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Abstract 

Forecasts of species distributions under future climates are inherently uncertain, but there have 

been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We 

developed a Monte Carlo approach that accounts for uncertainty within generalized linear 

regression models (parameter uncertainty and residual error), uncertainty among competing 

models (model uncertainty), and uncertainty in future climate conditions (climate uncertainty) to 

produce site-specific frequency distributions of occurrence probabilities across a species’ range. 

We illustrated the method by forecasting suitable habitat for bull trout (Salvelinus confluentus) in 

the Interior Columbia River Basin, USA, under recent and projected 2040s and 2080s climate 

conditions. The 95% interval of total suitable habitat under recent conditions was estimated at 

30.1 to 42.5 thousand km; this was predicted to decline to 0.5 to 7.9 thousand km by the 2080s. 

Projections for the 2080s showed that the great majority of stream segments would be unsuitable 

with high certainty, regardless of the climate dataset or bull trout model employed. The largest 

contributor to uncertainty in total suitable habitat was climate uncertainty, followed by parameter 

uncertainty and model uncertainty. Our approach makes it possible to calculate a full distribution 
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of possible outcomes for a species, and permits ready graphical display of uncertainty for 

individual locations and of total habitat. 

 
Introduction 

Climate change is expected to alter the distributions of many organisms over the next century, 

and there have been numerous attempts to forecast these shifts using species distribution models 

(SDMs; Elith &  Leathwick, 2009). Such predictions are fraught with uncertainty from multiple 

sources: species occurrence records are limited, factors driving species occurrences are known 

imperfectly, data for important predictor variables may be unavailable, different models yield 

different predictions, species-environment relationships are plastic, correlations among predictor 

variables can shift, and scenarios of future climate conditions depend on emissions assumptions, 

climate model and specified initial conditions (Barry &  Elith, 2006, Buisson et al., 2010, Deser 

et al., 2012, Diniz-Filho et al., 2009, Dormann et al., 2008a, Fronzek et al., 2010, Pearson et al., 

2006). Accounting for this uncertainty is critical for effective conservation planning. Locations 

where extirpation is predicted with high certainty will tend to be low priorities for conservation 

investments; in contrast, locations with substantial uncertainty in future occurrence probability 

still have potential and may be especially important locations for monitoring and restoration 

activities. 

 

A promising approach for dealing with this uncertainty is the use of ensemble forecasting 

(Araújo &  New, 2007). This is a form of multimodel inference or model averaging (Burnham &  

Anderson, 2002, Dormann et al., 2008b, Hoeting et al., 1999) in which many predictions are 

made using different models, datasets, or future climate conditions, and then combined. 

Ensemble species forecasting is analogous to ensemble forecasting of climates (Stainforth et al., 
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2005). There have been numerous efforts to use ensemble methods to quantify components of 

uncertainty in species-climate modeling. Studies have examined uncertainty due to modeling 

method (Bagchi et al., 2013, Diniz-Filho et al., 2009, Dormann et al., 2008a, Pearson et al., 

2006, Roura-Pascual et al., 2009), different combinations of predictor variables (Dormann et al., 

2008b, Synes &  Osborne, 2011), and different climate forecasts (Bagchi et al., 2013, Buisson et 

al., 2010, Diniz-Filho et al., 2009, Fronzek et al., 2010). However, we know of no study that has 

used probabilistic ensemble forecasting of species distributions integrating all of these 

uncertainty sources. Such an approach would combine multiple predictions to generate site-

specific distributions of occurrence probabilities that account for uncertainty within models, 

among competing models, and among different future climate scenarios. Hartley et al. (2006) 

and Roura-Pascual et al. (2009) used probabilistic methods to forecast suitable habitat for the 

invasive Argentine ant (Linepathema humile), but did not consider climate change and did not 

fully account for within-model uncertainty. Fronzek et al. (2010) used a probabilistic approach to 

predict global change impacts on the distribution of palsa mires (boreal peat mounds), but only 

considered climate uncertainty. Araújo and New (2007) called probabilistic forecasting the “end 

game of ensemble forecasting,” and we believe that it is the most comprehensive and accurate 

way to account for uncertainty. 

