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The convolution of an input with a response function has been widely used in hydrology as a means to
solve various problems analytically. Due to the high computation demand in solving the functions using
numerical integration, it is often advantageous to use the discrete convolution instead of the integration
of the continuous functions. This approach greatly reduces the amount of the computational work; how-
ever, it increases the possibility for mass balance errors. In this study, we analyzed the characteristics of
the kernel function for the Hayami convolution solution to the linear diffusion-wave channel routing
with distributed lateral inflow. We propose two ways of selection of the discrete kernel function values:
using the exact point values or using the center-averaged values. Through a hypothetical example and the
applications to Asotin Creek, WA and the Clearwater River, ID, we showed that when the point kernel
function values were used in the discrete Hayami convolution (DHC) solution, the mass balance error
of channel routing is dependent on the number of time steps on the rising limb of the Hayami kernel
function. The mass balance error is negligible when there are more than 1.8 time steps on the rising limb
of the kernel function. The fewer time steps on the rising limb, the greater risk of high mass balance
errors. When the average kernel function values are used for the DHC solution, however, the mass
balance is always maintained, since the integration of the discrete kernel function is always unity.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In a stream network, the discharge from a given reach depends
on the upstream inflow, the storage within the reach, and any gains
from, or losses to, lateral flow. Storage is dependent on the micro
topography of the valley along the reach. Lateral flow may origi-
nate from the interflow through shallow surface layers (Watson
and Burnett, 1995), e.g., in steep forests (Dun et al., 2009), or
through surface and groundwater interactions. Whether the lateral
flow is positive or negative will depend on the relative hydraulic
gradient between the channel stage and the adjacent water table.
Open-channel flow is typically simplified as one-dimensional
flow processes described by the Saint–Venant equations, which
consist of the continuity equation and the momentum equation
(Chow et al., 1988; Singh et al., 1997). There are three methods
based on the simplifications to the momentum equation: the dy-
namic-wave method that considers all the terms in the momentum
equation, the diffusion-wave method that neglects the acceleration
terms, and the kinematic-wave method that neglects both the
acceleration and pressure force terms (Chow et al., 1988; Singh
et al., 1997). Among these three methods, the diffusion-wave
method is widely used because it is easier to implement compared
to the dynamic-wave method, yet still gives sufficiently accurate
results (Moussa, 1996; Moussa and Bocquillon, 1996; Singh et al.,
1997; Wang et al., 2003; Fan and Li, 2006; Moramarco et al., 2008).

Combined with the Manning’s equation or the Chezy’s equation,
the diffusion-wave equations can be simplified to one single equa-
tion (Moussa, 1996; Fan and Li, 2006). With the assumption of con-
stant wave celerity and diffusion coefficient, this equation has been
solved analytically to give the convolution solution (Hayami, 1951;
Ogata and Banks, 1961; Moussa, 1996; Fan and Li, 2006). For
simplified diffusion-wave channel routing without lateral inflow,
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Fig. 1. Comparison of discrete convolution method and the constant-parameter Muskingum–Cunge (CPMC) method for a time step of 600 s. Note that simulated outflows
from the discrete Hayami solution and the CPMC method largely overlap, and therefore only the differences between the two methods are shown.

Fig. 2. Discrete Hayami convolution solutions using point kernel function values for
different sizes of time step. The solutions for 600-s and 60-s time steps largely
overlap. For the time step of 3600 s, the calculated peak discharge is 1.7% lower
than the theoretical value.

Fig. 3. Discrete Hayami kernel functions with point values for different sizes of time
step.

Fig. 4. Discrete Hayami convolution solution using average kernel function values.
The calculated peak discharge is not affected by the size of time step. The solutions
for the 60-s and 600-s time steps largely overlap, and the calculated peak discharge
is the same for all three time steps.

Fig. 5. Discrete Hayami kernel function from using average values for different
sizes of time step.
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we can obtain the analytical convolution equation and solve it ana-
lytically or by numerical integration techniques. Assuming no lat-
eral inflow, Hayami (1951) solved the linear diffusion-wave model
using perturbation theory, and obtained the analytical solution in
terms of water depth in convolution form. He also found that, for
the linear diffusion wave, the unit-graph method could be used
to approximate the analytical solution for appropriate time step
sizes. Tingsanchali and Manandhar (1985) developed the convolu-
tion solution for diffusion-wave channel routing considering
lateral inflow and backwater effect. Through a Laplace transform,
Moussa (1996) obtained the convolution solution for the linear
diffusion-wave model taking into consideration of distributed
lateral inflow with a steady-state initial condition. Fan and Li
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(2006) further extended the solution for linear diffusion-wave
channel routing with distributed or concentrated lateral inflow,
and analyzed outflow change as affected by different boundary
conditions.

