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Abstract 
 

Raster modeling is an integral component of spatial analysis. However, conventional raster 
modeling techniques can require a substantial amount of processing time and storage space and have 
limited statistical functionality and machine learning algorithms. To address this issue, we developed a 
new modeling framework using C# and ArcObjects and integrated that framework with .Net numeric 
libraries. Our new framework streamlines raster modeling and facilitates predictive modeling and 
statistical inference. 

 
Introduction 

 
Raster modeling is an integral component of spatial analysis and remote sensing. Combined with 

classical statistic and machine learning algorithms, it has been used to address wide ranging questions in a 
broad array of disciplines (e.g. Patenaude et al. 2005; Reynolds-Hogland et al. 2006). However, the 
current workflow used to integrate statistical and machine learning algorithms and process raster models 
within a geographic information system (GIS) limits the types of analyses that can be performed. While 
some analysts have successfully navigated these limitations, they typically have done so for relatively 
small datasets using fairly complex procedures that combine GIS procedures with statistical software 
outside a GIS. This process can be generally described in a series of steps: 1) build a sample dataset using 
a GIS, 2) import that sample dataset into statistical software such as SAS (SAS 2014) or R (R 2014), 3) 
define a relationship (predictive model) between response and explanatory variables that can be used 
within a GIS to create predictive surfaces, and 4) build a representative spatial model within a GIS that 
uses the outputs from the predictive model to create spatially explicit surfaces. Often the multi-software 
complexity of this practice warrants building tools that streamline and automate many aspects of the 
process, especially the export and import steps. However, a number of challenges pose significant 
limitations to producing final outputs in this way, including learning additional software, implementing 
predictive model outputs, managing large datasets, and handling the long processing time and large 
storage space requirements.   

Out of necessity, some analysts have learned additional software and have re-sampled data to 
work around these problems, performed intensive statistical analyses, and created final outputs in a GIS. 
While learning additional software can open the doors to many different algorithms and resampling data 
can make data more manageable, learning statistical software comes at a significant cost in resources 
(time) and re-sampling can blur the relationships between response and explanatory variables. In a recent 
study (Hogland et. al. 2014), we were faced with these tradeoffs, examined the existing ways in which 
raster models are processed, and developed new ways to integrate complex statistical and machine 
learning algorithms directly into ESRI’s desktop application programming interface (API). 

 After reviewing conventional raster modeling techniques, it was clear that the way raster models 
process data could be improved. Specifically, raster models are composed of multiple spatial operations. 
Each operation reads data from a given raster dataset, transforms the data, and then creates a new raster 
dataset (Figure 1). While this process is intuitive, creating and reading new raster datasets at each step of 
a model comes at a high processing and storage price, prompting two questions: 1) does generating a final 
model output require the creation of intermediate outputs at each step and 2) if we remove intermediate 
outputs from the modeling process, what improvements in processing and storage can we expect?  
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Figure 1. This figure illustrates the conceptual idea behind Function Modeling. For each raster transformation 
(yellow triangles) within a conventional model (CM), an intermediate raster dataset is created (green square). 
Intermediate raster datasets are then read into a raster object (blue ovals) and transformed to produce another 
intermediate raster dataset. Function Modeling (FM) does not create intermediate raster datasets and only stores the 
type of transformation occurring to source raster datasets. When raster data are read, this technique performs the 
transformations to the source datasets without creating intermediate raster datasets. 

 
Moreover, while ESRI’s libraries provide a vast set of procedures to manipulate data, compared 

