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ABSTRACT

Aim A raw count of the species encountered across surveys usually underestimates
species richness. Statistical estimators are often less biased. Nonparametric estima-
tors of species richness are widely considered the least biased, but no particular
estimator has consistently performed best. This is partly a function of estimators
responding differently to assemblage-level factors and survey design parameters.
Our objective was to evaluate the performance of raw counts and nonparametric
estimators of species richness across various assemblages and with different survey
designs.

Location We used both simulated and published field data.

Methods We evaluated the bias, precision and accuracy of raw counts and 13
nonparametric estimators using simulations that systematically varied assemblage
characteristics (number of species, species abundance distribution, total number of
individuals, spatial configuration of individuals and species detection probability),
sampling effort and survey design. Results informed the development of an esti-
mator selection framework that we evaluated with field data.

Results When averaged across assemblages, most nonparametric estimators were
less negatively biased than a raw count. Estimators based on the similarity of
repeated subsets of surveys were most accurate and their accumulation curves
appeared to reach asymptotes fastest. Number of species, species abundance distri-
bution and effort had the largest effects on performance, ultimately by affecting the
proportion of the species pool contained in a sample. Our estimator selection
framework showed promising results when applied to field data.

Main conclusions A raw count of the number of species in an area is far from the
best estimate of true species richness. Nonparametric estimators are less biased.
Newer largely unused, estimators perform better than more well known and longer
established counterparts under certain conditions. Given that there is generally a
trade-off between bias and precision, we believe that estimator variance, which is
often not reported when presenting species richness estimates, should always be
included.
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INTRODUCTION

All aspects of biological diversity, from genes to ecosystems, can

inform decisions in ecological monitoring, conservation man-

agement and reserve design. How best to quantify diversity at a

species level remains a topic of much debate (Brose et al., 2003).

Attempts to quantify species diversity often include: (1) a count

or estimate of the unique species in a delineated area (species

richness), (2) a measure of the uniformity of abundances among

species (species evenness), or (3) some measure of species com-

position (species similarity; see Magurran, 2004). Of these,

species richness (SR) is the most conceptually simple and
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frequently used (Moreno et al., 2006; Drake, 2007; Lopez et al.,

2012).

The number of species observed (Sobs) is the most straight-

forward estimate of the true number of species in an assemblage

(Strue), but it has a known negative bias and is based on the naïve

assumption that all species are detected with a probability equal

to one (Palmer, 1990; Nichols et al., 1998). Fortunately, species

distribution and abundance patterns can be used to inform

statistically derived estimators of Strue. All estimators have under-

lying assumptions, but the statistical estimators of SR are typi-

cally less negatively biased than Sobs (Baltanás, 1992; Chiarucci

et al., 2003; Walther & Moore, 2005).

Besides Sobs, there are three categories of SR estimators. One

category includes approaches for extrapolating a species accu-

mulation curve to an asymptote, often using a negative expo-

nential model (Holdridge et al., 1971), the Michaelis–Menten

equation (Michaelis & Menten, 1913) or a power model

(Arrhenius, 1921; Tjørve, 2009). A second category includes

parametric methods that involve: (1) interpolating under a dis-

tribution fit to abundance data or (2) applying an estimator that

assumes that all species are equally detectable. A third category

includes nonparametric estimators, which make no assumption

about the underlying distribution of the data.

The performance of SR estimators has largely depended on

whether underlying assumptions are met, making factors such

as the species abundance distribution, species detection prob-

ability (p), survey effort and Strue (Baltanás, 1992; Keating &

Quinn, 1998; Brose et al., 2003) important to understanding

their performance. Ultimately, no estimator has consistently

performed best, but the nonparametric estimators have gener-

ally performed better than the other categories (see Table 1 in

Cao et al. 2004; Table 3 in Walther & Moore 2005; Table 1 in

Reese 2012). We thus focus on evaluating nonparametric esti-

mators, including several that are relatively untested (see

Burnham & Overton, 1978; Pledger, 2000; Cao et al., 2001; Cao

et al., 2004), by comprehensively and consistently varying

factors that can compromise estimator assumptions.

Most of the nonparametric SR estimators can be categorized

as those that model either heterogeneity in p (commonly

denoted as model Mh; see Otis et al., 1978) or the similarity

between replicate subsets of the survey data. Many in the first

group were developed for population estimation using mark–

recapture data under an assumption of geographic and demo-

graphic closure, an assumption that also applies to all SR

estimators. Brose et al. (2003) detailed additional challenges

that arise when an Mh population estimator is used to estimate

Strue. First, differences in detectability between species can be

larger and more difficult to model than those between the

individuals composing a population of one species. Second,

when an Mh estimator is used to estimate population size from

encounter histories of individuals in surveys repeated at the

same location, an assumption is that p will vary across indi-

viduals but remain constant over time. When those estimators

are instead used to estimate Strue from encounter histories of

species in surveys replicated at different locations, the compa-

rable assumption is that detection probabilities vary among

species but are constant across space. This assumption can be

violated when distributions are spatially heterogeneous, which

occurs regularly in natural systems (Legendre, 1993; Deblauwe

et al., 2008).

