive, or die. One of those factors is the stocking (relative density) of trees. Overstocking causes tree growth to slow, which makes trees more susceptible to insect attack. About 106,477 acres or 14 percent of all timberland on the Ashley is overstocked (fig. 9). This includes 67,701 acres of lodgepole pine forest type, which is about 27 percent of the lodgepole pine on the Forest. Fully stocked stands may also be susceptible to insects and disease because of decreasing tree vigor. Approximately 173,768 acres, or 22 percent of the timberland, is estimated to be fully stocked.

Another measure of forest vigor is net growth. Net growth is the difference between gross growth and losses due to mortality (fig. 10). Net annual growth on all forest land of the Ashley is estimated to be 8.6 million cubic feet. Figure 10 shows that the ratio of mortality to gross growth is greater in some species than others. For example, both lodgepole pine and subalpine fir have a negative net growth. More than twice as much volume was lost to mortality as was gained from tree growth.

Field crews estimate whether trees have died in the last 5 years. This estimate is used to calculate annual mortality. In 1992, trees containing an estimated 18.7 million cubic feet of wood died in this forest. Almost 70 percent of the mortality was estimated to be caused by insects. Weather was estimated to be the cause of another 13 percent. About 68 percent of the mortality occurred in just one species, lodgepole pine.




Figure 9—Area of stocking class by predominant forest type, Ashley National Forest.

What about damage from insects?

Hazard ratings for risk of attack by four bark beetle species—Douglas-fir beetle, mountain pine beetle, western pine beetle, and spruce beetle—were adapted for use in Utah forests from Steele and others (1996) and applied to the inventory data. Plots in spruce, spruce-fir, lodgepole pine, Douglas-fir, and ponderosa pine forest types were assigned classes of hazard ratings, and estimates of the area at high, moderate, or low risk of attack by bark beetles were calculated for Utah forests. The area of each forest type in each insect attack risk category on

the Ashley is presented in table 1. Stands in the spruce and spruce-fir forest types were evaluated for hazard of attack on spruce by bark beetle if there was at least one spruce tree 10 inches in diameter or larger present. Stands in the lodgepole type were evaluated if at least one lodgepole pine tree 5 inches in diameter or larger was present. Stands in the Douglas-fir type needed at least one Douglas-fir tree 9 inches diameter or larger. The table also includes the acreage of each forest type where 80 percent of the trees are already dead (and consequently now at low risk of attack) and the area of each type that was not evaluated because the trees in the stands did not meet the minimum size criterion.

Of the spruce/spruce-fir complex, 56 percent is at moderate to high risk of attack by bark beetles. Also, 72 percent of the lodgepole, 74 percent of the Douglas-fir, and 83 percent of the ponderosa pine type are at moderate to high risk. Moderate to high risk conditions indicate the possibility of bark beetle population increases, which can in turn cause significant tree mortality and changes in stand structure over a short time. For forest managers, these changes could greatly affect objectives related to fire, recreation, wildlife habitat, threatened and endangered species, and water quality and quantity.

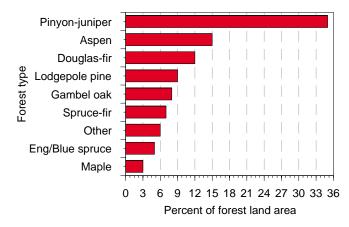
Figure 10—Gross annual growth compared to mortality, Ashley National Forest.

Table 1—Area at risk of attack by bark beetles by forest type and risk category, Ashley National Forest.

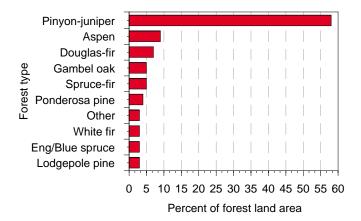
	Risk rating category							
Forest type	Low	Moderate	High	80 percent dead	Not evaluated	Total		
	Acres							
Spruce	61,662	128,550	12,592	11,306	37,863	251,974		
Lodgepole	31,732	171,155	11,457	30,914	9,319	254,578		
Douglas-fir	15,801	31,468	49,180	3,069	9,635	109,152		
Ponderosa pine	8,005	13,688	26,457	· <u> </u>	-	48,151		

Are aspen forests declining?