to the programming environment used by many statisticians and mathematical modelers, these procedures 
are relatively limited to some of the more basic statistical and machine learning algorithms. In addition, 
the algorithms that are available in standard libraries are not directly accessible within ESRI classes 
because they are wrapped into a class requiring an input that produces a predefined output. While this 
kind of encapsulation does simplify coding, it limits the use of the algorithms to the designed class 
workflow. Take for example the principal component analysis (PCA) class within Spatial Analyst 
namespace (ESRIa, 2010, ESRIb 2010). The interface to this class requires three simple inputs (raster 
bands, path to estimated parameters, and optional number of components to calculate) and produces two 
outputs (a new raster surface and the estimated parameters). Within the class, the PCA algorithm 
combines a number of statistical steps to generate the PCA estimates (e.g., calculating variance co-
variance and performing the matrix algebra to estimate Eigen values and vectors). These estimates are 
then used to transform the original bands into an orthogonal raster dataset. Though simple to code and 
implement for raster data, the algorithms used to estimate Eigen values and vectors within the class 
cannot be applied to other workflows that use different types of data (e.g., vector data). These types of 
limitations significantly restrict the types of analyses that can be performed within ArcDesktop and 
necessitate the development and integration of additional libraries. In this study we address the limitations 
of raster spatial modeling and complex statistical and machine learning algorithms within the ArcDesktop 
environment by extending ArcMap’s functionality and creating a new modeling framework called 
Function Modeling (FM). 
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Methods 
 
.NET Libraries 

To address these challenges we developed a series of coding libraries that leverage the concepts 
of delayed reading using Function Raster Datasets (ESRIc 2010) and integrate numeric, statistical, and 
machine learning algorithms with ESRI’s ArcObjects.  Combined, these libraries facilitate FM which 
allows users to chain modeling steps and complex algorithms into one raster dataset or field calculation 
without writing the outputs of intermediate modeling steps to disk. Our libraries were built using an 
object-oriented design, .NET framework, ESRI’s ArcObjects, ALGLIB (Sergey 2009), and Accord.net 
(Souza 2012). This work is easily accessible to coders and analysts through our subversion site (FS 
Software Center 2012) and ESRI toolbar add-in (RMRS 2012). 

The methods and procedures of our class libraries parallel many of the functions found in ESRI’s 
Spatial Analyst extension including focal, aggregation, resampling, convolution, remap, local, arithmetic, 
mathematical, logical, zonal, surface, and conditional. However, our libraries support multiband 
manipulations and perform these transformations without writing intermediate or final output raster 
datasets to disk. Our spatial modeling framework focuses on storing only the manipulations occurring to 
datasets and applying those transformations dynamically at the time data are read, greatly reducing 
processing time and data storage requirements.  In addition to including common types of raster 
transformations, we have developed and integrated multiband manipulation procedures such as gray level 
co-occurrence matrix (GLCM), landscape metrics, entropy and angular second moment calculations for 
focal and zonal procedures, image normalization, and a wide variety of statistical and machine learning 
transformations directly into this modeling framework.  

While the statistical and machine learning transformations can be used to build surfaces and 
calculate records within a field, they do not in themselves define the relationships between response and 
explanatory variables like a predictive model. To define these relationships, we built a suite of classes that 
performs a wide variety of statistical testing and predictive modeling using many of the optimization 
algorithms and mathematical procedures found within the ALGLIB (Sergey 2009) and Accord.net (Souza 
2012) projects. Typically, these classes use samples drawn from a population of tabular records or raster 
cells to test hypotheses and create generalized associations (e.g., an equation or procedure) between 
variables of interest that are expensive to collect (i.e. response variables) and variables that are less costly 
and thought to be related to the response (i.e. explanatory variables; Figure 2).  While the inner workings 
and assumptions of the algorithms used to develop these relationships are beyond the scope of this paper, 
the classes developed to utilize these algorithms within a spatial context provide coders and analysts with 
the ability to easily use these techniques to define relationships and answer a wide variety of questions. 
Combined with FM, the sampling, equation\procedure building, and predictive surface creation workflow 
can be streamlined to produce outputs that not only answer questions, but also display relationships 
between response and explanatory variables in a spatially explicit manner at fine resolutions across large 
spatial extents.  
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Figure 2. An example of a generalized association (predictive model) between tons of above ground Aspen biomass 
(response) and nine explanatory variables derived from remotely sensed imagery. This relationship was developed 
using a random forest algorithm and the RMRS Raster Utility coding libraries. The top graphic illustrates the 
functional relationship between biomass and the explanatory variable called “PredProbVert CONTRAST_Band12”, 
while holding all other explanatory variables values at 20% of their sampled range. The bottom graphic depicts the 
importance of each variable within the predictive model by systematically removing one variable from the model 
and comparing changes in root mean squared error (RMSE).  
 