The method of convolving an input with a kernel function has
been applied to various arenas in hydrology to obtain the analytical
solution of the output. Dooge (1959) convoluted rainfall data with
the instantaneous unit hydrograph to calculate the rainfall re-
sponse at an outlet of a channel or watershed. Barlow et al.
(2000) and Hantush (2005) applied the convolution solution to
one-dimensional surface water-groundwater interactions, consid-
ering the effects of channel inflow, lateral inflow, groundwater re-
charge, and hydraulic gradients between surface and groundwater.
Olsthoorn (2008) presented case applications of the convolution
method to analysis of fluctuations of groundwater level as affected
by local and remote recharges, and drawdown calculation of
pumping tests. McGuire et al. (2005) applied the convolution
Fig. 6. Comparison of discrete Hayami kernel functions using point- or average
values (a), and the effect of the size of time step (b) and the number of time steps (c)
on the integration error.
method to examining tracer movement to estimate water resi-
dence times within a watershed. Ogata and Banks (1961) solved
the diffusion-wave equation (in the same form as for channel flow)
for mass transport in groundwater flow, and obtained the convolu-
tion solution.

The major advantages of the analytical solutions over numerical
methods in channel-flow routing are that the former are usually
unconditionally stable and computationally more efficient (Hay-
ami, 1951; Chaudhry, 1993, p. 370; Moussa, 1996; Fan and Li,
2006). However, analytical solutions can only be obtained for lim-
ited, special cases. For a simplified case with a constant inflow at
the upper boundary and homogenous initial condition, Ogata and
Banks (1961) found that the convolution solution can be expressed
in terms of error functions, which have tabulated values and can be
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readily solved using computer programs. When the lateral inflow is
a significant component of the channel inflow, the wave celerity
and diffusion coefficient can no longer be considered constant for
the entire channel reach. Moussa and Bocquillon (1996) suggested
the use of numerical methods in such cases. In general, we need to
solve the convolution equations by numerical integration, which is
time-consuming and limits the applications of the analytical solu-
tion (Munier et al., 2008). To obtain the analytical solution effi-
ciently when the inflows are at a constant temporal interval, we
can apply discrete methods to approximate the continuous convo-
lution solution (Chow et al., 1988, p. 204; Long, 2009) or use the
simplified transfer function approach which ensures the mass bal-
ance closure and takes into account the acceleration terms and the
backwater effects (Munier et al., 2008).

In a discrete method, the input is given as a series of data values
at a specified temporal interval, and the solution is obtained at the
same temporal coordinates as the input. Discrete methods have
been widely used in hydrology, such as in the unit hydrograph
method (Dooge, 1959; Chow et al., 1988), the discrete cascade mod-
els based on the Muskingum reservoir method (O’Connor, 1976;
Perumal, 1994; Camacho and Lees, 1999; Perumal et al., 2007),
the discrete convolution methods for estimating surface water–
groundwater interactions (Barlow et al., 2000; Hantush et al.,
2002; Hantush, 2005), and the discrete convolution method for dif-
fusion-wave channel routing (Tingsanchali and Manandhar, 1985).

In all aforementioned discrete methods, the response function
should sum to unity for mass balance. Chow et al. (1988, p. 218)
suggested to scale up or down the corresponding response function
values if their summation does not meet this criterion. This remedy
is easy to implement but it may shift the kernel function curve.
Hence, this approach is not recommended when the accuracy of
peak time is important for a specific study. The cause of the
mass-balance error is due to the coarse temporal resolution. In or-
der to achieve more accurate results of the discrete convolution
solution, Barlow et al. (2000) proposed to use smaller time steps.
In most applications, the time step in the observation data is fixed,
and it would be important to know whether the given temporal
interval is sufficiently fine. It may be feasible to determine the ade-
quate time-step size with an acceptable mass-balance error by
comparing simulation results from different time-step sizes for
small watersheds with a few channel reaches. However, in large
watershed modeling there may be hundreds or thousands of chan-
nel reaches. The computing cost for determining an appropriate
time step could become very high.

The objective of this study was to investigate the characteristics
of the Hayami kernel function to (i) develop criteria for adequate
temporal resolutions, and (ii) identify the appropriate discrete
Fig. 8. Observed and simulated hydrographs for Asotin Creek, WA, in response to
the rainfall and snowmelt events during December 1–16, 2007.
Hayami method for accurate channel routing. Based on the chan-
nel-flow solution by Moussa (1996), we analyzed the Hayami ker-
nel function and demonstrated our analysis in a numerical
experiment and applied it to two streams in Northwestern USA.
The major sections include: Introduction, Diffusion-wave model
with lateral inflow, A numerical experiment, Applications, and
Summary and Conclusions.