Our primary objective was to evaluate nonparametric SR esti-

mators across assemblages that were systematically varied both

in their attributes (number of species, total number of individ-

uals, species abundance distribution, spatial aggregation and

species detection probability) and how they were sampled

(effort and survey design). Given the large number of factors

and the benefits of knowing the true factor values, we relied

heavily on simulated data, but also evaluated estimators using

field data (see the Supporting Information). An important sec-

ondary objective was to expand the estimator selection

approach proposed by Brose et al. (2003). Their framework tar-

geted estimator accuracy and based selection on the ratio of

Sobs to the mean SR estimate, which is an estimate of sample

coverage (sc) or the fraction of a species pool represented in a

sample (i.e. Sobs/Strue). Our contribution included additional

selection criteria based on bias, precision and an estimate of sc

based on Jaccard’s similarity coefficient.

METHODS

Simulation procedure

We evaluated the performances of Sobs and 13 nonparametric SR

estimators across simulated assemblages using the program

Table 1 Levels of factors simulated to evaluate species richness
estimators.

Description Symbol Levels

Total (true) number of species Strue 25

100

500

Total abundance across all species N 6250

12500

Species abundance distribution Abund Log-series

Log-normal

Spatial relationship between individuals

of a species

Config Aggregated

Hyper-dispersed

Random*

Mean detection probability of three

species abundance groups

p (0.5, 0.5, 0.5)

(0.9, 0.9, 0.9)

(0.5, 0.7, 0.9)

(0.9, 0.7, 0.5)

Spatial arrangement of surveyed grid

cells

Design Random

Transect (linear)†

Amount of landscape surveyed Effort 1% (100 cells)

5% (500 cells)

*Individuals were spaced less regularly (aggregated) or more evenly
(hyperdispersed) than expected by chance (random).
†Surveys were configured randomly or as random linear transects of 50
grid cells.
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SimAssem (Reese et al., 2013). We systematically varied the total

number of species, total assemblage abundance, type of species

abundance distribution, spatial structure of individual occur-

rences within a species and detection probability of species

abundance groups in a factorial design (Table 1). Similarly, we

simulated a sampling procedure in which we varied the number

of surveyed grid cells and how they were selected. Based on our

review of the literature and past experience, we selected these

factors and factor levels to cover a wide range of realistic sce-

narios. We generated 42 replicates of each factor combination

(24,192 total simulations) as a compromise between computer

processing time and having a sufficient number of replicates to

ensure an adequate sample size after we removed replicates

involving estimation issues (e.g. lack of convergence for the

Mixture estimator).

We simulated assemblages with 25, 100 and 500 species

(factor Strue), populating them with a total of 6250 and 12,500

individuals (factor N). These values restricted the average

number of individuals encountered per species to the range of

several datasets (see Williams, 1939; Lewis & Taylor, 1967;

Dallmeier et al., 1991). To simulate species abundance patterns

(factor Abund), we used log-normal (Preston, 1948) and log-

series distributions (Fisher et al., 1943). SimAssem generated:

(1) log-normal distributions by drawing a random log-normal

variate (μ = 0, σ = 1) for each species, dividing each variate by

the sum of all the variates and rescaling by multiplying each

variate by N and (2) log-series distributions by calculating the

number of species to populate with z individuals, where z = 1, 2,

. . . , N (see Magurran, 2004). For comparison, we also simulated

evenly distributed assemblages with particulate-niche distribu-

tions (MacArthur, 1957) where each individual was randomly

assigned to a species. Given that: (1) MacArthur considered this

distribution unsatisfactory (Magurran, 2004) and (2) it is infre-

quently referenced in the literature, we provide the results in

Table S1 in Supporting Information (see also Reese, 2012).