Simulations 

From a theoretical standpoint, FM should reduce processing time and storage space associated 
with spatial modeling (i.e., less in and out reading and writing from and to disk). However, to justify the 
use of FM methods, it is necessary to quantify the extent to which FM actually reduces processing and 
storage space. To evaluate the efficiency gains associated with FM, we designed, ran, and recorded 

Aspen 
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processing time and storage space associated with six simulations, varying the size of the raster datasets 
used in each simulation. From the results of those simulations we compared and contrasted FM with 
conventional modeling (CM) techniques using linear regression. All CM techniques were directly coded 
against ESRI’s ArcObject Spatial Analyst classes to minimize CM processing time and provide a fair 
comparison.  

Spatial modeling scenarios within each simulation ranged from one arithmetic operation to twelve 
operations that included arithmetic, logical, conditional, focal, and local type analyses (Table 1). Each 
modeling scenario created a final raster output and was run against six raster datasets ranging in size from 
1,000,000 to 121,000,000 total cells, incrementally increasing in size by 2000 columns and 2000 rows at 
each step. Cell bit depth remained constant as floating type numbers across all scenarios and simulations. 

 
Table 1. Spatial operations used to compare and contrast Function Modeling and conventional raster modeling. 
Superscript values indicate the number of times an operation was used within a given model. Model number 
(column 1) also indicates the total number of processes performed for a given model. 
Model Spatial Operation Types 

1 Arithmetic (+) 
2 Arithmetic (+) & Arithmetic (∗) 
3 Arithmetic (+), Arithmetic (∗) & Logical (>=) 
4 Arithmetic (+)2, Arithmetic (∗) & Logical (>=) 
5 Arithmetic (+)2, Arithmetic (∗),  Logical (>=) & Focal (Mean,7,7) 
6 Arithmetic (+)2, Arithmetic (∗)2, Logical (>=) & Focal (Mean,7,7) 
7 Arithmetic (+)2, Arithmetic (∗)2, Logical (>=), Focal (Mean,7,7), & Conditional 
8 Arithmetic (+)3, Arithmetic (∗)2, Logical (>=), Focal (Mean,7,7), & Conditional 
9 Arithmetic (+)3, Arithmetic (∗)2, Logical (>=), Focal (Mean,7,7), Conditional, & Convolution (Sum,5,5) 
10 Arithmetic (+)3, Arithmetic (∗)3, Logical (>=), Focal (Mean,7,7), Conditional, & Convolution(Sum,5,5) 

11 Arithmetic (+)3, Arithmetic (∗)3, Logical (>=), Focal (Mean,7,7), Conditional, Convolution(Sum,5,5), & 
Local(∑) 

12 Arithmetic (+)4, Arithmetic (∗)3, Logical (>=), Focal (Mean,7,7), Conditional, Convolution(Sum,5,5), & 
Local(∑) 

 
Case study 

Furthermore, to illustrate the benefits of using FM to analyze data and create predictive surfaces, 
we evaluated the time savings associated with a recent study in the Uncompahgre National Forest (UNF; 
Hogland et. al., 2014). In this study we used FM, field data, and fine resolution imagery to develop a two 
stage classification and estimation procedure that predicts mean values of forest characteristics across 0.5 
million acres at a spatial resolution of 1 m2. The base data used to create these predictions consisted of 
National Agricultural Imagery Program (NAIP) color infrared (CIR) imagery (U.S. Department of 
Agriculture National Agriculture Imagery Program 2012), which contained a total of ten billion pixels for 
the extent of the study area. Within this project we created no less than 365 explanatory raster surfaces 
(many of which represented a combination of multiple raster functions), 52 predictive models, and 64 
predictive surfaces at the extent and spatial resolution of the NAIP imagery1.   