2. Diffusion-wave model with lateral inflow

2.1. General solution

When the friction slope of the water surface is much smaller
than the channel bed slope, the linear convection–diffusion
Fig. 9. Comparison of discrete Hayami kernel functions using point- or average
values (a), and the effect of the size of time step (b) and the number of time steps (c)
on the integration error in the discrete Hayami kernel function for channel flow
routing, Asotin Creek, WA, December 1–16, 2007.
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equation with uniformly distributed lateral inflow can be simpli-
fied as (Lighthill and Whitham, 1955; Moussa, 1996; Fan and Li,
2006)

@Q
@t
þ C

@Q
@x
� D

@2Q
@x2 ¼ Cq ð1Þ

where x is the downstream distance (m), t, time (s), Q, discharge
(m3 s�1), q, lateral inflow rate per unit length (m2 s�1), C ¼ dQ

dA, wave

celerity (m s�1), D ¼ Q
2BSf
� Q

2BS0
, diffusive coefficient (m2 s�1), A,

cross-sectional area (m2), B, channel width at the water surface
(m), Sf, friction slope, and S0, channel bed slope. The calculations
of C and D are dependent on the type of the channel cross section
and the selection of the reference discharge (Chow et al., 1988;
Ponce and Chaganti, 1994).
Fig. 10. Differences in simulated discharges between the Hayami discrete convo-
lution methods with point- or average kernel function values and the constant-
parameter Muskingum–Cunge (CPMC) method, Asotin Creek, WA, December 1–16,
2007.

Fig. 11. Simulated channel water storage by different methods, Asotin Creek, WA, Decem
with average kernel function values and using the constant-parameter Muskingum–Cun

Table 1
USGS gauging stations on Clearwater River near Peck and Spalding, ID.

USGS station River Location

13341050a Clearwater Near Peck, ID
13342500b Clearwater At Spalding, ID
13341570 Potlatch Below Little Potlatch Cr. near Spalding, ID

a Inflow station.
b Outflow station.
For channel flow with steady-state initial conditions, the Hay-
ami solution is (Moussa, 1996)

Qðx; tÞ ¼ Qðx;0Þ þUðtÞ þ ½Qð0; tÞ � Qð0;0Þ �UðtÞ� � KðtÞ ð2Þ

where � is the convolution sign, and K(t) is the Hayami kernel func-
tion defined as

KðtÞ ¼ x

2
ffiffiffiffiffiffiffiffiffiffiffi
pDt3

p e�
ðx�CtÞ2

4Dt ð3Þ

and U(t) is a term related to the wave celerity and the lateral inflow

UðtÞ ¼ C
Z t

0
½qðsÞ � qð0Þ�ds ð4Þ
2.2. Discrete Hayami convolution solution with exact point kernel
function values (DHC-PKF)

2.2.1. Expression of the exact point kernel function
When the channel inflow at the upper boundary is in a discrete

form, Eq. (2) for the outlet can be written as

Qn ¼ Q 0 þUn þ Dt
Xn�1

j¼0

Qj
u � Q0

u �Uj
h i

Kn�j ð5Þ

where Dt is the time step, n is the numbers of time steps, Qn and Q0

are the channel flow rate at the outlet at time tn = nDt and time 0,
respectively, Un and Uj are the discrete form of U(t) at time nDt
and jDt, respectively, Qj

u and Q0
u are the channel inflow at the upper

boundary at time jDt and 0, respectively, and, Kj is the discrete ker-
nel function value at time step j

Kj ¼ x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pDðjDtÞ3

q e�
ðx�CjDtÞ2

4DjDt ; j ¼ 1;2;3; . . . ð6Þ

The term K0 is omitted because its value is always zero.
ber 1–16, 2007. Note that the simulated storages using the discrete Hayami solution
ge method largely overlap, thus only the former is shown.

River mile (River km) Drainage Area mi2 (km2) Elevation (m)

37.4 (60.2) 7976 (20,660) 930
11.6 (18.7) 9283 (24,040) 770

2.0 (3.2) 583 (1510) 845



Fig. 12. Observed hydrographs at the three gauging stations on Clearwater River and its tributary Potlatch River. Note different discharge scales used.

Fig. 13. Comparison of discrete Hayami kernel functions using point- or average
values (a), and the effect of the size of time step (b) and the number of time steps (c)
on the integration error in the discrete Hayami kernel function for channel flow
routing, Potlatch River, ID, February 8–10, 2009.
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Eq. (5) is the DHC-PKF values Kj (j = 1,2,3, . . .). The accuracy of
the discrete convolution results depends on the time step size Dt
and can be improved by decreasing Dt (Barlow et al., 2000). As
the original kernel function is continuous and its integration is 1,
the summation of its discrete form should also be unity for other-
wise mass balance would not be maintained. However, when the
time step becomes too large, there may be only a few discrete
points left on the rising curve of the kernel function, causing the
discrete integration of Kj to be larger or smaller than unity and thus
an error in mass balance. Knowing the expression of the discrete
kernel function, it is possible to define a maximum time step that
ensures sufficient accuracy.

2.2.2. Determination of maximum time step
To determine a maximum time step, we first calculate the max-

imum K value, and estimate the time for K to rise from a small va-
lue, e.g., 0.1% of the maximum, to the maximum value.

