DNA barcoding at riverscape scales: assessing biodiversity among fishes of the genus *Cottus* (Teleostei) in northern Rocky Mountain streams

MICHAEL K. YOUNG, KEVIN S. MCKELVEY, KRISTINE L. PILGRIM AND MICHAEL K. SCHWARTZ
U.S. Forest Service, Rocky Mountain Research Station, 800 East Beckwith Avenue, Missoula, MT 59801, USA

Abstract

There is growing interest in broad-scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Genetic tools have been used for such assessments for decades, but spatial sampling considerations have largely been ignored. Here, we demonstrate how intensive sampling efforts across a large geographical scale can influence identification of taxonomic units. We used sequences of mtDNA cytochrome *c* oxidase subunit 1 and cytochrome *b*, analysed with maximum parsimony networks, maximum-likelihood trees and genetic distance thresholds, as indicators of biodiversity and species identity among the taxonomically challenging fishes of the genus *Cottus* in the northern Rocky Mountains, USA. Analyses of concatenated sequences from fish collected in all major watersheds of this area revealed eight groups with species-level differences that were also geographically circumscribed. Only two of these groups, however, were assigned to recognized species, and these two assignments resulted in intraspecific genetic variation (>2.0%) regarded as atypical for individual species. An incomplete inventory of individuals from throughout the geographical ranges of many species represented in public databases, as well as sample misidentification and a poorly developed taxonomy, may have hampered species assignment and discovery. We suspect that genetic assessments based on spatially robust sampling designs will reveal previously unrecognized biodiversity in many other taxa.

Keywords: Cottidae, cryptic species, sculpins, species discovery

Received 19 December 2012; revision received 24 January 2013; accepted 6 February 2013

Introduction

Projections of a rapidly changing climate and increasing human population in North America have led to calls for broad-scale biodiversity assessments that can serve as benchmarks for identifying ecological change. Assessing biological diversity requires identifying taxa of interest and describing their distributions. Species-level diversity has long been the primary metric by which biodiversity is measured, in part because organisms at the species level are often easily identified on the basis of their morphology, behaviour or acoustics. In many countries, diversity at levels below that of species is neglected with regard to conservation (Laikre 2010), but to some degree that reflects the difficulty incataloguing variation at lower taxonomic levels when using traditional methods. Increasingly, genetic tools are permitting more detailed and accurate assessments of biodiversity because of their ability to identify conservation units within species and resolve cryptic species complexes (Bickford et al. 2007; Valentini et al. 2009).

Among the largest ongoing efforts to catalogue biodiversity are those predicated on DNA barcoding (Ratnasingham & Hebert 2007), which relies on the sequencing and comparison of a standardized portion of the genome—most often cytochrome *c* oxidase subunit 1 (COI) region of mtDNA (Hebert et al. 2003a)—for species delination and identification. Although initially viewed as highly controversial (Rubinoff 2006), it has subsequently proven to be effective in many circumstances (Teletchea 2010). Although nuclear DNA sequencing has certain advantages and is becoming more feasible for biodiversity assessment (Taylor & Harris 2012), the lack of recombination, rarity of indels, ease and low cost of amplifying and sequencing, and high mutation rates of mtDNA have favoured its use (Zink & Barrowclough 2008).

Nevertheless, assigning samples collected in biodiversity surveys to recognized species is often problematic. The first issue arises when sequences of samples are
compared with those in reference collections. Public databases such as those maintained by the National Center for Biotechnology Information or Barcode of Life Data system (BOLD) contain tens of millions of reference sequences for hundreds of thousands of species. Although these databases represent an enormous, publically available catalogue of life, they suffer several shortcomings: incomplete taxonomic and geographical coverage (Nielsen & Matz 2006; Elias et al. 2007), inclusion of poor-quality sequences (Harris 2003) and misidentification of voucher specimens (Kvist et al. 2010). These can cause problems during the final step in the genetic assessment of biodiversity, which is to determine whether a sampled individual is a representative of an existing species or an undescribed one. Most examples of species identification from sequence data use distance-based methods and are founded on the notion that ancient and contemporary geological and climatic events, combined with the vagility of an organism, constrain and direct landscape-scale—or for stream-dwelling organisms, riverscape-scale (Fausch et al. 2002)—genetic structure in most species (Avise 2000). Thus, sampling schemes and reference databases must account for this structure to permit reliable delineation of species or major lineages. This is especially important when relying on contrasts in genetic distances within and among taxa because broad-scale sampling often results in increased intraspecific variation and less certainty about interspecific distance thresholds, that is the barcode gap (Fregin et al. 2012).

