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Abstract. Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production,
carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several
studies have used fire progression maps – in which the perimeter of an actively burning fire is mapped at a fairly high

temporal resolution – or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the
influence of daily weather. However, fire progression maps have many caveats, the most substantial being that they are
rarely mapped on a daily basis and may not be available in remote locations. AlthoughMODIS fire detection data provide

an alternative due to its global coverage and high temporal resolution, its coarse spatial resolution (1 km2) often requires
that it be downscaled. An objective evaluation of how to best downscale, or interpolate, MODIS fire detection data is
necessary. I evaluated 10 spatial interpolation techniques on 21 fires by comparing the day-of-burning as estimated with

spatial interpolation of MODIS fire detection data to the day-of-burning that was recorded in fire progression maps. The
day-of-burning maps generated with the best performing interpolation technique showed reasonably high quantitative and
qualitative agreement with fire progression maps. Consequently, the methods described in this paper provide a viable
option for producing day-of-burning data where fire progression maps are of poor quality or unavailable.
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Introduction

There have been numerous fire-related studies that depended
upon knowing the day-of-burning for any given point of any

given fire. These studies, for the most part, needed to know the
day-of-burning in order to use daily weather (e.g. from a nearby
weather station) to explain or predict fire-related phenomena.

For example, some studies have evaluated the influence of
weather on fire effects (i.e. burn severity) (Collins et al. 2007;
Bradstock et al. 2010; Thompson and Spies 2010) and others
have used observed weather data to parameterise their models of

fuel consumption and carbon emissions (de Groot et al. 2007,
2009). Furthermore, some researchers have parameterised fire
simulation models with weather conditions conducive to high

spread days (Parisien et al. 2011; Parks et al. 2011; Podur and
Wotton 2011).

The studies described above relied on either fire progression

maps or satellite data to infer day-of-burning (and therefore, the
ability to determine the associated daily weather). Fire progres-
sion maps are often generated by land management and fire

agencies, in which the perimeter of an actively burning fire is
mapped at a fairly high temporal resolution (every few days to
daily). Such fire progression maps are generated using aircraft
with GPS or thermal mapping capabilities, aerial photos,

ground-based GPS or other field-based intelligence
(C. McHugh, pers. comm.). These maps are primarily generated
to provide fire managers and the public with information on how

a particular wildfire has grown over time. However, they also
allow the research community the ability to conduct studies that
evaluate, for example, the influence of daily weather on fire

effects (e.g. Collins et al. 2009; Román-Cuesta et al. 2009).
There are some challenges, however, with using day-of-

burning data from fire progression maps. First, fire progression
maps are rarely created at the resolution of single days because

of resource limitation (e.g. no available aircraft during periods
of peak fire activity), safety concerns (e.g. high winds or heavy
smoke) or remote location (Fig. 1). Generally, only a small

number of fires aremapped on a daily basis; these fires tend to be
the ones that threaten human life and infrastructure (e.g. 2012
High Park fire in Colorado). More commonly, fire progression

maps have temporal gaps, some of them spanning multiple days
(Fig. 1). To deal with such gaps, researchers typically average
daily weather values over the days where temporal gaps exist in

fire progression maps (e.g. Collins et al. 2007). Such an
approach, however, likely understates the influence of weather
because extreme conditions are masked by averaging (Collins
et al. 2009). Furthermore, because of the limited availability of
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fire progression maps with adequate temporal resolution, many

studies have been limited to only one or a few fires, making their
findings highly localised. Other caveats of fire progressionmaps
are that collection flight times vary by day, may be attributed

with the incorrect day and are sometimes drawn to reflect
containment lines and not actual area burned (C. McHugh, pers.
comm.; B. Quayle, pers. comm.). Finally, and perhaps most

importantly, fire progression maps are often not generated in
extremely remote locations (e.g. the Canadian boreal forest).

Where fire progression maps are not available or are of
inadequate quality, some researchers have used MODIS fire

detection data (NASA MCD14ML product, Collection 5, Ver-
sion 1) to infer day-of-burning. These satellite data contain the
date and location of actively burning pixels but have a coarse

spatial resolution (pixel size¼ 1 km2). As such, various
approaches have been used to downscale them. For example,
de Groot et al. (2007, 2009) used nearest neighbour interpolation

to estimate day-of-burning, whereas Parisien et al. (2011) and
Parks et al. (2012) buffered individual fire detections. Because
MODIS fire detection data are collected globally and at a high

temporal frequency, they offer an alternative to agency-generated
fire progression maps. However, an objective evaluation of how
to best interpolate, or downscale, these coarse data is necessary.