From Eq. (3), we have

K 0ðtÞ ¼ � 3
2

x

2
ffiffiffiffiffiffiffiffiffiffiffi
pDt5

p e�
ðx�CtÞ2

4Dt þ x

2
ffiffiffiffiffiffiffiffiffiffiffi
pDt3

p e�
ðx�CtÞ2

4Dt
Cðx� CtÞ

2Dt
þ ðx� CtÞ2

4Dt2

" #

¼ x

2
ffiffiffiffiffiffiffiffiffiffiffi
pDt5

p �3
2
þ x2 � C2t2

4Dt

 !
e�
ðx�CtÞ2

4Dt ð7Þ

Letting K0(t) = 0, and neglecting the negative solution, we obtain

tkm ¼
3D

C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Cx

3D

� �2
s

� 1

2
4

3
5 ð8Þ

where tkm is the time when K reaches its maximum value Kmax.
If the dynamics is dominated by diffusion (Cx� D; or

Pe ¼ Cx
2D� 1), tkm ¼ x2

6D, whereas if convection dominates (Pe � 1),
tkm ¼ x

C.
Letting K(t) = 0.001Kmax and using Newton’s method, we can ob-

tain tl, the time when K reaches 0.1% of Kmax on the rising limb. The
maximum time step for channel routing using Eq. (5) can then be
estimated as

Dtmax ¼
tkm � tl

N
ð9Þ

where N is the number of time steps on the rising limb and can be
varied to attain the desired resolution.

Higdon (2002) obtained satisfactory results with a discrete spa-
tial interval close to the standard deviation of the Gaussian kernel
function (N P 3). The principle of discrete convolution in a space
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domain is the same as in a time domain. For a greater accuracy,
Merkel (2002) suggested the use of 10 time steps to assure an ade-
quate resolution of the rising limb of a hydrograph.

2.3. Discrete Hayami convolution solution with average kernel
function values (DHC-AKF)

In the unit-step response method, the average of Kj is calculated
from time t to t + Dt (Dooge, 1959; Chow et al., 1988, p. 207;
Fig. 14. Observed inflow and simulated outflow for the Potlatch River (with the
assumption of no lateral inflow), February 8–10, 2009. The results from the discrete
Hayami solution using the average kernel function values and the CPMC method
largely overlap.

Fig. 15. Differences in discharges between the discrete Hayami convolution
solution and the CPMC method, Potlatch River, ID, February 8–10, 2009.

Fig. 16. Simulated channel storage using different methods, Potlatch River, ID, February 8
the average kernel function values and the CPMC method largely overlap.
Hantush et al., 2002; Hantush, 2005). As a replacement of the exact
point kernel function value Kj, the center average of Kj around a
discrete point j can be calculated using the following equation

Kj ¼ 1
Dt

Z tjþ1=2

tj�1=2
KðsÞds

¼ 1
Dt

Z tjþ1=2

0
KðsÞds�

Z tj�1=2

0
KðsÞds

" #
for j ¼ 1;2; . . . ;n

¼ 1
Dt

S tjþ1=2
� �

� S tj�1=2
� �� �

and

K0 ¼ 2
Dt

S t1=2� �
for j ¼ 0

ð10Þ

where j is the time step number, tj is the time (s) at step j, and S(t) is
the storage function (Dooge, 1959; Fan and Li, 2006), which is the
same as the unit-step response function (Chow et al., 1988, p.
205) and is given by (Ogata and Banks, 1961; Fan and Li, 2006)

SðtÞ ¼
Z t

0
KðsÞds ¼ 1

2
erfc

x� Ct

2
ffiffiffiffiffiffi
Dt
p

� �
þ e

Cx
D erfc

xþ Ct

2
ffiffiffiffiffiffi
Dt
p

� �	 

ð11Þ

Substituting Kj for Kj in Eq. (5), we have

Qn ¼ Q 0 þUn þ
Xn�1

j¼0

Qj
u � Q0

u �Uj
� �

S tn�jþ1=2
� �

� S tn�j�1=2
� �� �

þ Q n
u � Q 0

u �Un
� �

S t1=2� �
ð12Þ

Eq. (12) is the discrete convolution solution to Eq. (1) using the
AKF values Kj (j = 0,1,2,3, . . .). Note the difference between the AKF
and the PKF at time zero: the value of the former at time zero, K0,
may not be zero. The use of the AKF preserves mass balance better
since the storage function approaches unity for sufficiently large
time (Fan and Li, 2006). This can be seen from the integration of
the Hayami kernel function as time approaches infinity:

lim
t!1

SðtÞ ¼ lim
t!1

1
2

erfc
x� Ct

2
ffiffiffiffiffiffi
Dt
p

� �
þ e

Cx
D erfc

xþ Ct

2
ffiffiffiffiffiffi
Dt
p

� �	 

 �

¼ lim
t!1

1
2

2þ e
Cx
D � 0

h i
 �
¼ 1 ð13Þ

When the discrete convolution solution is used to calculate the
discharge, the time step in the kernel function must be the same as
in the input discharge. If the time step is smaller than Dtmax in Eq.
(9), Eqs. (5) and (6) can be used to calculate channel flow.
–10, 2009. Note that the simulated storages from the discrete Hayami solution using
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Otherwise, we either interpolate the known discharges (Merkel,
2002) or use Eqs. (11) and (12) to calculate channel flow, to assure
mass balance and adequate accuracy.