While it would be ideal to directly compare CM with FM for the UNF case study, ESRI’s 
libraries do not have procedures to perform many of the analyses and raster transformations used in the 
study, so CM was not incorporated directly into the analysis. Alternatively, to evaluate the time savings 
associated with using FM we used our simulated results and estimated the number of individual CM 
functions required to create GLCM explanatory variables and model outputs. Processing time was based 
                                                           
1 While this study initially used spatial analyst procedures (PCA and ISO cluster) and statistical SAS® software to 
build predictive models, our libraries have since added these techniques, which in turn have been used to generate 
the final outputs for this study.   
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on the number of CM functions required to produce explanatory variables and predictive surfaces. In 
many instances, multiple CM functions were required to create just one explanatory variable or final 
output. The number of functions were then multiplied by the corresponding proportion increase in 
processing time associated with CM when compared to FM. Storage spaced was calculated based on the 
number of intermediate steps used to create explanatory variables and final outputs. In all cases the space 
associated with intermediate outputs from CM were calculated without data compression and summed to 
produce a final storage space estimate. 
 
Results 
 
.Net Libraries 

Leveraging ESRI’s API, we were able to substantially reduce development time and focus our 
resources on designing solutions to analytical problems. Currently, our solution contains 639 files, over 
70,000 lines of code, 457 classes, and 74 forms that facilitate functionality ranging from data acquisition 
to raster manipulation and statistical/machine learning types of analyses. Our coding solution, RMRS 
Raster Utilities, contains two primary projects that consist of an ESRI Desktop class library (“esriUtil”) 
and an ArcMap add-in (“servicesToolBar”). The project esriUtil contains most of the functionality of our 
solution, while the servicesToolBar project wraps that functionality into a toolbar accessible within 
ArcMap. In addition, two open source numeric class library solutions are used within our esriUtil project. 
These solutions, Accord.net (Souza 2012) and ALGLIB (Sergey 2009), provide access to numeric, 
statistical, and machine learning algorithms used to facilitate the statistical and machine learning 
procedures within our classes.  

Our esriUtil project represents the bulk of our coding endeavor and the classes within this project 
are grouped based on functionality into General Procedures, Data Acquisition, Raster Utilities, Sampling, 
and Statistical Procedures. General Procedures include classes that facilitate FM, batch processing, 
opening and closing function models, managing models, and saving FM to conventional raster datasets 
(e.g., Imagine file format). Data Acquisition classes streamline the use of web services to interactively 
download and store vector and raster data. Raster Utilities classes streamline raster transformations and 
summarizations and builds the underlining foundation for FM. Sampling classes focus on creating 
samples of populations and extracting values from raster datasets for those samples. Statistical Procedures 
classes summarize datasets and analyze variables within those datasets to test hypotheses and build 
predictive models.   

The primary classes within esriUtil include a database manipulation class (geodatabaseutily), 
raster manipulation class (rasterUtil), feature manipulation class (featureUtil), and multiple statistical and 
machine learning classes (Statistics).  The geodatabaseutility class contains 2,831 lines of code that 
streamlines vector, tabular, and raster data access and provides procedures to create vector and tabular 
data along with fields within vector and tabular datasets. The rasterUtil class contains 4,258 lines of code 
and 124 public procedures that focus on dynamically transforming raster datasets using raster functions. 
Many of these procedures reference 56 newly developed raster functions that create transformations of 
raster datasets. Raster transformations for these newly developed raster functions range from surface type 
manipulations to generating predictive model outputs (Table 2) and can be added to any function raster 
dataset to produce a FM. The featureUtil class contains 815 lines of code and simplifies selecting features 
based on the statistical properties of the data and exporting features to a new output. Our Statistics 
namespace contain 88 different classes with over 12,000 lines of code that performs a wide variety of 
analyses ranging from categorical data analysis to creating predictive models such as principle component 
analysis (PCA), clustering, general linear modeling (GLM), Random Forest ®, and Soft-max neural nets 
(Table 3).  
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Table 2. Raster transformations that can be applied to function raster datasets using the raterUtil class of the esriUtil 
project. 