We assigned x- and y-coordinates [0, 1] to each individual via

three spatial configuration options available in SimAssem

(factor Config). The random configuration located each individ-

ual with a pair of random uniform variates [0, 1]. For the hyper-

dispersed configuration, SimAssem assigned each individual a

square territory with a linear dimension of 1/√ni, where ni is the

abundance of species i. Territories were adjacent in the horizon-

tal and vertical directions and collectively formed a grid across

the entire landscape. Individuals were located a random distance

and random direction from the bottom left corner of their ter-

ritory. When a randomized location in an overlapping territory

fell outside the top or right landscape boundary, as happened

occasionally, the individual was randomly placed on the land-

scape. To determine the locations around which species could

aggregate with the aggregated (centres equal abun) option,

SimAssem generated ni random uniform variates (RUV) for

each species i, and every RUV ≥ 0.98 increased by one the

number of randomly placed aggregate centres, resulting in

approximately one centre for every 50 individuals. Each individ-

ual of a species was then randomly allocated to a centre and

located on the landscape when two conditions were met. First,

0.95d had to equal or exceed a RUV, where d is a randomly

selected distance [0, 1]. Second, the individual’s location had to

fall on or within landscape boundaries when placed distance d in

a random direction (0–359°) from the selected centre.

Species-specific detection probabilities (factor p) were ran-

domly drawn from beta distributions with expected means of

0.5, 0.7 and 0.9. To isolate the effect of p, we constrained vari-

ances to the range 0.010–0.015. For two factor levels, we drew

each p from the same distribution, with an expected mean of 0.5

or 0.9 (α and β parameters equalled 10 and 10, or 4.5 and 0.5,

respectively). We evaluated two additional factor levels where p

varied as a function of abundance (see Selmi & Boulinier, 2004;

Pagano & Arnold, 2009). We grouped species into thirds based

on abundance and randomly selected abundance groups to

accommodate the additional species since the tested levels of

Strue are not divisible by three. For one factor level we assigned

each species in the least, moderate and most abundant groups a

p that was randomly drawn from a distribution with an expected

mean of 0.5, 0.7 (α = 14, β = 6) or 0.9, respectively. We created

another factor level by reversing the expected means of the

abundance groups.

In SimAssem, every cell of an overlaid 100 × 100 grid is a

potential survey site. We evaluated two levels of effort (factor

Effort) by sampling either 100 (1%) or 500 (5%) grid cells. In

addition, we used two survey designs (factor Design), random

and a linear transect design. Each transect contained 50 adjacent

cells in a randomly selected horizontal or vertical orientation

and transects were added until the specified number of grid cells

was surveyed. Previously surveyed grid cells intersected by a new

transect were applied to the transect length, but were not

double-counted. An individual was encountered when two con-

ditions were met. First, a surveyed cell had to contain at least one

individual. Second, a RUV, where one was generated for each

individual in the cell, had to be ≤ p.

Species richness estimators

In addition to Sobs, we evaluated the performance of 13 estima-

tors, where some are variants of others (see Table 2 for details

and abbreviations). Those estimators belonging to the Mh class

included two based on abundance patterns (i.e. the number of

species with an exact number of individuals encountered) and

nine based on incidence patterns (i.e. the number of species

encountered in an exact number of surveys). We used the Rmark

package (Version 1.9.5; Laake & Rexstad, 2008) in the program

R (R Development Core Team, 2009) to generate Mixture esti-

mates based on two groups using program MARK (Version 6.0;

White & Burnham, 1999).

Two additional estimators, CY-1 and CY-2, are based on the

similarity of two replicate subsets of surveys. A CY-1 estimate

equals average SR across the replicate sets of surveys (SR)

divided by the Jaccard coefficient (JC), JC = c/(a + b + c), where

a and b are the numbers of species unique to each subset and c

is the number of species common to both subsets. Thus, CY-1 is

only calculable when individuals are encountered in two or

more surveys. A CY-2 estimate equals the slope plus the inter-

Performance of species richness estimators
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cept of a regression line fitted to SR versus JC, where each value

was the average of 100 iterations (see Cao et al., 2004).

SimAssem used five regression points (SR JC− pairs) when

there were between 10 and 19 surveys with encounters and 10

regression points when there were 20 or more surveys with

encounters.

Across estimators, the range of possible estimates is large. The

bootstrap estimator can extrapolate to Sobs × 2 (Colwell &

Coddington, 1994), the jackknife estimators nearly to Sobs (the

order of the estimator + 1), Chao2 to Sobs
2/2 and CY-2 to SR

2

(Cao et al., 2004). Higher-order jackknife estimates can be < Sobs

(Lam & Kleinn, 2008) or even negative. We therefore report the

proportion of estimates that were < Sobs.

Performance evaluation

To evaluate estimator performance, we computed bias, preci-

sion, and accuracy (Walther & Moore, 2005). We assessed overall

performance by combining all simulations (i.e. all factors and all

factor levels) and performance for a specific factor level by com-

bining the replicates of all remaining factors and factor levels.