Stands of aspen—an important forest type throughout much of the Western United States—provide critical habitat for many wildlife species, forage for livestock and wildlife, and protection and increased streamflow in critical watersheds. Aspen stands have great aesthetic value and enhance the diversity of the conifer-dominated forests of Utah. Information from various sources indicates that aspen is declining in much of its range (Bartos 1995; USDA Forest Service 1996).


Aspen forests are unique because they reproduce primarily by suckering from the parent root system. Often a disturbance or dieback is necessary to stimulate regeneration of the stands. Because these self-regenerating stands have existed for thousands of years, even minor amounts of aspen in stands probably indicate that a site was previously dominated by aspen. Based on this assumption, an estimated 322,532 acres on the Ashley National Forest were at one point aspen forest type. By comparison, only about 101,358 acres (31 percent) currently have the required aspen stocking to be considered aspen forest type. These acreage comparisons support the hypothesis that aspen dominance in Utah forests is decreasing.

How does the Ashley compare with the rest of Utah's forests?

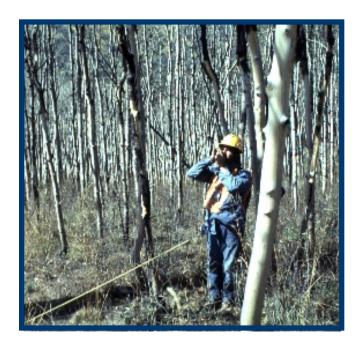

Reports summarizing the inventory data for northern Utah have been prepared by O'Brien (1996) and Brown and O'Brien (1997). A Utah State report is also currently being prepared (O'Brien, in preparation). These researchers found that an estimated 29 percent of all Utah, and 25 percent of northern Utah, is forest land. The most common forest type in northern Utah (fig. 11) and the entire State (fig. 12) is pinyon-juniper, followed by aspen.

Comparing figures 11 and 12 to figure 2, the reader will see how the overall breakdown of the Ashley in terms of forest type differs from northern Utah and the rest of the State. For example, lodgepole pine is the most common forest type on the Ashley, and the Engelmann spruce forest type is second.


Another report on the condition of Utah forests is being prepared by the Intermountain Station's Interior West Resource Inventory, Monitoring, and Evaluation Program, in conjunction with the Intermountain Region's Forest Health Protection staff (LaMadeleine and O'Brien, in preparation). That report for the entire State will include estimates of area and volume that are impacted by mistletoe and root disease, and the number of acres at risk of attack by bark beetles.

Figure 11—Percent of forest land area by forest type, northern Utah.

Figure 12—Percent of forest land by forest type, entire Utah State total.


How was the inventory conducted?

In 1995, the Interior West Resource Inventory, Monitoring, and Evaluation Program of the U.S. Forest Service, Intermountain Research Station, as part of its national Forest Inventory and Analysis duties, completed a comprehensive forest resource inventory of all forested lands in Utah. Our inventories provide a statistical-based sample of forest resources across all ownerships that can be used for planning and analyses at local, State, regional, and national levels. We have not traditionally conducted inventories on National Forest lands in the West, but in Utah, a cooperative agreement and funding from the Forest Service Intermountain Region made possible an expanded inventory that included National Forest System lands.

In the past, we collected inventory data only for tree species normally favored for commercial timber harvest—"timber species" such as ponderosa pine, lodgepole pine, and Douglas-fir. Since the early 1980's, we have expanded our inventory to include other tree species such as pinyon, juniper, and oak, collectively known as "woodland species." In Utah, a location was classified as timberland if there existed a minimum of 5 percent crown cover of timber species. For current and future reporting, the more ecological and all-encompassing term "forest land" is preferred instead of timberland and woodland. However, some mensuration and silvicultural definitions and techniques that were developed for timberland species are not yet available for woodland species. Therefore, the separate terms are used occasionally in this report.