There is a clear need by the fire management and research

communities for reliable information regarding the day-of-
burning for each point within a fire perimeter. Such data would
allow a consistent and unbiased method for incorporating daily

weather data into fire-related analyses. As such, this study has
two objectives: (1) use 10 spatial interpolation techniques to
generate fine-scale day-of-burning maps and (2) evaluate each

technique using fire progression maps.

Methods

Estimating day-of-burning

I estimated the day-of-burning (DOB) for 21 fires (Table 1) that
are greater than 5000 ha and, for comparative purposes, have at

least six mapped fire progression perimeters. These fires have
broad geographic dispersion (Table 1) to ensure that that the
methods evaluated here are applicable across geographic

regions. DOB was estimated for each pixel within each fire
perimeter using several interpolation techniques (Table 2).

Although these estimates can be generated at any resolution,
I generated DOB using a pixel size of 30� 30m, matching the
resolution of Landsat TM imagery and associated products

(e.g. burn severity data; Eidenshink et al. 2007). All procedures
described below are implemented using the R statistical pro-
gram (R Development Core Team 2007); the code is available

from the corresponding author with no restrictions.
Estimating DOB was a three step process. In step one, all

MODIS fire detection data (NASAMCD14ML product, Collec-
tion 5, Version 1) overlapping and within 1 km of the final fire

perimeter were selected for use in the interpolation process. Fire
perimeters were obtained from the Geospatial Multiagency
Coordinating Group (GeoMAC) (2013); non-contiguous poly-

gons (e.g. spot fires) ,,100 ha were removed. MODIS fire
detection data were obtained from USDA Forest Service Active
Fire Mapping Program (http://activefiremaps.fs.fed.us/,

accessed 2 December 2013) and serve as the input data for the
interpolations. Hereafter, these point data are referred to as
MODIS-DOB; they represent MODIS pixel centroids and are

attributed with the date that a fire is detected (Fig. 2). MODIS-
DOBhave a coarse spatial resolution of 1 km2; however, the high
temporal resolution of these data (there are twoMODIS sensors,
each passing overhead twice per day) provide useful information

for mapping fine-scale day-of-burning. In cases where there
were two or more spatially coincident fire detections (i.e. fire
was detected in the same pixel but on a different day), the

one with the earliest date was retained and others were removed.
In step two, I estimated DOB for each pixel within each fire

perimeter using 10 interpolation methods (Table 2); hereafter,

these DOB estimates are referred to as interpolated-DOB.
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Fig. 1. Julian day the perimeter was recorded (i.e. observed; left) and the

number of days that elapsed between perimeter observations (right) for the

Day fire in southern California. These maps illustrate that temporal gaps

often exist in fire progression maps.

Table 1. General information about the 21 study fires, including name,

year of burning, size, location (USA state) and duration

Duration is based on first and last MODIS fire detection

Fire name Year Size (ha) Location Duration (days)

Columbia Cx 2006 53 200 Washington 41

Tripod Cx 2006 74 121 Washington 81

Ahorn 2007 22 699 Montana 57

Corporal 2007 6337 Montana 35

Fool Creek 2007 25 847 Montana 73

Railley Mountain 2007 8576 Montana 48

Showerbath 2007 24 999 Idaho 43

South Barker 2008 13 819 Idaho 53

Twitchell Canyon 2010 18 391 Utah 73

High Park 2012 36 546 Colorado 17

Waldo Canyon 2012 7340 Colorado 8

Rock House 2011 127 640 Texas 22

Miller 2011 36 087 New Mexico 32

Whitewater Baldy 2012 120 508 New Mexico 41

Wallow 2011 221 043 Arizona 28

Day 2006 66 459 S. California 25

Zaca 2007 98 759 S. California 61

Hancock 2006 8964 N. California 81

Pigeon 2006 40 842 N. California 94

Deep 2009 12 242 Florida 6

Mustang Corner 2008 16 166 Florida 6
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The interpolation techniques vary in complexity and not all of
them are described in this paragraph; however, the details and

equations for all 10 are presented in tabular format (Table 2).
The simplest is called nearest neighbour (NN) interpolation, in
which each pixelwithin a fire perimeter is assigned aDOBbased

on the nearest MODIS-DOB. Moving along the complexity
gradient, another is called average date (AD), in which each
pixel is assigned a DOB based on the average date of nearby
MODIS-DOBdata. There are also several interpolationmethods

that assign DOB to each pixel based on weighted averages of
nearby MODIS-DOB data; the most common is inverse-
distance weighting (IDW) interpolation (see Fig. 2 for an

illustration of how IDW operates). For those interpolation
methods that calculate the average (i.e. AD) orweighted average
(i.e. WMD) of nearby MODIS-DOB, I limited the interpolated-