 

In this article we describe methods for probabilistic ensemble modeling of future species 

distributions. We use Monte Carlo methods to sample the range of possible parameters within 

each of several competing models, weighted according to their degree of support, and use these 

to make predictions under different future climate scenarios. The many predictions are combined 

to create distributions of occurrence probability (which we interpret as habitat suitability, since 
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predictions may be made at sites not accessible to the organism) at locations of interest. These 

may then be summed to produce a histogram of total suitable habitat predictions. We illustrate 

the methods using bull trout (Salvelinus confluentus), a climate-sensitive fish species of 

conservation interest, in Idaho and western Montana, USA. Past studies have suggested that 

substantial declines in suitable habitat for bull trout are likely under future climate conditions 

(Isaak et al., 2010, Jones et al., 2013, Rieman et al., 2007, Wenger et al., 2011). Our main 

objective is to assess the likelihood of a major versus minor decline by generating a set of 

probabilistic estimates of total suitable habitat using future climate scenarios. We are also 

interested in examining the geographic distribution of uncertainty, identifying which components 

(e.g., model uncertainty, climate uncertainty) contribute the most to total uncertainty in the 

predictions, and exploring how results can be used to improve species conservation efforts. 

 
Materials and methods 

Study species, location and dataset 

The bull trout is a salmonid native to western Canada and northwestern U.S., where it is listed as 

federally threatened under the U.S. Endangered Species Act. It requires very cold streams for 

spawning and rearing, and has one of the narrowest temperature niches of salmonid species in 

North America (Dunham et al., 2003, McMahon et al., 2007, Selong et al., 2001). Suitable bull 

trout spawning habitat occurs primarily in high-elevation streams, limiting the species’ potential 

to migrate to higher-elevation refugia (Isaak et al., 2010, Rieman &  McIntyre, 1995), and 

making its response to climate change of considerable management interest (Lawler et al., 2008, 

Rieman et al., 2007). We focused the study on the distribution of bull trout in a portion of its 

range in the interior Columbia River basin (Fig. 1).  
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Our bull trout dataset consisted of fish collection records at 995 sites. The collections were 

originally made by state and federal agencies (see Acknowledgments) using electrofishing and 

snorkeling between 1985 and 2004, with most collections made in the late 1990s. Fish data were 

matched with geomorphic, biotic, and climate variables hypothesized to regulate bull trout 

distributions. These are fully described in Wenger et al. (2011), so we give only a summary here. 

Geomorphic variables included (1) stream slope (abbreviated as “slope”), which was calculated 

from digital elevation models, and (2) distance to the nearest unconfined valley bottom 

(“valleybottom”), a montane landscape feature associated with occurrence of some trout species 

(Baxter &  Hauer, 2000, Benjamin et al., 2007, Cavallo, 1997). The presence of non-native 

brook trout (“brooktrout”, Salvelinus fontinalis) at the subwatershed scale (defined by 12-digit 

hydrologic unit codes or HUCs) was included as a biotic variable because brook trout may have 

adverse impacts on bull trout (DeHaan et al., 2010, Rieman et al., 2006). Climate variables 

included (1) mean summer air temperature in the upstream drainage (“temp”); (2) mean summer 

flow (“baseflow”), which was also an indicator of stream size; and (3) frequency of high flows 

during winter (“winterflow”), a variable shown to be negatively correlated with the occurrence of 

fall-spawning fish species such as bull trout (Fausch, 2008, Latterell et al., 1998, Seegrist &  