Fine-grained yet broad-scale sampling is critical for taxa that may exhibit limited dispersal and localized divergence, particularly among poorly studied groups. One such group comprises fishes in the genus Cottus, commonly known as sculpins, which are primarily freshwater, benthic species found in lakes, rivers and streams throughout the Northern Hemisphere. Sculpins are mid-trophic species that serve as prey for larger piscivores but also consume macroinvertebrates and the egg and larval stages of other fishes. Although they can represent the bulk of aquatic vertebrate biomass in small streams (Cheever & Simon 2009; Raggon 2010), their ecological significance is poorly understood. Contributing to this uncertainty is a lack of taxonomic clarity. Species in this genus are widely acknowledged as being among the most difficult freshwater fishes to identify (Jenkins & Burkhead 1994; Wydoski & Whitney 2003), in part because putatively diagnostic characteristics are geographically variable within species (McPhail 2007). Molecular analyses (Kinzig et al. 2005; Hubert et al. 2008; April et al. 2011) revealed that several species of North American Cottus contain deeply divergent lineages that might represent unrecognized species, thus the identity and distribution of many members of this genus remain unclear. And because the lifetime home ranges of individual fish can be relatively small, for example, <250 m (Petty & Grossman 2007; Hudy & Shifflet 2009), divergence at small spatial scales may be the norm.

A region in which there has been little work on the biodiversity of sculpins includes the upper Columbia and Missouri River basins in northern Idaho and western Montana. Up to five species of sculpins—Cottus bairdii, Cottus beldingii, Cottus cognatus, Cottus confusus and Cottus rhotheus—have been thought to occur in small streams in this region, although there has been little consensus on their individual distributions (Lee et al. 1980; Wydoski & Whitney 2003; McPhail 2007). Confusion about the identity and distribution of sculpins in this region has also led to ambiguity in conservation...
priorities. In Montana and part of British Columbia, \(C. \text{confusus} \) has at different times been regarded as either a species of special concern or as having never been present (Hendricks 1997; Committee on the Status of Endangered Wildlife in Canada (COSEWIC) 2010).

Our goal was to resolve the distribution and identity of members of this taxonomically difficult group from small streams throughout the U.S. Northern Rocky Mountains. First, we collected sculpins from a spatially comprehensive and randomly selected set of streams that represented all major river basins. Second, we sequenced two regions of the mitochondrial genome to permit comparisons with nearly all described species of North American freshwater sculpins in public databases. Third, we used consensus results from an array of methods to delineate and identify species.

Materials and methods

Sampling

Our data set consisted of sequences from samples collected in the field and sequences obtained from public sequence repositories. Field collections were made (using electrofishing) from 398 streams sampled from 2008 to 2011 on state and federal lands in the upper Columbia and Missouri River basins in northern Idaho and western Montana (Fig. 1). These streams formed part of the PACFISH/INFISH Biological Opinion Effectiveness Monitoring Program network (Kershner et al. 2004). This network comprises a random sample (Stevens & Olsen 1999) of about one-third of all 6th-code subbasins (area, 40–160 km\(^2\); Wang et al. 2011) with substantial federal ownership. Nearly, all sample sites consisted of the first low-gradient stream reach on public land (Kershner et al. 2004). Captured fish were held briefly in buckets containing stream water. Before releasing them, we retained upper caudal fin clips (on chromatography paper; LaHood et al. 2008) of up to 10 specimens captured at each site, but made no attempt to identify sculpins in the field because most species cannot be easily distinguished, and we sometimes handled hundreds of individuals at each site. We captured sculpins in 187 streams and analysed 1–5 fish (generally 2) from 119 streams (and at two sites on five of these streams). Our intent was to include 2–4 streams representing each 4th-code subwatershed in this area (http://water.usgs.gov/GIS/regions.html; Table S1, Supporting information). All collections were made under scientific collection permits issued (to MKY) by Montana Fish, Wildlife and Parks and the Idaho Department of Fish and Game. All tissue specimens and extracted DNA were vouchered at the Wildlife Genetics Laboratory, Missoula, MT.