DOB to only those dates observed in the nearby MODIS-DOB
(Table 2). This ensured that the interpolated-DOB corresponded
to days of detected fire growth and was not an artefact of

averaging. This was accomplished for each pixel by selecting
the date of the temporally nearest MODIS-DOB to the average
or weighted average of each interpolation method.

In step three, I reassigned all spatially contiguous
interpolated-DOB regions that were #25 ha to DOB values of

the nearest regions larger than 25 ha. This size threshold is
admittedly arbitrary; however, this step was necessary because
the process described in step two often produced small interpo-

lated-DOB regions that were not in agreement with surrounding
estimates. This presumably occurred because of flare ups (and
therefore MODIS-DOB detections) that occurred days after the
flaming front passed through an area.

Comparison to fire progression maps

To evaluate each interpolation technique, I compared interpo-
lated-DOB to the DOB recorded in fire progression maps

obtained from Geospatial Multi-agency Coordinating Group
(GeoMAC; 2013); hereafter, GeoMAC-DOB. For any perimeter
that was recorded before 1200 hours (noon) on any given day,

I changed the recorded DOB to that of the previous day on the
assumption that most of the area likely burned the previous
afternoon and evening. For example, if a perimeter was recorded

at 0400 hours on 2 July, I modified the date of the perimeter and
shifted it to 1 July. For this comparison, the GeoMAC-DOB data

Table 2. Abbreviation, name and description of interpolation methods (ordered from simplest to most complex) used to estimate day-of-burning

(interpolated-DOB) using coarse resolution MODIS fire detection data (MODIS-DOB)

For those interpolation methods that calculate the average (i.e. AD) or weighted average (i.e. WMD) of nearbyMODIS-DOB, I limited the interpolated-DOB

to only those dates observed in the nearby MODIS-DOB (See Methods)

Interpolation

abbreviation

Interpolation name Interpolation description

NN Nearest neighbour Each pixel is assigned the Julian day of the nearest MODIS fire detection.

ND Nearest date Each pixel is assigned the earliest Julian day of the three nearest MODIS fire detections.

AD Average date Each pixel is assigned the averaged Julian day of the three nearest MODIS fire detections.

MAJ5 Majority of five nearest neighbours Each pixel is assigned the most common Julian day among the five nearest fire detections. In case

of a tie, the earlier Julian day is assigned.

MAJ10 Majority of 10 nearest neighbours Each pixel is assigned themost common Julian day among the 10 nearest fire detections. In case of

a tie, the earlier Julian day is assigned.

IDW Inverse distance weighted Each pixel is assigned a weighted average of the five nearest MODIS fire detections (See Fig. 2).

The weight of each fire detection (wi) is based on the distance (d ) and is defined as:

wi ¼ 1
di

� �
=
P5
i¼1

1=di

IDW.sq Inverse distance weighted-squared Each pixel is assigned a weighted average of the five nearest MODIS fire detections. The weight

of each fire detection (wi) is based on the distance (d ) and is defined as: wi ¼ 1
d2
i

� �
=
P5
i¼1

1=d2i

IDW.half Inverse distance weighted-square root Each pixel is assigned a weighted average of the five nearest MODIS fire detections. The weight

of each fire detection (wi) is based on the distance (d ) and is defined as: wi ¼ 1
d0:5
i