2.4. Integration error of the discrete kernel function

For a constant inflow with homogenous initial condition
and with no lateral inflow within the stream reach, the relative
mass balance error of outflow resulting from the discrete kernel
function is the same as the integration error of the discrete kernel
function

DM ¼ 1� Dt
X1
j¼1

Kj�1 þ Kj

2

 !
	 100%

¼ 1� Dt
X1
j¼1

Kj�1

2
þ
X1
j¼1

Kj

2

 !" #
	 100%

¼ 1� Dt
K0

2
þ
X1
j¼1

Kj

2
þ
X1
j¼1

Kj

2

 !" #
	 100%

¼ 1� Dt
K0

2
þ
X1
j¼1

Kj

 !" #
	 100% ð14Þ

For channel routing with lateral inflow or when channel inflow
at the upper boundary varies with time, the total mass balance er-

ror for the simulated outflow will be DM 	 Dt
Pn�1

j¼0 Q j
u � Q 0

u �Uj
� �

.

2.5. Channel water storage

To track the channel water balance, we first calculate the initial
cross-section area for the steady-state channel inflow and outflow
using Manning’s equation, and estimate the initial channel water
storage (S0, m3) by multiplying the average cross-section area by
the channel length. The storage Sj (m3) at time tj is calculated by
(Todini, 2007)

Sj ¼ Sj�1 þ Vin � Vout

¼ Sj�1 þ Qj
u þ Qj�1

u

2
þ qj þ qj�1

2
x

 !
Dt � Q j þ Q j�1

2

 !
Dt;

j ¼ 1;2;3; . . . ð15Þ
Fig. 17. Comparison of discrete Hayami kernel functions with point- or average
values (a), and the effect of the size of time step (b) and the number of time steps (c)
on the integration error in the discrete Hayami kernel function for channel flow
routing, upper reach, Clearwater River, ID, February 8–10, 2009.
3. A numerical experiment

For a numerical experiment, we assume a rectangular channel
with width B = 50 m, length L = 30,000 m, Manning’s roughness
n = 0.035, bed slope S0 = 0.002, and the following initial and bound-
ary conditions

At t = 0,

Qðx;0Þ ¼ 0; x P 0 ð16Þ

At x = 0,

Qð0; tÞ ¼ 0; 0 < t < 3600
Qð0; tÞ ¼ 80	 t�3600

3600 ; 3600 6 t < 7200
Qð0; tÞ ¼ 80; 7200 6 t 6 72;000
Qð0; tÞ ¼ 80	 75;600�t

3600 ; 72;000 < t < 75;600
Qð0; tÞ ¼ 0; 75;600 6 t

9>>>>>>=
>>>>>>;

ð17Þ

where t is in s, x in m, and Q in m3 s�1.
With the assumed channel characterization and discharge, the

wave celerity C can be estimated by C ¼ 1þ 2B
3ðBþ2yÞ

� �
Q
By, in which
y is the depth of water and can be calculated from Manning’s
equation using Newton’s method (Chow et al., 1988). The
calculated C is 2.25 m s�1, and the diffusive coefficient D is
400 m2 s�1.
3.1. Comparison of discrete convolution solutions with Muskingum–
Cunge solution

Fig. 1 shows the results from the discrete convolution solutions
and the constant-parameter Muskingum–Cunge (CPMC) method
(Ponce and Chaganti, 1994) for a time step of 600 s. Both discrete
convolution solutions, with PKF or AKF values, compare well with
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the CPMC solution. The differences (maximum 0.5%) occur only
along the rising and falling limbs (Fig. 1).

3.2. Discrete convolution solution with PKF and AKF values

When the time step is small, the DHC-PKF method gives satis-
factory results (Fig. 2). For the hypothetical case described by
Eqs. (16) and (17), the difference between the results with a time
step of 600 s or 60 s is negligible. The respective N values are 8
and 80, with the rising limb of the kernel function starting at
t = 12,425 s and reaching the maximum at t = 17,200 s (Fig. 3).
For the time step of 3600 s, however, the calculated peak discharge
is 78.7 m3 s�1, 1.7% lower than the theoretical value of 80.0 m3 s�1.
This error is caused by the inadequate resolution of the discrete
kernel function. When the time step is increased to 3600 s,
N = 1.33, and the integration of the discrete Hayami kernel function
is not unity (Fig. 3), resulting in the mass balance error.

The use of AKF values always preserves mass balance. The sim-
ulated peak discharge is the same for different sizes of time steps
(Fig. 4) and the integration of the discrete kernel function is always
unity (Fig. 5).

3.3. Comparison of different calculation methods for discrete kernel
function and temporal resolution

For the relatively small time step of 60 s, the calculated discrete
kernel functions using the point- or average values are almost the
same. For the time step of 3600 s, the two calculation methods lead
to different results (Fig. 6a). The point K values do not coincide
with the average K values, indicating their failure to represent
the average K values of the analytical solution within the corre-
sponding time step. The discrete integration of the PKF is not unity,
resulting in mass balance error.