Fig. 1 Observations of \(Cottus \) in the upper Columbia River and Missouri River basins, Idaho and Montana, USA. These include (a) all sampled sites and those locations for which sculpins were sequenced and (b) the haplotype groups observed at each site.

DNA regions and phylogenetic analyses

Although sequences from many mtDNA regions have been used to identify fish species, we used COI and cytochrome \(b \) (cyt \(b \)) because their popularity (Ratnasingham & Hebert 2007; Page & Hughes 2010) provided the broadest coverage of sculpins in public databases. We sequenced the COI region for all sculpins (\(n = 236 \)) in the sample (Table S1, Supporting information). A subsample of these (\(n = 120 \)) that included most novel COI haplotypes was also sequenced at cyt \(b \). GenBank accession numbers for these sequences are JX282572–282599 (for COI) and JX282526–282571 (for cyt \(b \)).

We used the QIAGEN DNeasy Blood and Tissue kit (QIAGEN Inc.) to extract genomic DNA from tissues, following the manufacturer’s instructions for tissue. The COI region was amplified with primers \(FF2d \) and \(FR1d \).
The cyt b region was amplified with primers L14724 and H15915 (Schmidt & Gold 1993). Reaction volumes of 50 μL contained 50–100 ng DNA, 1× reaction buffer (Life Technologies), 2.5 mM MgCl₂, 200 μM each dNTP, 1 μM each primer, 1 U Taq polymerase (Life Technologies). The PCR programme was 94 °C/5 min, [94 °C/1 min, 55 °C/1 min, 72 °C/1 min 30 s] × 34 cycles, 72 °C/5 min. The quality and quantity of template DNA were determined by 1.6% agarose gel electrophoresis. PCR products were purified with Exo-Sap-IT (Affymetrix-USB Corporation) according to manufacturer’s instructions.

We used the Big Dye kit and the 3700 DNA Analyzer (ABI; High Throughput Genomics Unit) to obtain DNA sequences. We used the given primers to generate DNA sequence data for COI, whereas we used internal primers LC1, LC2 and LC3 (Kinziger & Wood 2003) to generate cyt b sequences in three fragments. Sequences were viewed and aligned with Sequencher (Gene Codes Corp.).

The COI data set consisted of 620-bp sequences, which included 182 variable and 124 parsimony-informative sites. Mean nucleotide frequencies were A, 0.2274; T, 0.2979; C, 0.2958; and G, 0.1789. The 1034-bp cyt b data set consisted of 370 variable and 256 parsimony-informative sites, for which mean nucleotide frequencies were A, 0.2337; T, 0.2861; C, 0.3247; and G, 0.1555. We observed no indels or gaps, amino acid translations did not reveal any stop codons, and all sequences exceeded lengths typical of nuclear DNA of mitochondrial origin (Zhang & Hewitt 1996).