� �
=
P5
i¼1

1=d0:5i

WMD Weighted by mean and distance Each pixel is assigned a weighted average of the five nearest MODIS fire detections. The weight

of each fire detection (wi) is based on the date (jdayi) and distance (di) and is defined as:

wi ¼ 1

jdayi�
�P5

i¼1
jdayi

�
5

� �����
����þ1

� �
�di

0
BB@

1
CCA

WMD.sq Weighted by mean and distance-squared Each pixel is assigned a weighted average of the five nearest MODIS fire detections. The weight

of each fire detection (wi) is based on the date (jdayi) and distance (di) and is defined as:

wi ¼ 1

jdayi�
�P5

i¼1
jdayi

�
5

� �����
����þ1

� �2
�di

0
BBB@

1
CCCA
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are considered the ‘observed’ data. However, the observedDOB
in theGeoMAC-DOB is not necessarily the actual DOB because
of temporal gaps in the mapped fire perimeters (Fig. 1); in such

cases, I compared the ‘recording dates’ of the GeoMAC–DOB
to aggregated interpolated-DOB. For example, consider a
GeoMAC-DOB fire perimeter that wasmapped on 1August and

then again on 3 August (i.e. a two-day gap): I used the mapped
fire perimeter (GeoMAC-DOB) on 3 August and compared that
to the interpolated-DOB for 2 and 3 August. I quantified the

percentage of pixels in the interpolated-DOB that spatially and
temporally agreed with the GeoMAC-DOB (i.e. percentage of
pixels that exactly matched). I also quantified the percentage of
pixels in the interpolated-DOB that were within �1 and �2

recording dates of the GeoMAC-DOB. These comparisons,
hereafter termed ‘percentage agreement’, were then used to
evaluate each interpolation technique.

Results

Day-of-burning maps (i.e. interpolated-DOB) for each of the 10

spatial interpolation techniques were generated. Interpolated-
DOB, as expected, varied among interpolation techniques, as
evaluated qualitatively by the maps (Fig. 3) and quantitatively

by the percentage agreement between interpolated-DOB and
GeoMAC-DOB (Table 3). Among the 21 fires analysed, the
nearest date method (ND) had the lowest mean percentage

agreement for the exact match (42.8%), �1 recording date
(69.4%) and�2 recording dates (80.7%). Theweighted bymean
and distance method (WMD) had the highest mean percentage
agreement for the exact match (46.1%; tied with MAJ10), �1

recording date (75.8%; tied with WMD.sq) and �2 recording
dates (85.8%; tied with IDW.half and WMD.sq). Taking into
account the percentage agreement values for the exact match,

�1 and �2 recording dates, I conclude that the WMD method
performed marginally best overall. However, several other
interpolation methods had percentage agreement values that

were almost as high asWMD, notably AD, IDW, IDW.sq, IDW.
half andWMD.sq. Relative to these top performingmethods, the
NN, ND, MAJ5 and MAJ10 methods had low percentage

agreement with GeoMAC-DOB. Visual inspection of the
interpolated-DOB (WMD method) and GeoMAC-DOB also
showed good agreement (Fig. 4).

Discussion

Several interpolation methods were effective for mapping DOB
for a broad range of ecosystem types, including grass (Mustang

Corner, Florida), grass–shrub (Rockhouse, Texas) and conifer-
dominated types (Fool Creek, Montana). The average percent-
age agreement for the WMD method was 46.1% for the exact

match, 75.8% for �1 recording dates and 85.8% for �2
recording dates. This is approximately in line with the average
percentage agreement reported by de Groot et al. (2007), who

used nearest neighbour interpolation to estimate DOB for one
fire inBritishColumbia, Canada usingAVHRRandMODIS fire
detections; they found the percentage agreement for�1 and�2

recording dates to be 80 and 90% (they did not report the exact
match). Although I concluded that the WMD method had the
highest percentage agreement when compared with fire pro-
gressionmaps, this was only amarginal improvement over some

of the other methods; I therefore suggest that the IDW, IDW.sq,
IDW.half andWMD.sq (and to a lesser degree, the ADmethod)
also generate reasonable interpolated-DOB. In fact, these six

top-performing interpolation techniques, based on the kappa

NN AD MAJ10 IDW WMD

Day of
burning

End

Start

Fig. 3. Visual comparison of five of the interpolation techniques for the Fool Creek fire.