When the discrete Hayami kernel function with average values
is used, the integration error of the kernel function in calculated
outflow is independent of the size of time step (Fig. 6b and c). This
is because the storage function always reaches unity given suffi-
ciently long time. When the discrete kernel function with point
values is used, the temporal resolution will affect the integration
of the kernel function, and hence the accuracy of mass balance.
The relative integration error DM ranges from �9.4% to 15% for
1.14–1.73 time steps on the rising limb, and is less than 0.38%
when the rising limb is longer than 1.77 time steps or for
Dt < 45 min (Fig. 6b and c).
Fig. 18. Simulated outflow and channel storage using different methods for the upper rea
(or storage) from the discrete Hayami solution using the point- or average kernel funct
3.4. Computing cost

On a Pentium 4 PC, the CPU time for running the FORTRAN pro-
gram with the DHC-PKF or the DHC-AKF method is 0.125 s for 2000
time steps, the same as for running the CPMC solution.

4. Applications

We chose two streams in the Northwestern USA for our applica-
tion, the Asotin Creek, WA, and the Clearwater River, ID (Fig. 7).

4.1. Asotin Creek, WA

Asotin Creek is located in eastern Washington State, USA
(Fig. 7a). It joins the Snake River at Asotin, WA. The watershed is
typical of many watersheds in the western USA, with high-eleva-
tion snowmelt providing much of the runoff. Streamside agricul-
ture and domestic users are dependent on the streamflow for
livestock, irrigation, and human consumption. Much of the devel-
opment has been, and continues to be, in the flood plains. There-
fore, understanding fluctuations in streamflow and peak flow
responses to high melt rates, often associated with rainfall in the
mountains, is important (Goodwin et al., 1997). This importance
will likely increase with the projected increase in large storm
events in the coming century (USDI, 2011).

There are two real-time gauging stations that are 16.2 km apart,
the upstream US Geological Survey 13334450 (elevation 552 m, in-
flow), and the downstream Washington State Department of Ecol-
ogy 35D100 (elevation 317 m, outflow) (Fig. 7b). The distributed
lateral inflow is typically positive during low streamflow periods
and negative at peak flows, suggesting active surface water and
groundwater interactions. The lateral inflow was estimated based
on water balance and the difference of hydraulic heads between
stream water and a calibrated level of groundwater in the underly-
ing aquifer following McDonald and Harbaugh (1988) and Chen
and Chen (2003) and was assumed to be uniformly distributed
along the channel between the two gauging stations. All the ob-
served streamflow data are recorded in a 15-min interval and the
hydrographs are shown in Fig. 8.

We assume the Asotin Creek is a trapezoidal channel. The chan-
nel configuration parameters, i.e., the bottom width and the in-
verse slope of the trapezoidal channel and the Manning’s
roughness coefficient, are calibrated using the rating curve of the
gauging station WADOE35D100 with an assumption that the Q–h
ch of the Clearwater River, ID, February 8–10, 2009. Note that the simulated outflow
ion values largely overlap.
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relationship follows the Manning’s equation. The calibrated
parameters are assumed constant for the entire reach.

The simulated peak discharge is 2.0% lower than the observed
value, with a root-mean-square error (RMSE) of 0.24 m3 s�1, when
using the DHC-PKF method, and is 0.19% higher than the observed
value, with a RMSE of 0.15 m3 s�1, when using the AKF method
(Fig. 8).

Part of the simulation errors in using either the PKF or the AKF
method could be due to the simplified estimation of lateral in-
flow. The relatively larger errors in simulating the peak discharge
and total volume using the DHC-PKF method are due to the error
of the integration of the discrete kernel function. For a 15-min
time step, there are only 1.65 time steps for the rising limb of
the kernel function (Fig. 9a) of which the integration over time
is 0.987, or a �1.3% error. The solution fluctuates and becomes
unreliable as the size of the time step is further increased
(Fig. 9b and c). If Dt 6 14 min, the number of time steps
N P 1.76, and the integration error (DM) of the discrete K will
be smaller than 0.62%.

A comparison of the discrete Hayami solution with the CPMC
method shows that the differences between the DHC-AKF and
the CPMC methods fluctuate closely to zero, with an RMSE of
0.016 m3 s�1, whereas the differences between the DHC-PKF and
the CPMC methods tend to be substantially less than zero, though
also with fluctuations, with an RMSE of 0.17 m3 s�1 (Fig. 10). The
simulated channel water storage using the DHC-AKF is close to that
by the CPMC method, while the simulated water storage using the
DHC-PKF method increases unrealistically when the channel dis-
charge continuously decreases, due to the mass balance error in
calculating the outflow (Fig. 11).