We used a two-step approach to delineate and identify species of sculpin from the field collections. First, we assigned field-collected samples to particular haplotype groups using three methods to analyse concatenated COI and cyt b sequences (n = 120; Table S1, Supporting information): 95% maximum parsimony networks, maximum-likelihood phylogenetic trees and pairwise genetic distances. We used TCS 1.21 (Clement et al. 2000) to construct 95% maximum parsimony networks. Independent networks were regarded as candidate species (Hart & Sunday 2007). Ninety-five per cent maximum parsimony networks tend to be conservative estimators of species diversity because the probability of pooling distinct taxa into one network can be relatively high, whereas the likelihood of splitting a single taxon into separate networks is low (Hart & Sunday 2007; Chen et al. 2010). Next, we constructed mid-point-rooted maximum-likelihood phylogenetic trees under the strict tree-based method (Ross et al. 2008) to delineate groups. The evolutionary model GTR + G + I yielded the lowest AICc and highest log-likelihood values for these data. Using this model, we constructed maximum-likelihood trees with 1000 bootstrap replicates incorporating subtree-prune-and-graft branch-swapping in MEGA 5.1 (Tamura et al. 2011). We inspected terminal clades in the majority consensus tree for reciprocal monophyly and for concurrence with the independent maximum parsimony networks. Because of incomplete lineage sorting, species can develop without exhibiting reciprocal monophyly (Funk & Omland 2003); thus, this method also tends to underestimate species richness. Finally, after assignments to putative individual species, we then compared the maximum intragroup distance to the minimum intergroup distance to assess whether a barcode gap was evident and consistent (Meier et al. 2006). We used the absolute maximum intragroup distance as the threshold for species delineation. We based calculations on uncorrected p-distances because these have been shown to perform as well or better for detection of barcode gaps than the more broadly used Kimura-2-parameter model (Collins et al. 2012; Srivathsan & Meier 2012).

The second step involved repeating these analyses with the inclusion of public sequences to facilitate species identification. These consisted of all publically available sequences of Cottus bairdii, Cottus beldingii, Cottus cognatus, Cottus confusus and Cottus rhotheus—those species believed to occupy the region we sampled—with unique haplotypes as well as single representatives of all other species of Cottus from North America present in public sequence repositories (Table S2, Supporting information). For these analyses, COI (n = 28 haplotypes from field sampling and 46 from public sources) and cyt b (n = 46 haplotypes from field sampling and 39 from public sources) sequences were examined separately because no individual in public databases was represented by sequences of both loci. After alignment, all sequences were trimmed to the same number of nucleotides. Sequences with ambiguous nucleotides were excluded from maximum parsimony networks because they can introduce errors in network structure (Joly et al. 2007) but were retained for other analyses. Following Kinziger et al. (2005), we used Leptocottus armatus as an outgroup in maximum-likelihood phylogenetic trees. Because the focus at this step was to assign each group to a described species, we adopted the liberal tree-based method with a distance threshold (Ross et al. 2008), that is, sequences that were sister to or within a monophyletic clade with a recognized species, and were less than the maximum intraspecific distance from that species, were identified as that species. We based distance thresholds on the absolute maximum intragroup distance for each marker-haplotype group combination for our field-collected samples, which led to a variable distance threshold. When haplotype groups were represented by a single sequence, we adopted the largest intragroup distance among all haplotype groups for that marker as the threshold distance.
We interpreted consensus among the three methods and both markers—as well as geographical concordance—as evidence for (i) the assignment of a haplotype group to a described species or (ii) that group to represent a lineage or species not represented in public databases.

Results

Species delineation

On the basis of the concatenated sequences, there was substantial concordance among methods with respect to the classification of field-sampled sculpins. Calculation of 95% maximum parsimony networks generated eight distinct networks of haplotypes (Fig. 2) that were also resolved as reciprocally monophyletic clades in maximum-likelihood trees (Fig. 3). Comparisons of all possible pairwise genetic distances revealed that minimum intergroup distances (mean, 4.18%) tended to exceed maximum intragroup distances (mean, 0.58%; Table 1). Nevertheless, overlap between the minimum intergroup distance (haplotype groups F–G, 1.09%) and maximum intragroup difference (haplotype group B, 1.21%) precluded designating a fixed threshold (or barcode gap) that would delineate all groups. The eight haplotype groups (A–H) delimited by the network- and tree-building approaches, however, were also geographically distinct; most were confined to particular river basins within the study area. Consequently, we regarded these eight groups as potential species in further analyses.