South Barker

223

MODIS-DOB
(Julian day)

231

239

250

275

d1 d4 w1 � (1/d1) / (1/d1�1/d2�1/d3�1/d4�1/d5)

Interpolated-DOB � ((DOB1 � w1) � (DOB2 � w2) �
(DOB3 � w3) � (DOB4 � w4) � (DOB5 � w5))

w2 � (1/d2) / (1/d1�1/d2�1/d3�1/d4�1/d5)
w3 � (1/d3) / (1/d1�1/d2�1/d3�1/d4�1/d5)
w4 � (1/d4) / (1/d1�1/d2�1/d3�1/d4�1/d5)
w5 � (1/d5) / (1/d1�1/d2�1/d3�1/d4�1/d5)

d3

d5

d2

Fig. 2. Illustration of how the inverse distance weighting (IDW) interpo-

lation method operates. For the pixel labelled with an ‘X’, DOB is estimated

using a weighted averaged of the five nearest MODIS fire detections. w1 is

the weight (in the IDW weighted average equation (bottom)) of the closest

MODIS fire detection, d1 is the distance of the closest fire detection and

DOB1 is the day-of-burning of the closest fire detection. w2 is the weight of

the second closest MODIS fire detection, etc.
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statistic (Landis and Koch 1977), are nearly identical using a
kappa¼ 0.95 threshold (Table 4).

Although MODIS data have coarse spatial resolution, the

high temporal resolution of these data supports the use of spatial
interpolation techniques and allows DOB maps to be generated
at any resolution. This is particularly important, because

although fire behaviour and effects are a function of fuels,
weather and topography (Agee 1993), the influence of weather
is of particular interest (McKenzie et al. 2004; Abatzoglou and

Kolden 2011) because of its high temporal variability (Bessie
and Johnson 1995; Anderson et al. 2007) and its dominant
influence during extreme years (Moritz 2003; Gedalof et al.

Table 3. For each fire, percentage agreement for each interpolation method between the interpolated-DOB and the GeoMAC-DOB for the exact

match (±0), within one recording date (±1) and within two recording dates (±2)

NN, nearest neighbor; ND, nearest date; AD, average date; MAJ5, majority of five nearest neighbors;MAJ10, majority of ten nearest neighbors; IDW, inverse

distance weighted; IDW.sq, inverse distance weighted – squared; IDW.half, inverse distance weighted – square root; WMD, weighted by mean and distance;

WMD.sq, weighted by mean and distance – squared (Table 2)

Fire name NN ND AD MAJ5 MAJ10

� 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2

Columbia Cx 66.3 84.0 90.4 70.6 86.2 92.2 67.4 86.1 92.0 69.9 85.4 91.1 71.5 86.1 91.5

Tripod Cx 38.7 66.3 77.5 31.5 51.1 59.6 39.2 68.8 79.9 37.3 67.3 78.0 38.5 69.7 80.3

Ahorn 28.5 49.2 63.1 35.0 57.2 70.7 27.2 50.1 67.5 32.4 54.9 70.5 28.4 52.1 69.7

Corporal 31.0 54.2 65.3 35.8 53.4 59.9 32.4 57.5 68.7 33.0 53.8 63.1 34.2 55.0 64.3

Fool Creek 48.1 70.6 79.8 49.1 67.0 77.0 47.9 73.7 80.3 54.9 73.8 81.3 54.5 75.4 83.4

Railley Mountain 45.9 59.4 72.3 77.3 93.9 96.6 44.6 62.3 73.1 43.5 58.7 70.9 43.3 59.9 71.6

Showerbath Cx 36.1 65.9 78.8 45.7 77.7 86.9 38.2 67.8 82.4 31.4 63.1 77.7 31.7 59.4 74.8

South Barker 47.5 78.2 86.5 33.1 60.3 74.1 52.4 84.2 91.4 48.8 82.1 90.3 50.9 82.6 90.9

Twitchell 28.8 51.1 58.3 35.3 59.2 75.6 29.1 54.6 61.1 33.6 54.3 60.0 34.7 54.8 60.0

High Park 51.9 80.6 86.8 49.4 77.3 84.6 54.8 82.6 88.7 54.9 81.2 87.6 56.8 81.9 88.3

Waldo Canyon 59.7 85.1 94.3 54.6 83.5 92.0 63.0 84.8 94.2 64.3 86.5 93.9 64.8 87.7 94.3

Rockhouse 78.4 95.5 97.7 26.2 61.1 75.8 79.4 96.3 97.8 77.9 95.3 97.2 78.7 95.4 97.2

Miller 40.0 69.7 88.3 38.2 63.9 84.7 41.1 72.7 90.4 38.7 68.4 87.7 38.5 66.0 85.9

Whitewater Baldy 41.3 77.6 88.1 43.5 75.8 86.4 42.6 81.3 89.5 42.4 78.7 87.8 41.2 78.8 88.1