This computation took a Pentium 4 PC 0.156 s when the discrete
Hayami solution with either point or the average method was
used, and 0.140 s when the CPMC method was used.
Fig. 19. Comparison of discrete Hayami kernel functions using point- or average
values (a), and the effect of time step (b) and number of time steps (c) on
integration errors in the discrete Hayami kernel function for channel routing, lower
reach, Clearwater River, ID, February 8–10, 2009.
4.2. Clearwater River, ID

The Clearwater River is the second largest tributary to the Snake
River in the Columbia Basin, US Pacific Northwest (Fig. 7a). Its mid-
dle fork has been listed as one of the nation’s wild and scenic rivers
in the Wild & Scenic Rivers Act passed in 1968. The recovery of sal-
mon and steelhead habitat in Clearwater River has been an impor-
tant management goal for decades (ICTRT, 2007). Adequate flow
routing is crucial to understanding streamflow regime in relation
to salmon migration and seasonality. There are two USGS gauging
stations for the Clearwater River between Peck and Spalding, in
north central Idaho State. The main tributary in this reach, the Po-
tlatch River, joins the Clearwater River at river mile 14.9 (24 km)
and is also gauged by the USGS (Table 1). Upstream of the Clearwa-
ter River near Peck is a regulated reservoir, the Dworshak Reservoir
(Fig. 7c). The active operation of the reservoir generates frequent
waves. For our application, we selected a single-peak wave during
February 8–10, 2009 (Fig. 12) for the three reaches: the Potlatch
River from the gauging station to the confluence, the Clearwater
River from the upstream gauging station to the confluence with
the Potlatch River, and the Clearwater River from the confluence
to the downstream gauging station.

We assume the Clearwater River and the Potlatch River are
trapezoidal channels. The channel configuration parameters,
including the bottom width, the inverse slope, and the Manning’s
roughness coefficient, are calibrated using the rating curves for
the USGS13341050 for the upper reach of the Clearwater River,
USGS13342500 for lower reach of the Clearwater River, and
USGS13341570 for the Potlatch River, with the assumption that
the Q–h relationship follows the Manning’s equation. The cali-
brated parameters are assumed constant along each reach.
4.2.1. Potlatch River, ID
For the relatively short distance (2 mi or 3.2 km) between the

USGS gauging station on Potlatch River and its confluence with
Clearwater River, the calculated maximum value of the discrete
kernel function is 7.94E�4, at time 879 s, or 14.7 min, less than
the temporal interval of 15 min for the observation data
(Fig. 13a). With this temporal interval, the number of time steps
on the rising limb of the kernel function is 0.7 and the integration
error of the discrete kernel function using the point value is 6.6%
(Fig. 13b and c). The integration error would be negligible if
Dt 6 7 min or N P 1.52, positive if 7 < Dt 6 18 min, and always
negative if Dt > 18 min. With further increased Dt, the integration
error would increase until it approached �100%, when all the
effective K values were missed. The integration error of the discrete
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kernel function using the average values is negligible, regardless of
the size of time step, as demonstrated in the previous case.

The simulated outflow using DHC-PKF and DHC-AKF methods
and using the CPMC method are shown in Fig. 14. The result from
the DHC-AKF method is very close to that from the constant-
parameter Muskingum–Cunge method, and their difference is
small fluctuations about zero (Fig. 15). Comparing with the CPMC
method, the error of the results by the DHC-PKF method is positive
when the inflow is greater than the initial condition, and negative
when the inflow is less than the initial condition, and grows with
time (Fig. 15).

The simulated channel storage from the DHC-AKF and from the
CPMC methods are essentially identical (Fig. 16). Because of the er-
ror in the simulated discharge from the DHC-PKF method, the sim-
ulated channel storage would increase unrealistically with time
even when the channel flow, and thus the channel stage, are
decreasing (Figs. 14 and 16).

4.2.2. Clearwater River, ID
The upper reach of the Clearwater River flows from river mile

37.4 to 14.9 (60.2–24.0 km). With more than five steps
(Dt = 15 min) on the rising limb of the Hayami kernel function,
the point K values are close to the average K values (Fig. 17a)
and the integration error of the discrete kernel function is
negligible.

Fig. 17b and c shows that if the number of time steps on the ris-
ing limb of the kernel function M P 1.75 or Dt 6 50 min, the inte-
gration error of the discrete kernel function using point kernel
function values would be less than 0.19%. For Dt 6 56 min,
N P 1.56, and the integration error of the discrete K is less than
Fig. 20. (a) Comparison of observed and simulated outflow and difference in simulated
simulated channel storage using different methods, lower reach, Clearwater River, ID, F
0.58%. For Dt ranging 57–66 min, N ranges 1.53–1.32, and the inte-
gration error of discrete K varies from �0.18% to �2.15%. For Dt
ranging 67–70 min, N ranges 1.3–1.25, and the integration error
of discrete K increases from 0.25% to 3.74%. The integration of
the discrete K using the average K values remains unity regardless
of the size of time step. The simulated outflow and channel storage
by using these two methods are almost the same (Fig. 18), with a
peak outflow of 413.50 m3 s�1 from the PKF method and
413.49 m3 s�1 from the AKF method. Compared with the peak in-
flow of 413.74 m3 s�1, the outflow is attenuated by both methods,
with a slightly larger attenuation from the AKF method. The larger
attenuation is a disadvantage of the AKF method, as a result of
missing the maximum of the kernel function values due to averag-
ing. The difference in peak attenuation from the two methods is
negligible for the trapezoidal-shaped wave. It may be significant
for a triangular-shaped wave.