Species identification

Assignment of haplotype groups to known species depended on the region used and on the pool of species to which each haplotype group could be compared. Network analyses of COI sequences collapsed the haplotype groups into three networks, only two of which were unambiguous. Group B was connected to two haplotypes identified as *Cottus beldingii*. Haplotype groups D and E were joined in a single network unconnected to any other. The remaining haplotype groups were joined in a single complex network that included public sequences of *Cottus bairdii*, *Cottus caeruleomentum*, *Cottus cognatus* and *Cottus rhotheus*. In contrast, analyses of cyt b sequences returned seven unambiguous networks. Again, haplotype group B was connected to a public sequence identified as *Cottus beldingii*. The remaining networks consisted of one (A, C, F, G, H) or two (D–E) haplotype groups and were unconnected to sequences of any recognized species.

Similarly, maximum-likelihood trees based on COI sequences were less well resolved and supported than those based on cyt b sequences, but the topologies produced by both regions were comparable with regard to their sister taxa and to monophyly of the haplotype groups (Fig. 4). In the COI-based tree, bootstrap support was high (≥86%) for all terminal clades containing...
haplotype groups, and half of the groups were reciprocally monophyletic from all other sculpins. Applying the distance threshold (Table 2) resulted in identifying group B as *C. beldingii*, combining groups D and E as a single unidentified taxon and combining groups F and G and identifying them as *C. rhotheus*. The remaining groups were not assigned to any recognized species. In the cyt b-based tree, all haplotype groups were in terminal clades with very high bootstrap support (≥97%). All were reciprocally monophyletic other than group B, which was again identified as *C. beldingii*. The other seven haplotype groups were too distant to be combined with recognized species or one another and were regarded as unidentified species.

Comparisons of pairwise genetic distances indicated differentiation among haplotype groups and most recognized species (Table 2). The nearest neighbour of each haplotype group was inconsistent; for only three of the eight groups was the same nearest neighbour identified in analyses with both markers. Intragroup genetic distances tended to be larger for cyt b than for COI sequences (means, 0.59% vs. 0.44%). In all comparisons, genetic distances to the nearest neighbour were consistently greater with cyt b than with COI.
phylogenetic trees suggest that the closest relatives of C. bairdii (Holton & Johnson 2003), sculpins from this por-

tional Divide. Although historically assigned to

columbia River basin immediately adjacent to the Conti-
tional Divide. Although historically assigned to Cottus bairdii (Holton & Johnson 2003), sculpins from this por-
tion of the study area are now believed to represent an

bairdii (Holton & Johnson 2003), sculpins from this por-

Discussion

Delineation and identification of haplotype groups

Our spatially comprehensive sample likely provided a thorough assessment of haplotype diversity in stream-
dwelling sculpins in the upper Columbia and Missouri
River basins. In general, there was consensus among the
three approaches and two markers for the existence of
eight lineages that differed at levels typical of separate
freshwater fish species (Ward 2009). The complex geo-
ological and climatic history in this region—including the
Cascadian orogeny, active volcanism, redirection of
major river basins and Pleistocene glaciation—has led to
diversification in an array of taxa (Shafer et al. 2010), so
this diversity may be unsurprising. Quite surprising,
however, was that the majority of these groups did not
assign to recognized species, despite North American
fishes having been generally well inventoried in genetic
surveys (Hubert et al. 2008; April et al. 2011). Below, we
briefly describe the likely taxonomic position of each
group and its distribution.

Group A was the only sculpin in the upper Missouri
River basin and was also present in some portions of the
Columbia River basin immediately adjacent to the Conti-
nental Divide. Although historically assigned to Cottus bairdii (Holton & Johnson 2003), sculpins from this por-
tion of the study area are now believed to represent an
unrecognized species (Neely 2003; McPhail 2007). Our
results support this interpretation, but with a caveat: it
may represent a range extension for Cottus hubbsi. Both
phylogenetic trees suggest that the closest relatives of
group A comprise those sculpins also formerly thought
to be C. bairdii—C. bairdii punctulatus, C. b. semiscaber,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.95</td>
<td>1.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.87</td>
<td>4.77</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>4.04</td>
<td>5.97</td>
<td>4.53</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.28</td>
<td>6.16</td>
<td>4.71</td>
<td>1.27</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.78</td>
<td>6.64</td>
<td>2.96</td>
<td>5.43</td>
<td>5.49</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>2.90</td>
<td>6.22</td>
<td>2.90</td>
<td>5.85</td>
<td>5.91</td>
<td>1.09</td>
<td>NC‡</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.35</td>
<td>5.19</td>
<td>2.60</td>
<td>4.47</td>
<td>4.71</td>
<td>3.44</td>
<td>3.44</td>
<td>0.84</td>
</tr>
</tbody>
</table>