Estimator bias was evaluated with scaled mean error (SME;

Walther & Moore, 2005)
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the replicate, j = 1, 2, . . . , X, and Ŝest is an estimate of Strue.
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cates an unbiased estimator. We evaluated estimator precision
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where Ŝ Sest true is the scaled estimate of the jth replicate, j = 1, 2,

. . . , X. We scaled the estimates in order to compare perfor-

mances across the three levels of Strue. For accuracy, we used

scaled mean square error (SMSE; Walther & Moore, 2005):
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Values of SD and SMSE are always positive and, as with SME,

those closer to zero indicate better performance.

We treated all factors as random and evaluated relative factor

effects with random-effects models, using the ‘proc mixed’ pro-

cedure in sas (version 9.3; SAS Institute, 1999), by computing

variance components and proportionally allocating total vari-

ance into Strue, N, Abund, Config, p, Effort and Design. By using

the averages (SME and SMSE) and standard deviations (SD) of

the replicates for each unique factor combination, the variance

components only reflect between-factor effects. We considered

only main effects, so the residual represents the variance

explained by all interactions plus residual error.

We also evaluated performance against sc, which is possibly

the most important factor driving estimator performance

(Baltanás, 1992; Brose et al., 2003). We used sc to group

simulations into 10 equally sized bins (i.e. 0.0 < sc ≤ 0.1,

0.1 < sc ≤ 0.2, . . . , 0.9 < sc ≤ 1.0). Estimator performance was

averaged over each coverage range, which thereby assesses per-

formance at various levels of sampling completeness. Except

when data are simulated, sc is usually not known. Brose et al.

(2003) estimated sc by dividing Sobs by the average SR estimate.

Table 2 Evaluated species richness
estimators.Estimator name Abbreviation Reference

Abundance-based coverage*† ACE Chao & Lee (1992)

Chao1 (bias-corrected)*† Chao1 Chao (1984)

Bootstrap*‡ Boot Smith & van Belle (1984)

Chao2 (bias-corrected)*‡ Chao2 Chao (1987)

Incidence-based coverage*‡ ICE Lee & Chao (1994)

1st-order jackknife*‡ Jack1 Burnham & Overton (1978)

2nd-order jackknife*‡ Jack2 Burnham & Overton (1978)

3rd-order jackknife*‡ Jack3 Burnham & Overton (1978)

4th-order jackknife*‡ Jack4 Burnham & Overton (1978)

5th-order jackknife*‡ Jack5 Burnham & Overton (1978)

Mixture-model*‡§ Mixture Pledger (2000)

CY-1¶ CY-1 Cao et al. (2001)

CY-2¶ CY-2 Cao et al. (2004)

Number of species observed Sobs

*Estimation by modelling heterogeneity in detection probability of species.
†Estimation using sample abundance patterns (i.e. number of individuals).
‡Estimation using sample incidence patterns (i.e. number of surveys).
§Estimation using maximum likelihood by modelling heterogeneity using mixtures.
¶Estimation using similarity of replicate surveys of species with the Jaccard coefficient.

G. C. Reese et al.
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We estimated sc (sc�) by averaging the Jaccard similarity coeffi-

cients across the 100 iterations used to calculate CY-1.

RESULTS

Simulations

The Mixture estimator failed to converge (i.e. it failed to produce

an estimate) in 0.19% of the simulations and in as many as five

replicates (i.e. simulations with identical factor levels). A small

number of simulations (0.39%) resulted in less than the number

of encounters needed to compute CY-1 and CY-2, so those esti-

mates equalled zero. There were also simulations where one or

more of the estimators returned an estimate < Sobs including

CY-2 (0.45%), Jack2 (3.60%), Jack3 (7.73%), Jack4 (13.45%)

and Jack5 (18.10%). We removed simulations in which Mixture

did not converge and rebalanced the factorial by removing five

or more replicates from every factor combination (i.e. resulting

in 37 replicates of every factor combination); when possible, we

removed replicates that also had one or more estimates < Sobs.

Averaged over all simulations, Mixture was the only positively

biased estimator and the only nonparametric estimator more

biased than Sobs (Table 3). The least biased estimator, CY-2,

underestimated Strue by 15% on average. CY-1 was the most

accurate estimator. Estimator rank depended on the evaluation

metric and we noted a general trade-off between bias and pre-

cision (i.e. the least biased estimators were the least precise, and

vice versa). However, Mixture was both the most biased and the

least precise estimator (Table 3). Relative ranks were rarely con-

sistent across factor levels, but estimators that performed best

overall were generally among the best at individual factor levels.

Below, we mainly focus on factor-level comparisons; additional

estimator-specific results are presented in Reese (2012).