Raster Function Button Description 
Arithmetic 
Analysis 

 

Adds, subtracts, multiplies, divides, and calculate modulus for two multiband raster datasets or a multiband 
raster dataset and a constant 

Math 
Transformation 

 

*Mathematically transform a multiband raster dataset 

Logical Analysis 
 *Performs >, <, >=, <=, = logical comparisons between to multiband raster datasets or a multiband raster 

dataset and a constant 
Conditional 
Analysis 

 

*Performs a conditional analysis using multiband raster datasets and/or constants 

Remap Raster 
 

Remaps the cell values of a multiband raster dataset 

Focal Analysis 
 

* Performs focal analyses for a multiband raster dataset 

Focal Sample 
 * Samples raster cells of a multiband raster dataset within a focal window, given defined offsets from the 

central window cell 
Convolution 
Analysis 

 

* Performs convolution analysis on multiband raster dataset 

Local Stat Analysis 
 

* Performs local type analysis on a multiband raster dataset 

Linear Transform 
 

* Performs a linear transformation of a multiband raster dataset 

GLCM 
 

* Performs grey level co-occurrence matrix transformations on multiband raster datasets 

Landscape Metrics 
 

* Performs moving window landscape metrics transformations for multiband raster datasets 
Create Constant 
Raster 

 

* Creates a constant value raster dataset 

Null Data to value 
 

* Converts no data to a new value for multiband raster dataset 
Set Values to No 
Data 

 

* Sets specified values to no data for multiband raster dataset 

Set Null Value 
 

* Sets the values used for no data in a raster dataset 

Flip Raster 
 

* Flips multiband raster datasets 

Shift Raster 
 

* Shifts multiband raster datasets based on a specified number of pixels 

Rotate Raster 
 

* Rotates multiband raster datasets based on a specified angle 

Combine Raster 
 

* Combines multiband raster dataset to create a single band raster dataset of unique raster band combinations 

Aggregate Cells 
 

* Resamples and perform a summarization of all cells used to increase the cell size 

Slope Raster 
 

Calculates slope 

Calculate Aspect 
 

Calculates aspect 

Northing 
 

* Converts aspect to a northing raster dataset 

Easting 
 

*  Converts aspect to a easting raster dataset 

Clip Analysis 
 

Clips a multiband raster dataset given either the extent of a raster dataset or the boundary of a feature class 

Convert Pixel Type 
 

Transforms pixel depth for multiband raster datasets 

Rescale Analysis 
 

* Rescales pixel values of a multiband raster dataset to the min and max values given the defined pixel depth 

Create Composite 
 

* Creates a multiband raster dataset given specified bands from multiple raster datasets 

Extract Bands 
 

* Creates a multiband raster dataset by extract specified bands of a multiband raster dataset 

Tasseled Cap 
 

* Performs a Tasseled Cap transformation (Landsat 7 coefficients) 

NDVI 
 

* Calculates a normalized difference vegetation index (NDVI) 

Resample Raster 
 

* Resamples the cell size of a multiband raster 

Normalize 
 

* Brings two multiband raster datasets to a common radiometric scale 

Merge Raster 
 

* Merges multiband  raster datasets 

Create Mosaic 
 

Creates a mosaic raster dataset 

Function Modeling 
 

* Combines raster function into a function model 
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Zonal Statistics 
 

* Performs zonal statistics on multiband raster datasets 

Region Group 
 

* Groups regions of a multiband raster dataset 

Build Raster Model 
 

* Builds predictive raster surfaces given a predictive model and explanatory raster surfaces 

Batch Processing 
 

* Will batch process RMRS Raster Utility commands 
* Identifies either new procedures or functionality not available within ESRI’s Spatial Analyst extension or Image 
Analysis Window.    