*We based group labels on independent 95% maximum parsimony networks and reciprocally monophyletic clades from maximum-likelihood trees.
†Values on the diagonal are maximum intragroup distances and
off-diagonal values are minimum intergroup distances.
‡NC indicates no comparison because only one haplotype was
present in the upper Clearwater River (Maughan 1980). Therefore, sculpins from this portion of the upper Clearwater River basin were once described as a separate species, Cottus tubulatus (Hubbs & Schultz 1932). Furthermore, haplotypes in this group—from the northernmost distribution of C. beldingii—were separated by genetic distances of 2.70–4.52% from those of C. beldingii present in the upper Snake River, Great Basin and Willamette River. This high intraspecific divergence warrants

Published 2013. This article is a U.S government work and is in the public domain in the USA
& Whitney 2003; McPhail 2007). In addition, COI haplotypes of C. rhotheus were more similar to those of F and G than they were to one another and the type location—Spokane River Falls, Washington—was relatively close to some of our sampling sites. Consequently, we regard these groups as possible members of this species, but note that this results in an intraspecific genetic distance among all available samples (at cyt b) exceeding 2.5%, a threshold generally associated with species-level differences.

Group H was distributed throughout the Coeur d’Alene and St. Joe River basins in Idaho, with a disjunct range in the central Clark Fork River basin in Montana. This distribution is not consistent with that of any described species. In some treatments, sculpins from near the Idaho sampling locations were identified as C. confusus (Bailey & Bond 1963), but members of group H differ by more than 4.05% from that species (and groups D and E) and are unrelated on the basis of our analyses. Given the large differences between group H and all other species and haplotype groups of sculpins, we consider it likely that this group constitutes an undescribed species.

Did genetically based biodiversity assessment succeed?

We regard the characterization of sculpin biodiversity in the U.S. northern Rocky Mountains as a partial success. Genetic analyses of spatially comprehensive collections of Cottus revealed eight geographically and genetically delineated groups of sculpins that could be regarded as distinct taxa. Nevertheless, we were able to assign (and
tenuously at best) few of the haplotype groups to a recognized species on the basis of genetic sequences. Is it possible that we have discovered up to eight previously undescribed taxa (e.g. species or subspecies) or is the current approach to genetically based identification suspect?

A primary tenet of such identification is that all species that are potentially related to an unknown sample are available for comparison. We expected to meet this criterion because we examined sequences from nearly all named species of *Cottus* in North America and because barcode coverage of North American freshwater fishes is regarded as nearly complete (Hanner *et al.* 2011). Although it is plausible that the groups we observed constitute novel taxa, representatives of sculpins in public databases from the region we sampled were almost nil, which we regard as indicative of a more fundamental issue. Current protocols for global, genetically based species inventories aim for five individuals of most species, and up to 25 individuals of widely distributed taxa (Steinke & Hanner 2011). If one presupposes that intraspecific genetic variation is uniformly low, a few samples of an organism—perhaps even one—would be adequate for species diagnosis or discovery. But characterizing biodiversity at and below the level of species appears to require several-fold larger samples (Bergsten *et al.* 2012).

Moreover, we observed geographically complex and highly divergent genetic structure among many of our haplotype groups (Fig. 2), which may be common among organisms that exhibit limited vagility or occupy patchily distributed habitats (Hammer *et al.* 2010) in environments of varying stability over evolutionary time. In such instances, reference collections of convenience samples collected at coarse scales will misrepresent taxonomic diversity by underestimating intraspecific genetic diversity and failing to include novel lineages that constitute new species.