Except for the bias of Mixture and the accuracy of higher-

order jackknife estimators (Jack3–Jack5), bias and accuracy

worsened with increasing Strue (Table S1.1 in Supporting Infor-

mation). The relationship between Strue and estimator precision

was much less consistent, with numerous instances of both posi-

tive and negative relationships. Only three estimators, Sobs, Boot

and Jack1, ranked consistently across all factor levels and only

for precision. The greatest change in the relative performance of

an estimator was the bias of Mixture which was the least biased

estimator with Strue = 100 and one of the two most biased esti-

mators with the other factor levels.

Variation in the other assemblage factors also affected estima-

tor performance. Except for Jack5 and Mixture, estimator bias

and accuracy improved with increasing evenness (i.e. in moving

from log-series to log-normal distributions) and all estimators

were more precise with log-series distributions (Table S1.2). The

relative bias of Mixture was inconsistent, ranking best with log-

series distributions and worst with log-normal distributions. By

all measures, the nonparametric estimators performed better at

the larger N level (Table S1.3). The precision of Sobs, however,

decreased slightly with the increase in N. Mixture was the most

biased estimator at N = 6250 and the least biased at N = 12,500.

Performances varied little across configuration patterns, but esti-

mators were generally least biased and least precise when indi-

viduals were hyperdispersed (Table S1.4). The nonparametric

estimators performed better when average species detection

probability (p) equalled 0.9 than when p = 0 5. (Table S1.5).

When p increased with ranked abundance,estimators were more

precise and generally more biased and more accurate than when

p decreased with abundance. Mixture was again either the most

or least biased estimator, depending on the factor level.

The effects of the tested survey factors, Effort and Design, were

relatively consistent. The nonparametric estimators performed

better at the larger Effort level (Table S1.6). Only the precision of

Sobs decreased with the increase in Effort. Estimators were gen-

erally, often to a small degree, less biased, more precise and more

accurate when individual survey locations were selected ran-

domly than when they were placed along randomly located

linear transects (Table S1.7).

Averaged across all estimators, Strue, Effort and Abund had the

largest effects on estimator performance (Table S2). The results

were generally similar with individual estimators; however, N or

p occasionally ranked higher. Main effects accounted for

approximately 87%, 71% and 81% of the variation in bias, pre-

cision and accuracy, respectively, but explained < 50% of the

variation in the performance of Mixture.

We also evaluated estimator performance against sample cov-

erage (i.e. sc). Estimators were generally less biased and more

accurate with a larger sc. There was no apparent trend in preci-

sion. Our results suggest that the best estimator for bias reduc-

tion depends largely on the sc range; only Jack5 is recommended

first in more than one sc range (Table 4). By contrast, Sobs and

Boot were among the three most precise estimators for all cov-

erage ranges. CY-1 and Boot were the most accurate estimators

in the two smallest and two largest coverage ranges, respectively,

and one of the jackknife estimators was most accurate in the

Table 3 Average performance of species richness estimators
across all factors (see Table 1) based on bias, measured as scaled
mean error (SME); precision, measured as standard deviation of
scaled estimates (SD); and accuracy, measured as scaled mean
square error (SMSE). Subscripts are estimator rank for a given
performance measure.

Estimator Bias (SME) Precision (SD) Accuracy (SMSE)

ACE −0.327 0.264 0.174

Boot −0.4912 0.276 0.3111

Chao1 −0.3710 0.262 0.208

Chao2 −0.379 0.251 0.207

CY-1 −0.193 0.309 0.131

CY-2 −0.151 0.3411 0.142

ICE −0.326 0.265 0.173

Jack1 −0.4111 0.287 0.2510

Jack2 −0.338 0.298 0.196

Jack3 −0.275 0.3310 0.185

Jack4 −0.224 0.4112 0.229

Jack5 −0.182 0.5913 0.3813

Mixture 0.6414 13.4114 180.2214

Sobs −0.5613 0.263 0.3812

Performance of species richness estimators
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other ranges. The CY-2 estimator was one of the three most

accurate estimators in the largest number of sc ranges (six) and

CY-1 was next best (four).

DISCUSSION

The case for statistical estimators

Using Sobs as an estimate of SR frequently leads to large under-

estimates, due to a strong dependence on sampling effort and

the assumption that all species are detected (Nichols et al., 1998;

Kéry & Plattner, 2007). Other than Mixture, the nonparametric

estimators were generally less biased and more accurate than Sobs

(Table 3), supporting other studies (see Wagner & Wildi, 2002;

Brose et al., 2003; Walther & Moore, 2005). Thus, Sobs is far from

the best approach for estimating SR. As effort increases, Sobs will

approach Strue, but estimators generally provide a more reliable

approach (see Table S1.6). A measure of precision is another

advantage provided by some estimators (Nichols et al., 1998;

Reese, 2012).