The lower reach of the Clearwater River is from river mile 14.9,
the junction with its tributary, the Potlatch River, to river mile
11.6. The inflow for this reach is the sum of the simulated outflows
from the upper reach of Clearwater River and the Potlatch River. To
avoid propogation of the simulation error for the Potlatch River
using the PKF method, we used the simulated outflows with the
AKF method as the inflow for the lower reach. For this 3.3-mi
reach, there are only 1.3 time steps on the rising limb of the Hay-
ami kernel function (Fig. 19a), with an error of �2.3% in integrating
the discrete kernel function using point K values. If the number of
time steps on the rising limb of the kernel function N P 1.75 or
Dt 6 11 min, the integration error of the discrete kernel function
using PKF values would be less than 0.29% (Fig. 19b and c). For
Dt ranging 12–17 min, N ranges 1.61–1.13, and the integration
outflow between point K and average K methods, and (b) observed discharge and
ebruary 8–10, 2009.
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error of discrete K changes from �0.88% to �2.3%. For Dt ranging
18–37 min, N ranges 1.07–0.52, and the integration error of dis-
crete K is between 0.41% and 20%. For Dt P 38 min, N 6 0.51, and
the integration of discrete K is much less than unity. The integra-
tion error of the discrete K using the average K values is negligible
regardless of the size of time step.

Though the resultant error in mass balance for the simulated
outflow is small, and the simulated flow only differs during peak
flow time from that by using the average K values, the effect on
the simulated channel water storage is significant (Fig. 20). The dif-
ferences between the simulated and the observed discharge may
be caused by (i) the neglecting of the rather small amount of tem-
porally variable lateral inflow or outflow, (ii) the use of the linear
diffusion-wave model that does not account for the steepening ef-
fect of the wave, (iii) the simplification and assumptions of the
channel shape and channel configuration parameters, and (iv) the
assumption that the Manning equation is valid. The errors caused
by (i), (iii), and (iv) can be reduced by using additional field data
and a more adequate flow velocity function, and the errors from
(ii) may be lowered by differentiating the non-linear system to par-
allel linear systems (Becker, 1976), adopting a multi-linear model
(Perumal, 1994; Camacho and Lees, 1999; Perumal et al., 2007)
or the modified variable-parameter Muskingum–Cunge method
(Ponce and Chaganti, 1994), or dividing the channel reach into
sub-reaches and applying the discrete Hayami convolution solu-
tion to each sub-reach.
5. Summary and conclusions

The Hayami convolution solution can be used in constant-
parameter diffusion-wave channel routing with distributed lateral
inflow. However, the convolution of channel inflow with the con-
tinuous Hayami kernel function has analytical solutions only for
simplified cases and is costly when solved using numerical integra-
tion for watershed modeling that often involves hundreds of
reaches. It is generally more efficient to use the discrete Hayami
convolution.

The Hayami kernel function itself is continuous over time from
0 to +1, and its integration over this range is unity. Yet attention
should be paid to the size of the time steps when we use its dis-
crete exact point values in replacement of the continuous function.
When the rising limb of the Hayami kernel function is shorter than
1.8 time steps in duration, the integration of the discrete Hayami
kernel function using the point kernel function values is hardly
unity, which would lead to mass balance error for channel routing.
Hence, this solution applies only to cases with rising limb of the
kernel function longer than 1.8 time steps, as demonstrated in
the hypothetic numerical experiment with small time step sizes
or a relatively larger time step size for a longer channel (upper
reach of Clearwater River). When this criterion is not met, there
is a high risk of simulated mass balance failure. This has been
shown in our case applications for Asotin Creek, Potlatch River,
and lower reach of Clearwater River. In Asotin Creek and lower
reach of Clearwater River case applications, with 1.65 and 1.3 time
steps on the rising limb of their kernel functions, respectively, the
errors for simulated outflow were not too large, but the errors of
the simulated water storage were significant and increased with
time, as a result of the accumulation of mass balance error. In Po-
tlatch River case application, with only 0.7 time step on the rising
limb of the kernel function, the error in simulated outflow was sig-
nificant and increased with time.

Another approach is to use the center-averaged kernel function
values. Our hypothetic example and case applications to Asotin
Creek, Potlatch River, and the upper and lower reaches of Clearwa-
ter River showed that the integration of the discrete kernel
function using the averaged kernel function values is always unity,
regardless of temporal resolution. Therefore, we recommend the
use of this method to preserve the mass balance of channel flow
when the rising limb of the kernel function is short, or in wa-
tershed channel routing with numerous channel reaches, for which
the kernel functions may be different. The larger peak attenuation
is a limitation of the AKF method, especially for flood forecasting.
This limitation would recommend the use of the PKF method if
the rising limb of the Hayami kernel function is longer than 1.8
time steps and mass balance error is minor.
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