 
The servicesToolBar combines the forms and procedures within esriUtil into an organized, easily 

deployed toolbar. While primarily a wrapper around the functionality contained within esriUtil, 
servicesToolBar provides analysts with easy access to a wide array of procedures that currently do not 
exist within ArcMap. Moreover, many of these procedures can be tied together in a step-like fashion to 
build multi-procedure FM and batch processes. Together, these projects facilitate a wide range of 
analytics procedures that can be applied to both vector and raster type data in a streamlined, efficient 
fashion.  
 
Table 3. Statistical analyses and machine learning techniques accessible to coders and analysts through the RMRS 
Raster Utility libraries. All statistical and machine learning procedures create a RMRS Raster Utility model that can 
be used to display modeling results and predict new outcomes in raster, vector, and tabular formats. 

Analysis Button Description 
Variance 
Covariance 

 

Calculates variance covariance and correlation matrices for fields within a table or bands within a raster 

Stratified Variance 
Covariance 

 Calculates stratified variance covariance and correlation matrices for fields within a table or bands within a 
raster 

Compare Sample to 
Population 

 

Compares similar fields within two tables to determine if a sample is representative of a population 

Compare 
Classifications 

 

Compares the accuracy and similarity of two categorical classifications 

Accuracy 
Assessment 

 

Calculates the accuracy of a classification model 

Adjusted Accuracy 
Assessment 

 Adjusts an existing accuracy assessment by weighting accuracy based on the proportions of each category 
within a user defined extent   

T-Test 
 

Compares fields within a table or bands within a raster by groups or zone, respective 

PCA/SVD 
 Performs a single vector decomposition, principal component analysis on fields within a table or bands 

within a raster dataset 
Cluster Analysis 

 

Performs K-means, Gaussian, and binary clustering on fields within a table or bands within a raster 

Linear Regression 
 

Performs multiple linear regression using fields within a table or bands within a raster 

Logistic Regression 
 

Performs logistic regression using fields within a table or bands within a raster 
Generalized Linear 
Modeling 

 Performs general linear modeling using fields within a table or bands within a raster (supported links: 
identity, absolute, cauchit, inverse, inverse squared, logit, log, log log, probit, sin, and threshold) 

Multivariate 
Regression 

 

Performs multivariate linear regression using fields within a table or bands within a raster 

Multinomial 
Logistic Regression 

 

Performs polytomous (multinomial) logistic regression using fields within a table or bands within a raster 

Random Forest 
 Performs random forest classification or regression tree analysis using fields within a table or bands within 

a raster 
Soft-max Nnet 

 

Performs soft-max neural networks classification using fields within a table or bands within a raster 

Format Zonal Data 
 Formats the outputs of multiband Zonal Statistics (Table 2) for use in statistical machine learning 

techniques 
View Sample Size 

 

Estimates sample size based on a subset of the above statistical procedures using power analysis 

Show Model Report 
 

Shows the outputs of the above statistical and machine learning procedures 

Predict New Data 
 Creates new fields within a tabular dataset and populates the records within that field with the predicted 

outcomes based on the above statistical and machine learning procedures 
Delete Model 

 

Deletes statistical and machine learning models create in the above procedures 
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Simulations 
To evaluate the gains in efficacy of FM, we compared it with CM across six simulations. FM 

significantly reduced both processing time and storage space when compared to CM (Figures 3 and 4). To 
perform all six simulations FM took 26.13 minutes and a total of 13,299.09 megabytes while CM took 
73.15 minutes and 85,098.27 megabytes. Theoretically, processing time and storage space associated with 
creating raster data for a given model, computer configuration, set of operations, and data type should be 
a linear function of the total number of cells within a rater dataset and the total number of operations 
within the model: 

Timei (seconds) = βi(cells х operations)i 
Spacei (megabytes) = βi(cells)i 

 
where i denotes the technique, either FM or CM in this case. Our empirically derived FM Time and Space 
models nicely fit the linear paradigm (R2=0.96 and 0.99, respectively). However, for the CM techniques 
the model for Time (R2=0.91) deviated slightly and the model for Space (R2=0.10) deviated significantly 
from theoretical distributions, indicating that in addition to the modeling operations, extra operations 
occurred to facilitate raster processing and that some of those operations produced intermediate raster 
datasets, generating wider variation in time and space requirements than would be expected based on 
these equations.  