Statistical estimator comparisons

Averaged across all factor levels, our results suggest that ACE,

CY-1, CY-2, ICE and Jack3 can provide less biased and more

accurate estimates than the more popular Chao1, Chao2, Jack1

and Jack2 estimators (Table 3). The higher-order jackknife and

bias-corrected Chao estimators were among the least and inter-

mediately biased estimators, respectively, supporting Brose et al.

(2003). In particular, the overall biases of Jack5, CY-1 and CY-2

were less than the ≥ 20% bias reported for other estimators (see

Brose et al., 2003; Canning-Clode et al., 2008; Jobe, 2008). Bias

reduction involves increased extrapolation, which could partly

explain the loss of precision that accompanied the least biased

estimators. As was found in our study, estimation involves a

tradeoff between bias and precision (see Burnham & Overton,

1979; Brose et al., 2003; Willie et al., 2012).

Among the most accurate and least biased estimators at many

factor levels, CY-1 and CY-2 could be promising newer estima-

tors (Table 3, Appendix S1). It is noteworthy that both per-

formed at their best with relatively uneven log-normal and log-

series distributions (Table S1) which might best approximate

true species abundance patterns (Sugihara, 1980; Ulrich et al.,

2010). However, CY-1 and CY-2 were outperformed at some

factor levels (see Appendix S1). Cao et al. (2004) stated that

sample size would affect CY-2 less than other estimators and it

was the least biased estimator at the smaller effort level (Table

S1.6). However, CY-1 was more accurate and less affected (bias)

by variation in Effort than any other estimator (Table S2; see also

Drake, 2007). It is possible that the number of regression points

used in the program SimAssem, five or ten, does not fully expose

the performance potential of CY-2. Both estimators were rela-

tively imprecise and prone to overestimation with particulate-

niche distributions (Table S1) and larger levels of N, Effort and p

(Appendix S1), factor levels generally associated with larger sc

values.

Another largely untested estimator, Mixture, often performed

relatively poorly. However, based on bias, Mixture ranked more

favourably in assemblages with an intermediate number of

species (Table S1.1), log-series distributions (Table S1.2), larger

Table 4 The three best performing
species richness estimators, averaged
over all simulations (without the
particulate-niche distribution), in the
specified sample coverage (sc) range (the
number of simulations in each range is
given in parentheses). See Table 2 for
estimator abbreviations and Table 3 for
specific performance metrics.

Coverage range

Bias (SME) Precision (SD) Accuracy (SMSE)

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

0.0 < sc ≤ 0.1 (1891) −0.30 −0.32 −0.56 0.02 0.02 0.03 0.21 0.30 0.39

CY-2 CY-1 ICE Sobs Boot Jack1 CY-1 CY-2 ICE

0.1 < sc ≤ 0.2 (2264) −0.25 −0.29 −0.51 0.03 0.04 0.05 0.24 0.28 0.29

CY-1 CY-2 Jack5 Sobs Boot Jack1 CY-1 CY-2 Jack5

0.2 < sc ≤ 0.3 (3209) −0.11 −0.30 −0.30 0.03 0.04 0.05 0.17 0.18 0.19

Mixture CY-1 CY-2 Sobs Boot Jack1 Jack4 CY-2 Jack5

0.3 < sc ≤ 0.4 (3451) −0.22 −0.27 −0.27 0.03 0.04 0.07 0.14 0.15 0.15

Jack5 Jack4 CY-2 Sobs Boot Jack1 Jack3 Jack4 CY-2

0.4 < sc ≤ 0.5 (2719) −0.07 −0.13 −0.17 0.03 0.04 0.07 0.07 0.08 0.09

Jack5 Jack4 CY-2 Sobs Boot Jack1 Jack3 Jack2 CY-2

0.5 < sc ≤ 0.6 (2563) −0.04 −0.09 −0.09 0.03 0.04 0.08 0.06 0.06 0.08

Jack5 Jack4 CY-2 Sobs Boot Jack1 Jack2 CY-2 CY-1

0.6 < sc ≤ 0.7 (1313) 0.03 −0.03 −0.04 0.02 0.04 0.08 0.02 0.03 0.04

Jack3 CY-1 Jack2 Sobs Boot Jack1 Jack1 Jack2 CY-1

0.7 < sc ≤ 0.8 (1304) −0.03 0.05 −0.06 0.03 0.04 0.08 0.01 0.02 0.02

Jack1 Jack2 ICE Sobs Boot Jack1 Jack1 Boot ICE

0.8 < sc ≤ 0.9 (1065) −0.02 −0.03 0.03 0.02 0.04 0.08 0.00 0.01 0.01

ICE ACE Jack1 Sobs Boot Jack1 Boot Jack1 ACE

0.9 < sc ≤ 1.0 (1534) 0.00 0.00 0.00 0.03 0.03 0.04 0.00 0.00 0.00

Chao2 Chao1 ACE Sobs Mixture Boot Boot Mixture Sobs

SME, scaled mean error; SD, standard deviation of scaled estimates; SMSE, scaled mean square error.