Improving this situation requires progress on several fronts. Foremost is the addition of data sets derived from

<table>
<thead>
<tr>
<th>Haplotype group</th>
<th>Nearest neighbour group COI</th>
<th>Nearest neighbour group cyt b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.32*</td>
<td>0.77</td>
</tr>
<tr>
<td>Cottus hubbsi</td>
<td>0.48-0.65</td>
<td>Cottus extensus</td>
</tr>
<tr>
<td>Cottus cognatus</td>
<td>0.97-1.29</td>
<td>Cottus bairdii punctulatus</td>
</tr>
<tr>
<td>B</td>
<td>1.13</td>
<td>1.26</td>
</tr>
<tr>
<td>Cottus beldingii</td>
<td>0.00-4.52</td>
<td>C. beldingii</td>
</tr>
<tr>
<td>C</td>
<td>4.52-4.84</td>
<td>Cottus bairdii punctulatus</td>
</tr>
<tr>
<td>Cottus caeruleomentum</td>
<td>0.32</td>
<td>0.29</td>
</tr>
<tr>
<td>Cottus bairdii</td>
<td>0.97-1.94</td>
<td>C. extensus</td>
</tr>
<tr>
<td>D</td>
<td>0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>E</td>
<td>0.97-1.94</td>
<td>E</td>
</tr>
<tr>
<td>Cottus hubbsi</td>
<td>4.03-4.19</td>
<td>Cottus confusus</td>
</tr>
<tr>
<td>A</td>
<td>4.19-4.52</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>4.19-5.00</td>
<td>C. etrusus</td>
</tr>
<tr>
<td>D</td>
<td>0.97-1.94</td>
<td>D</td>
</tr>
<tr>
<td>Cottus hubbsi</td>
<td>4.19-4.84</td>
<td>C. confusus</td>
</tr>
<tr>
<td>C</td>
<td>4.19-5.00</td>
<td>C. cognatus</td>
</tr>
<tr>
<td>F</td>
<td>NA</td>
<td>0.19</td>
</tr>
<tr>
<td>Cottus rhotheus</td>
<td>0.65-2.90</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>4.13</td>
<td>C. rhotheus</td>
</tr>
<tr>
<td>Cottus bairdii</td>
<td>1.77-3.55</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cottus rhotheus</td>
<td>0.48-2.74</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>1.77-1.94</td>
<td>A</td>
</tr>
<tr>
<td>Cottus rhotheus</td>
<td>1.61-2.26</td>
<td>C. bairdii punctulatus</td>
</tr>
<tr>
<td>A</td>
<td>1.94-2.74</td>
<td>C. extensus</td>
</tr>
<tr>
<td>Cottus rhotheus</td>
<td>1.94-3.23</td>
<td>C. bairdii semiscaber</td>
</tr>
</tbody>
</table>

*Values are from uncorrected p-distances.
†NA indicates that no intragroup distance could be calculated because a haplotype group was represented by a single haplotype.
systematic, fine-scale sampling. Based on sculpin biology and on the wide genetic divergence between reference samples putatively belonging to the same species, we believe that river-basin-level genetic structuring of sculpins (or any taxa with comparable life histories) is likely across North America, particularly in regions that have not been recently glaciated (Bernatchez & Wilson 1998). We echo the suggestion that a thorough revision of the taxonomy of sculpins is warranted (Kinziger et al. 2005), but emphasize that far more attention to the spatial scale and grain of sampling will be necessary to achieve a robust phylogeny, if for no other reason than such sampling is more likely to collect all extant species (Hillis et al. 2003).

Correct assignment to described species or discovery of new species also requires that reference specimens are correctly identified. The extent of divergence within some species of sculpin, for example, C. bairdii, *C. heldingii*, *C. confusus* and *C. rhomeus*, suggests that multiple taxa may be concealed under these species designations (April et al. 2011). Although this may reflect an imprecise taxonomy, misidentification of specimens also seems likely and plagues many samples in reference collections (Becker et al. 2011; Cerutti-Pereyra et al. 2012). A system of tissue or DNA vouchering with precise georeferencing of the locations of collection, as now required for submission to some sequence repositories (Ratnasingham & Hebert 2007; Puillandre et al. 2012), would permit resequencing of problematic individuals or recollection at those sites and begin to establish geographical boundaries for haplotype groups. And particularly for species that are genetically structured at small spatial scales, a critical adjunct to this process may be to sequence individuals from the type locations of many species with an aim towards assigning a reference sequence to an individual representative of the holotype (Kivist et al. 2010; Lowenstein et al. 2011).