FM and CM time equation coefficients indicate that, on average, FM reduced processing time by 
approximately 278%. Model fit for FM and CM space equations varied greatly between techniques and 
could not be compared reliably in the same manner. For the CM methodology, storage space appeared to 
vary depending on the types of operations within the model and often decreased well after the creation of 
the final dataset. This outcome is assumed to be caused by delayed removal of intermediate datasets. 
Overall though, FM reduced total storage space by 640% when compared to CM for the six simulations. 

 

Figure 3. Function Modeling and conventional modeling regression results for processing time. 
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Figure 4. Function Modeling and conventional modeling regression results for storage space. 
 
Case study 

Although simulated results helped to quantify improvements related to using FM, the UNF case 
study illustrates these saving in a more concrete and applied manner. As described in the methods section, 
this project created no less than 365 explanatory raster surfaces, 52 predictive models, and 64 predictive 
surfaces at the extent and spatial resolution of the NAIP imagery (202,343 ha and 1 m2, respectively). In 
this comparison, it was assumed that all potential explanatory surfaces were created for CM to facilitate 
sampling and statistical model building. In contrast, FM only sampled explanatory surfaces and calculated 
values for the variables selected in the final models. For the classification stage of the UNF study, we 
estimated that to reproduce the explanatory variables and probabilistic outputs using CM techniques, it 
would take approximately 283 processing hours on a Hewlett-Packard EliteBook 8740 using an I7 Intel 
quad core processor and would require at least 19 terabytes of storage space. Using FM these same 
procedures took approximately 37 processing hours and total of 140 gigabytes of storage space. Similarly, 
for the second stage of the classification and estimation approach using CM, we estimated a processing 
time of approximately 2,247 hours with an associated storage requirement of 152 terabytes. Using FM 
these same procedures took approximately 488 hours and required roughly 913 gigabytes of storage.  
 
Discussion 

 
ArcObjects provides a flexible platform that can be used to extend the functionality of ESRI 

software. Many have leveraged this flexibility to develop procedures, models, scripts, libraries, add-ins, 
extensions, and applications that automate, streamline, and create new outputs and functionality. 
Moreover, this flexibility makes it easy to integrate the functionality of other coding solutions. In our 
solution, ESRI’s API provided the base functionality needed to build new modeling techniques that 
significantly improve raster processing and efficiently add complex statistical and machine learning 
algorithms directly into ArcGIS. Our solution, RMRS Raster Utility, not only adds numerous statistical 
and machine learning procedures directly to Desktop, but also facilitates quick and efficient manipulation 
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and modeling of large datasets. For example, the NAIP imagery used in the case study included 10 billion 
pixels covering 0.5 million acres at a spatial resolution of 1 m2. These procedures can be used to perform 
basic transformations of raster datasets that can be combined together through FM to perform new 
analyses that are simply too costly in terms of time and space to perform using CM.    

The underlying concept behind FM is delayed reading. Using this concept with raster data 
removes the need to store intermediate raster datasets to disk in the spatial modeling process and allows 
models to process raster data only for the spatial areas needed at run time. As spatial models become 
more complex (i.e., more modeling steps), the number of intermediate outputs increases. From a CM 
standpoint these intermediate outputs significantly increase the amount of processing time and storage 
space required to run a given model. In contrast to CM, FM does not store intermediate datasets, thereby 
significantly reducing model processing time and storage space. In this study, we confirmed this effect by 
comparing FM to CM methodologies using six simulations that created final raster outputs from multiple, 
incrementally complex models. Furthermore, FM does not need to store outputs to disk in a conventional 
format (e.g., Grid or Imagine format). Instead, all functions occurring to source raster datasets can be 
stored and used in a dynamic fashion to display, visualize, symbolize, retrieve, and manipulate function 
datasets at a small fraction of the time and space it takes to create a final raster output. For example, if we 
were to perform the same six simulations presented here but replace the requirement of storing the final 
output as a conventional raster format with creating a FM, FM would take less than 1 second and would 
require less than 50 kilobytes of storage to finish the same simulations. This is a dramatic change in the 
cost associated with these types of analyses. 