Wallow 36.0 75.3 90.1 40.3 78.0 90.7 37.1 77.6 92.2 38.6 77.7 92.2 39.2 76.7 93.1

Day 49.3 83.0 91.8 49.0 83.0 92.1 52.5 85.7 93.1 52.6 85.5 93.0 54.5 86.4 93.4

Zaca 39.2 78.5 87.1 34.0 74.2 86.2 40.5 81.6 90.2 40.9 79.9 88.7 43.0 81.6 89.7

Hancock 50.6 73.3 86.1 42.5 61.9 74.4 51.3 75.3 88.3 46.8 68.0 80.5 50.6 71.4 84.2

Pigeon 38.3 63.5 78.3 41.5 55.6 70.3 40.0 67.2 82.1 37.8 60.3 75.8 39.2 61.4 77.0

Deep 28.4 68.6 84.4 9.9 48.1 72.2 23.6 69.0 85.0 19.6 61.5 79.9 15.4 58.5 75.5

Mustang Corner 60.3 91.9 96.3 55.6 88.5 93.6 57.8 93.7 97.2 58.8 92.6 94.2 58.7 90.8 92.5

MEAN 45.0 72.5 82.9 42.8 69.4 80.7 45.8 74.9 85.0 45.6 72.8 82.9 46.1 72.9 83.1

Fire name IDW IDW.sq IDW.half WMD WMD.sq

� 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2 � 0 � 1 � 2

Columbia Cx 66.9 86.5 92.5 66.9 85.9 92.0 66.3 86.8 92.7 67.5 86.7 92.7 67.4 86.9 92.7

Tripod Cx 39.6 69.2 80.6 39.5 69.0 80.1 39.4 69.1 80.8 39.7 69.7 80.9 39.8 69.6 80.9

Ahorn 26.3 49.0 66.4 28.0 49.9 66.6 26.2 49.4 66.3 26.0 49.3 66.7 25.5 48.8 66.5

Corporal 32.4 59.7 70.5 31.9 58.5 69.3 32.5 60.0 70.6 32.3 60.6 71.1 31.8 60.8 71.1

Fool Creek 46.4 73.9 80.3 46.4 73.6 80.1 45.7 74.0 80.5 46.6 74.1 80.7 46.6 74.1 80.8

Railley Mountain 44.8 62.6 74.0 45.2 62.0 73.8 43.5 62.0 73.4 44.0 62.3 73.5 43.9 62.2 73.3

Showerbath Cx 39.9 69.1 84.4 39.5 68.5 83.2 39.6 68.8 84.9 39.7 68.5 84.3 39.6 68.3 84.5

South Barker 52.4 85.3 92.1 51.3 84.6 91.5 52.4 85.4 92.5 52.6 85.1 92.7 53.1 85.5 92.9

Twitchell 29.1 56.7 62.4 28.8 56.0 61.9 29.2 57.2 63.0 29.5 56.7 62.4 29.7 56.8 62.8

High Park 55.0 83.1 89.5 54.8 82.7 88.7 54.4 83.1 89.5 55.0 83.5 89.7 54.8 83.4 89.7

Waldo Canyon 64.2 86.8 95.2 62.3 86.9 95.1 65.5 86.9 95.0 66.0 87.3 95.6 66.2 87.2 95.3

Rockhouse 79.6 96.3 97.8 79.1 96.2 97.8 79.6 96.3 97.7 79.5 96.3 97.7 79.5 96.3 97.7

Miller 41.4 73.6 91.8 41.5 73.3 91.1 41.2 73.0 91.4 41.4 73.5 91.7 41.3 73.2 91.5

Whitewater Baldy 42.9 82.3 90.2 43.3 82.0 90.1 42.4 82.0 90.2 42.7 82.3 90.1 42.7 82.2 90.1

Wallow 37.5 78.3 93.3 37.4 78.0 92.7 37.3 78.0 93.4 37.8 78.6 93.7 37.6 78.3 93.6

Day 53.0 85.9 93.3 52.4 85.6 93.1 53.4 86.0 93.4 53.8 86.2 93.4 54.0 86.2 93.4

Zaca 40.6 82.0 90.4 40.7 81.4 89.9 40.6 81.9 90.4 41.3 82.5 90.6 41.0 82.5 90.6

Hancock 53.7 76.6 89.0 54.8 75.9 89.2 53.4 76.1 89.2 54.6 76.6 88.8 53.7 76.0 89.2