G. C. Reese et al.

Global Ecology and Biogeography, 23, 585–594, © 2014 John Wiley & Sons Ltd590



N (Table S1.3) and either a larger p or a p that increased with

abundance groups (Table S1.5). Precision improved consider-

ably when effort increased from 100 to 500 cells (Table S1.6).

These results suggest that some factor combinations did not

provide enough data to estimate probabilities for the two groups

of the mixture model. An inspection of the raw results (G.C.R.,

unpublished data) showed that the poorest performances

resulted from an increased number of large estimates. In

other words, Mixture occasionally produced large estimates

(e.g. 211,111) in assemblages with, for example, Strue = 500,

Abund = log-normal, N = 6250, and p = 0 5. , possibly a result of

poor convergence. The conditions under which the performance

of Mixture improved would indicate that it should be further

evaluated in comparatively data-rich environments.

Factor effects

The factors Strue, Effort, and Abund had the largest effects on

estimator performance, supporting Brose et al. (2003), and the

strongest correlations with sc (i.e. the correlation between sc and

Strue = −0.66, Effort = 0.48, Abund = 0.37, N = 0.18, P = 0.04,

Config = 0.01 and Design = 0.01); note that the sign of correla-

tion is irrelevant for the nominal variables Abund, Config, Design

and p. This suggests that sc is the means by which factors affect

performance and supports Brose et al. (2003). The negative cor-

relation that we found between Strue and sc, however, contradicts

the positive and relatively weak correlation (i.e. r = 0.14) found

by Brose et al. (2003).

The negative bias of most estimators was largest with the

relatively uneven log-series distribution (Table S1), which sup-

ports Wagner & Wildi (2002) and Brose et al. (2003). Wagner &

Wildi (2002) found less bias with log-normal distributions than

with the distribution selected for its relative evenness, the

broken-stick distribution. However, we did not find a significant

difference between simulated broken-stick and log-normal dis-

tributions using Kolmogorov–Smirnov goodness of fit tests

(G.C.R., unpublished analysis; for the test see Magurran, 2004),

which could explain our contradictory result when using

particulate-niche distributions instead (Table S1). Previous

comparisons, therefore, might not have included enough vari-

ation to reveal actual relationships between estimator bias and

assemblage evenness.

At larger values of Strue, estimators were generally more biased,

supporting Baltanás (1992). Brose et al. (2003) reported a

contradictory result where estimators were more biased at

Strue = 25 than at Strue = 500; however, it is unclear whether that

relationship held across their other levels of Strue (see their

Fig. 1). We also found that estimators were less accurate at larger

values of Strue which contradicts Walther & Morand (1998; see

Table S1.1). Better performances at the larger Effort level, which

supports Brose et al. (2003) and Wagner & Wildi (2002), could

be caused by more effort resulting in more data, particularly

encounters (see Table S1.6). The number of encounters can also

be increased with larger values of N and p. Estimator perfor-

mance improved when N was increased from 6250 to 12,500

individuals (Table S1.3). Positive relationships have been simi-

larly reported with N in the form of density (Baltanás, 1992;

Walther & Morand, 1998).

When the two levels where p was a function of ranked abun-

dance were removed, the correlation between sc and p increased

from r2 = 0.04 to r2 = 0.18. When p generally decreased with

abundance, estimators were less biased (there were exceptions

with Boot, Mixture and Sobs), though often with less precision

and accuracy, than when p increased with abundance (see Table

S1.5). Less abundant species, particularly when p is small, are

often not detected, but a larger p could result in such species

being encountered, thereby reducing bias. Given the formulae of

many of the nonparametric estimators, bias will be further

reduced when such species are encountered in a small number

of surveys. Using either a fixed p for each abundance group or

larger differences in p might show more consistent trends in

bias and accuracy across estimators.

Estimator performance was little affected by Config, support-

ing both Wagner & Wildi (2002) and Brose et al. (2003). The

three configuration patterns differed considerably for a single

species, but at the assemblage level the differences were minimal.

This emergent property could partly explain the relatively weak

effects that Config had on estimator performance and the effects

of an assemblage-wide configuration pattern could be greater.