We use a two-phase sampling procedure for State inventories. The first, or photo interpretive, phase is based on a grid of sample points systematically located every 1,000 meters across all lands in the State. Forestry technicians used maps and aerial photos to obtain ownership and stratification for field sampling. Field crews, made up of forestry technicians, biologists, botanists, and some college students, conducted the second, or field, phase of the inventory on a subsample of the phase one points that occurred on forest land. For this inventory, we defined forest land as land with at least 10 percent stocking (or 5 percent cover) of trees; or lands currently nonstocked but formerly having such stocking, where human activity does not preclude natural succession to forest. All conifers of any size except pinyon, juniper, and yew automatically qualify as trees, as do aspen, cottonwood, and paper birch. Other species such as pinyon, juniper, maple, mountain mahogany, and oak were classified as either trees or shrubs, depending on whether they have the capacity to produce at least one stem 3 inches or larger in diameter at root collar, and 8 feet or more in length to a minimum branch diameter of 1.5 inches. The sampling intensity on lands outside the National Forest was one field plot every 5,000 meters, or about every 3 miles. The sampling intensity on National Forest System lands was double that of outside lands.

Our sample was designed to meet national standards for precision in State and regional estimates of forest attributes. Standard errors, which denote the precision of an estimate, are usually higher for smaller subsets of the data, such as National Forest summaries. Standard errors were computed for each National Forest and are available upon request (see the "For further information" section on the following page).

Scientific documentation

- Bartos, Dale. 1995. Aspen problem definition. Unpublished paper on file at Logan, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Forestry Sciences Laboratory.
- Brown, Mark; O'Brien, Renee A. 1997. Forest resources of northern Utah. Resour. Bull. INT-RB-91. Ogden,
 UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Forestry Sciences Laboratory. 53 p.
- LaMadeleine, Leon; O'Brien, Renee A. [In preparation]. Condition of Utah's forests. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Forestry Sciences Laboratory. (Publication available in 1998.)
- Mauk, Ronald L.; Henderson, Jan A. 1984. Coniferous forest habitat types of northern Utah. Gen. Tech. Rep. INT-170. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 89 p.
- Mueggler, Walter F. 1988. Aspen community types of the Intermountain Region. Gen. Tech. Rep. INT-250. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 135 p.

- O'Brien, Renee A. [In preparation]. Forest resources of Utah. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station.
- O'Brien, Renee A. 1996. Forest resources of northern Utah ecoregions. Resour. Bull. INT-RB-87. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 34 p.
- Steele, Robert; Williams, Ralph E.; Weatherby, Julie C.;
 Reinhardt, Elizabeth D.; Hoffman, James T.; Thier,
 R. W. 1996. Stand hazard rating for central Idaho forests. Gen. Tech. Rep. INT-GTR-332. Ogden, UT: U.S.
 Department of Agriculture, Forest Service, Intermountain Research Station. 29 p.
- U.S. Department of Agriculture, Forest Service. 1993. Characteristics of old-growth forests in the Intermountain Region. In: Hamilton, Ronald C., comp. Unpublished report on file at Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region.
- U.S. Department of Agriculture, Forest Service. 1996. Properly functioning condition. Draft report on file at Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Region.

For further information

Interior West Resources, Inventory, Monitoring, and Evaluation Program c/o Program Manager 507 25th Street, Ogden, UT 84401

Phone: 801-625-5388 FAX: 801-625-5723

Ashley National Forest c/o Forest Supervisor 355 North Vernal Ave. Vernal, UT 84078 Phone: 435-789-1181 FAX: 435-781-5142

The information presented here is just a small part of a national data base that houses information for much of the forest land in the United States. This data base can be accessed on the Internet at the following web site:

http://www.srsfia.usfs.mmstate.edu/scripts/ew.htm

The Intermountain Research Station provides scientific knowledge and technology to improve management, protection, and use of the forests and rangelands of the Intermountain West. Research is designed to meet the needs of National Forest managers, Federal and State agencies, industry, academic institutions, public and private organizations, and individuals. Results of research are made available through publications, symposia, workshops, training sessions, and personal contacts.

The Intermountain Research Station territory includes Montana, Idaho, Utah, Nevada, and western Wyoming. Eighty-five percent of the lands in the Station area, about 231 million acres, are classified as forest or rangeland. They include grasslands, deserts, shrublands, alpine areas, and forests. They provide fiber for forest industries, minerals and fossil fuels for energy and industrial development, water for domestic and industrial consumption, forage for livestock and wildlife, and recreation opportunities for millions of visitors.

Several Station units conduct research in additional western States, or have missions that are national or international in scope.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call 1-800-245-6340 (voice) or 202-720-1127 (TDD). USDA is an equal employment opportunity employer.