Pigeon 39.4 67.9 83.5 40.0 67.4 83.2 39.3 67.8 83.6 39.5 67.9 83.9 39.5 67.8 83.7

Deep 20.3 69.6 85.7 22.8 69.3 85.5 19.9 69.5 85.5 20.3 69.5 85.5 20.2 69.9 85.5

Mustang Corner 58.4 93.8 97.3 59.2 93.7 97.1 57.3 94.3 97.2 58.0 94.8 97.0 57.8 95.5 97.0

MEAN 45.9 75.6 85.7 46.0 75.3 85.3 45.7 75.6 85.8 46.1 75.8 85.8 46.0 75.8 85.8
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2005). As such, the methodology developed here will allow for

incorporating weather data into fire-related analyses covering
broad regions and literally hundreds or thousands of fires
(e.g. Parks et al. 2013). For example, studies that tie weather

to wildfire smoke and carbon emissions (McKenzie et al. 2006;
Lavoué et al. 2007) would benefit tremendously from the

methods described here. Studies analysing the effect of weather

on fire effects (i.e. burn severity) (e.g. Thompson and Spies
2010) would also benefit, as would fire simulation studies that
parameterise their models with weather conditions conducive to

high spread days (e.g. Parisien et al. 2011). A related benefit
of using the methods described here is simply the ability to

GeoMAC-DOB Interpolated-DOB GeoMAC-
DOB
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Fig. 4. Maps showing GeoMAC-DOB v. interpolated-DOB (WMD) for each of the 21 study fires.
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quantify daily fire growth of individual fires. For example, such

an ability would benefit studies like those of Lavoué and Stocks
(2011) who used a sigmoidal growth function, based on fire
duration and final size, to estimate daily fire growth.

Although I used fire progression maps for quasi-validation
purposes, it should be noted that these data are imperfect, as
previously described, and are not likely correct themselves.
The lack of adequate ground-truthed data is challenging and, as

such, complicates the validation procedure: it is not possible to
knowwith 100% confidence how well the interpolations in this
study perform. For example, the WMD method, on average,

‘under-predicted’ the DOB by 0.2 recording dates (average
difference between interpolated- and observed-DOB among
the 21 fires; range: �1.3 – 0.4); that is, the interpolated-DOB

was generally earlier than the recorded-DOB in the fire

progression maps. In some cases, this under-prediction was

substantial (four fires were ,�0.5 recording dates and two
fires were ,�1.0). Such bias in the interpolations are likely
due to incorrect recording dates of the fire progression maps, as

it is highly unlikely that the MODIS satellite would systemati-
cally detect a fire before it actually burned. Considering the
previously described caveats with fire progression maps and
that they may, on average, systematically record the fire date

later than it occurred, it is possible that the percentage agree-
ment values reported in this study underestimate the quality of
the interpolations.

The methodology developed in this paper has been shown to
generate, on average, robust DOB estimates. However, there are
some reasons why estimated DOB may be incorrect in some

areas. Clouds, heavy smoke and tree canopymay limit the ability
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HancockZaca

Fig. 4. (Continued)
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of the MODIS sensors from detecting fire (Giglio 2010). Also,
individual pixels within fast moving or low intensity fires may
not be detected. Additional mischaracterisation of DOB is likely

due to the coarse resolution of the fire detection data. Also
because of the coarse resolution of the MODIS data, it is likely

that the methods described here are inappropriate for small
fires (,,500 ha); note that the smallest fire I analysed was
,6300 ha. There are other inherent caveats associated with the

fire detection algorithm (e.g. varying levels of detection confi-
dence) (Giglio 2010) and remote sensing in general (Verstraete
et al. 1996). Finally, it may be that the methods developed here
are not necessary when high-quality daily fire progression maps

are available. Although these caveats are important considera-
tions, the methods described in this paper provide a viable option
for producing DOB data where agency-generated fire progres-

sion maps are of poor quality or unavailable.
Finally, it is worth noting that the MODIS burned area

product (MCD45A1) (Roy et al. 2005) also estimates DOB by

evaluating change in vegetation. However, it has an eight-day
precision (Roy and Boschetti 2009) and oftentimes has spatial
gaps within a fire perimeter (i.e. no data on estimated DOB for
someMODIS pixels) (Fig. 5). As such, themethods presented in

this paper can potentially be used to complement other algo-
rithms that estimate DOB (e.g. Giglio et al. 2009).
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