Most estimators were more negatively biased with increased

aggregation, which supports Baltanás (1992, their Fig. 3), but

not Wagner & Wildi (2002). Furthermore, we did not find the

positive relationship between accuracy and aggregation

reported by Walther & Morand (1998).

Survey design also had small effects on performance. Its

importance could be greater if, for example, SR varied along one

or more gradients and the orientation of linear transects failed

to fully represent an area. We are unaware of other investigations

of the relationships between survey design and SR estimates, but

differences between survey designs are important to other esti-

mation issues (see Reese et al., 2005), including practicality due

to logistics when implementing sampling regimes.

Estimator selection framework

Near the boundaries of sc, we found that accuracy can be max-

imized with different estimators than those proposed in Brose

et al. (2003), specifically CY-1 when sc ≤ 20% and Boot when

sc > 80% (Table 4). We also found the best performing estimator

to vary between bias, precision and accuracy; therefore selection

should be application specific. Our selection framework and the

one by Brose et al. (2003) are based on sc (i.e. Sobs/Strue) a quan-

tity that, if known, would make estimation unnecessary. Across

our simulations, the correlation between sc and sc� exceeded

0.80. Thus, we recommend using the program SimAssem to

process data and the reported sc� to locate the coverage range of

suggested estimators. Given the inconsistent performance of

Mixture, we recommend caution when considering it for bias

reduction (see Table 4 and Appendix S1). We also tested our

selection framework against field data and present the results in

Appendix S3.

Performance of species richness estimators
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Statistical estimation issues

Our results included estimates that were < Sobs, even negative,

and others that were unrealistically large. We therefore evaluated

the effects of sensible substitutions. When the count associated

with one or more of the negative terms of a jackknife estimator

is large, the final estimate can be < Sobs (Lam & Kleinn, 2008).

Otis et al. (1978) considered the observed number, Sobs in species

richness applications, a reasonable lower confidence interval

boundary because at least that many species are known to exist.

We tested three approaches when a jackknife estimate was < Sobs.

First, an estimate < Sobs was set equal to Sobs. Second, we substi-

tuted the next lower-order jackknife estimate that was ≥ Sobs.

Third, we substituted the larger of Sobs or the largest jackknife

estimate, regardless of its order. Burnham & Overton (1978)

introduced a statistical test for selecting a jackknife estimator

that was not tested here (but see Brose et al., 2003). Of the three

approaches, we found that substituting the larger of Sobs or the

largest jackknife estimate resulted in the best performance and

therefore recommend that this approach be considered when

using the jackknife estimators (see Appendix S2).

There were also simulations where encounters occurred in

too few surveys for the computation of CY-1 and CY-2 and the

CY-2 estimate was negative in other runs (0.14%), demonstrat-

ing the limitations of these estimators. A CY-2 estimate can be

< Sobs when SR and JC are negatively related, a chance relation-

ship when data are repeatedly randomized. In both cases, we

tested the effect of replacing the non-negative or negative esti-

mate with Sobs. In simulations where CY-2 failed to produce an

estimate, Mixture always either failed to converge or gave an

unreasonably large estimate [e.g. ≥ (8059 × Sobs)], providing

further evidence that sparse data affected estimates. Systemati-

cally varying both the number of surveys and the number of

encounters will probably be required to define the thresholds at

which valid Mixture estimates become possible. Relative to Sobs,

CY-2 returned the next largest estimate (approximately Sobs ×
76) which we used as a proportionality threshold above which

Mixture estimates were replaced with Sobs. These substitutions

had minimal effects on the performances of CY-1 and CY-2, but

occasionally dramatic effects on the performance of Mixture

(Appendix S2).

Implications

Our study suggests that differences between assemblage charac-

teristics and survey designs partly explain reported differences

in estimator performance. Inconsistencies in the use of perfor-

mance metrics almost certainly further complicate comparisons

between studies (see Walther & Moore, 2005). Despite simulat-

ing a wide range of conditions, additional real-world factors and

factor levels will undoubtedly complicate estimation efforts;

therefore, the application of our results will be most beneficial

when combined with simulations using programs such as

SimAssem (Reese et al., 2013).

The most biased estimators were generally the most precise.

This is a particularly dangerous combination because a precise

and biased estimator can lead to a false sense of confidence when

compared with an imprecise, but unbiased, estimator. In our

study, precision was based on empirical estimates of variance

across the replicated simulations, but a single SR estimate is of

limited value when not accompanied by some measure of its

reliability. Although rarely reported in the literature, SR variance

estimators have been derived for many of the SR estimators and

their performance should also be considered when selecting a

species richness estimator (Reese, 2012).
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