Finally, the methods of species discovery and the markers used for it merit further attention. Shortcomings of individual genetic methods and markers have been widely reported (Meier et al. 2006), and we observed similar issues. For example, one weakness of most network- or tree-based methods is that they fail to discriminate between closely related species (Hart & Sunday 2007). This was particularly evident among 95% maximum parsimony networks, and to a lesser extent maximum-likelihood trees, based on COI sequences. In contrast, both methods yielded comparable results—a high degree of haplotype group discrimination—when based on cyt b sequences. Because COI sequences are below the threshold at which adding more nucleotides greatly increases and stabilizes phylogenetic resolution (c. 1000–1200 nucleotides; Pollock et al. 2002; Roe & Sperling 2007), relying solely on COI as a biodiversity tag, at least for this group of fishes, appears problematic. An additional critique has been that networks and trees are probabilistic methods and that diagnostic portions of a sequence, that is, one or more nucleotide-location combinations that are fixed and unique, would provide a more definitive assignment of species identity and be more consistent with historical taxonomic practice (DeSalle et al. 2005; Zou et al. 2011). Yet, until multiple individuals from throughout the geographical range of each species have been examined, character sets that are truly diagnostic will remain speculative (Elias et al. 2007). Finally, we regard mtDNA-based delineations of haplotype groups as evidence for particular hypotheses. Analyses with nuclear DNA are essential to confirm or refute these hypotheses and to examine the influence of ancient or modern introgression on these groups and on difficulties in morphological species identification (Nolte et al. 2009).

Is species identification necessary?

Strictly speaking, genetic analyses of diversity do not require taxonomic assignment of the groups that constitute components of that diversity. Yet, assignment to a taxonomic group—typically a species—has heuristic value for studies of systematics, phylogeography and ecology, as well as being a prerequisite for designation as warranting conservation attention (Turner 1999; Mace 2004). Consequently, the designation of provisional taxa is widely practised (Blaxter et al. 2005; April et al. 2011), although its legitimacy is sometimes questioned because of disagreements about defining meaningful conservation units (Valentini et al. 2009; Funk et al. 2012) or even what constitutes a species (de Queiroz 2007; Frankham et al. 2012). Also, these taxonomic placeholders function as an ad hoc form of DNA taxonomy, which in its fullest expression as a replacement for the Linnaean system has been roundly criticized by many in the taxonomic community (Seberg et al. 2003). Nevertheless, we agree with the widespread consensus that they fill a need by highlighting potentially valid taxa (Janzen et al. 2009; Goldstein & DeSalle 2010) and that a more formal system for contributing and recognizing this diversity is urgently needed (Maddison et al. 2012) to ensure that these quasitaxonomic entities have standing until integrated taxonomic practices provide a more thorough treatment of their position in the tree of life (Padial et al. 2010).

Acknowledgements

We thank S. Adams and D. Schmetterling for piquing our interest in the investigation of sculpins in this region. P. Unmack, R. Collins and M. Knight provided helpful comments on an earlier version of this manuscript.
References

Published 2013. This article is a U.S government work and is in the public domain in the USA.

M.K. Young, K.S. McKelvey, and M.K. Schwartz designed the study and conducted the fieldwork. K.L. Pilgrim and M.K. Young extracted and sequenced the DNA. M.K. Young conducted the statistical analyses. M.K. Young wrote the paper with contributions from all co-authors.

Data Accessibility

DNA sequences: GenBank accessions JX282572–282599 (for COI) and JX282526–282571 (for cyt b).
Supporting Information

Additional Supporting Information may be found in the online version of this article:

Table S1 Haplotypes and locations of *Cottus* collected in the upper Columbia and Missouri River basins

Table S2 Cytochrome c oxidase subunit 1 and cytochrome b oxidase haplotype identifiers, accession numbers, and sampling locations of sculpins in GenBank used in these analyses