Similar to the simulations, FM significantly reduced processing time and storage space associated 
with creating the final outputs of the UNF case study. In this example, FM facilitated an analysis that 
simply would have been too costly to perform using CM. Moreover, FM made it possible to explore a 
wide range of potential relationships in a streamlined fashion. By using the concept of delayed reading 
and only processing and extracting data for a sample of the study area rather than its full extent, FM made 
it possible to explore many more relationships than could have been evaluated using CM. For example, to 
populate the same values within a CM context, analysts would either develop and apply spatial models for 
each of the potential explanatory surfaces (365) at the spatial extent of the entire study area or would need 
to extract the extent of each sample within the baseline raster dataset, perform transformations for each of 
those extractions, and then populate sample from each of those transformed extractions. Here again, 
populating the sample using CM techniques would simply be too costly in terms of processing and 
storage. However, populating the samples used in the UNF study using FM required only a few minutes 
and did not require any addition storage beyond that required for an additional field and its populated 
values. This example illustrates that FM not only improves raster spatial modeling but opens the door to 
projects that are currently out of reach for many analysts using only CM. 

To facilitate the use of FM and complex statistical and machine learning algorithms within 
ESRI’s GIS, we have created a user-friendly ESRI toolbar (Figure 4) that provides quick access to a wide 
array of spatial analyses, while allowing users to easily store and retrieve FM models. FM models can be 
loaded into ArcMap as a function raster dataset and be used interchangeably with all ESRI raster spatial 
operations. While FM is extremely efficient and uses almost no storage space, there may be 
circumstances that warrant saving a FM to disk as a conventional raster format. For example, if one FM 
model (FM1) is read multiple times to create a new FM (FM2) and the associated time it takes to read 
multiple instances of FM1 is greater than the combined read and write time of saving FM1 to a 
conventional raster format (i.e., many transformations within the first FM), then it would be advantageous 
to save the FM1 to a conventional raster format and use the conventional raster dataset in FM2. 
Nonetheless, results from our simulations and case study demonstrate that raster modeling does not 
require storing intermediate datasets to disk and FM substantially reduces processing time and storage 
space.  



Hogland et al. 2014. ESRI User Conference  Page 13 of 14 
 

 
Figure 4. RMRS Raster Utility toolbar is a free, public source, object oriented library packaged as an ESRI add-in 
that simplifies data acquisition, raster sampling, and statistical and spatial modeling, while reducing the processing 
time and storage space associated with raster analysis.  
 

Moving forward, it is a significant challenge to maintain the compatibility of these coding 
projects with advances in software. For example, while ESRI’s libraries allowed us to streamline our 
coding solution and focus our efforts on new processing and analytical techniques, they also require a 
substantial investment in code maintenance. Specifically, as ESRI releases new versions of their software, 
coding projects that rely on fundamental components of ESRI libraries (like the projects described here) 
must test and potentially modify classes to account for those changes. For the RMRS Raster Utility 
solution, migrating between Desktop 10.0 and 10.1 required a fundamental change in how raster objects 
were being used within our classes. Although this change was relatively minor in terms of concept, it 
impacted almost every class within our solution, in turn requiring substantial time and resources to make 
FM usable within Desktop 10.1.    

 
Conclusion 

 
FM streamlines raster modeling by removing the need to store intermediate raster datasets to disk. 

Combined with complex statistical and machine learning algorithms, FM can be used to manipulate raster 
information in ways that were once too costly to entertain. Moreover, by integrating numeric libraries 
directly into our solution, users can answer questions, build predictive models, and display predictive 
outputs in a spatially explicit manner all within the familiar ArcGIS environment. 
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