Gard, 1972). For model fitting, air temperature data were extrapolated from weather station 

observations into gridded fields (Hamlet &  Lettenmaier, 2005), from which we calculated mean 

air temperature in the watershed upstream of each site (Wenger et al., 2011). Flow metrics were 

estimated using the Variable Infiltration Capacity (VIC) macroscale hydrologic model (Liang et 

al., 1994, Liang et al., 1996) run for the Pacific Northwest at a scale of 1/16th degree (Elsner et 

al., 2010) and downscaled (Wenger et al., 2010) to stream segments of the 1:100,000 scale 

National Hydrography Dataset plus (NHDplus; www.horizon-systems.com/nhdplus). Climate 
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data used for forecasts were derived from IPCC scenarios (IPCC, 2007) and VIC modeling 

(Elsner et al., 2010) and are described below under “Prediction uncertainty.” 

 

Modeling method 

As the basis for these methods we used generalized linear mixed models (GLMMs) in preference 

to less restrictive approaches such as regression trees, neural networks, or maximum entropy. 

Although comparisons have shown that these methods can produce models with very good fits to 

individual datasets (Elith et al., 2006), such models often lack generality (Heikkinen et al., 2012, 

Wenger &  Olden, 2012), which reduced our confidence in their transferability to novel climatic 

conditions. GLMMs and their simpler variants, generalized linear models (GLMs), are often 

comparable to other methods in predictive performance (Dormann et al., 2008a). Moreover, they 

permit the clear specification of alternative models based on prior ecological knowledge and are 

supported by well-developed theory for constructing prediction intervals, which we use as the 

basis for creating probabilistic ensemble prediction distributions.  

 

We used two-level logistic regression models with a random intercept for subwatershed to 

predict bull trout occurrence as a function of the variables described above. We used mixed 

modeling because our sites were non-randomly distributed (Wenger et al., 2011), resulting in 

spatial autocorrelation that could bias parameter estimates (Raudenbush &  Bryk, 2002). A 

random effect allows for the possibility that sites within a subwatershed are not independent 

from one another (Bolker et al., 2009), reducing bias. Our models differed only in terms of fixed 

effects. 
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Model selection and weighting 

Based on the results of Wenger et al. (2011), we identified 25 candidate models of bull trout 

occurrence (Supporting Information SI1). Our model selection and ranking procedure consisted 

of two steps: (a) eliminating models with no support, and (b) weighting the remaining models. 

Both steps involved evaluating models based on transferability. The transferability of a species 

distribution model is gauged by the accuracy of its predictions in a different region or climate 

(Araújo et al., 2005, Hartley et al., 2006, Peterson et al., 2003, Randin et al., 2006). We used 

spatial transferability as a surrogate for temporal transferability, reasoning that a model that does 

not reliably transfer to a different region is unlikely to transfer well to a future climate. 

Transferability was assessed using a form of non-random cross-validation, in which different 

portions of the data defined by geographic regions are iteratively withheld from model fitting and 

used to assess model predictive ability (Wenger &  Olden, 2012). We conducted a three-fold 

assessment, meaning that the data were divided into three geographic groups and one group was 

withheld at a time. Our metric of predictive ability was the area under the curve (AUC) of the 

receiver-operator characteristic plot, an unbiased and commonly-used performance summary for 

species distribution models (Guisan &  Zimmermann, 2000, Manel et al., 2001). To calculate the 

probability that each model was the best—i.e., had the highest model weights—we created 

numerous bootstrap resamples of the dataset, assessed the transferability of each model with each 

resample, and counted the number of times each model had the highest transferability (i.e., 

highest AUC). This method of calculating model weights has been proposed several times by 

statisticians (Buckland et al., 1997, Sauerbrei &  Schumacher, 1992, Veall, 1992) and is 

described in more detail in Supporting Information SI2. In the first step of model selection we 

used 1000 bootstrap resamples and identified for removal 14 models with a weight of zero. In the 
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second step we repeated the process with the remaining 11 models, but used 5000 bootstrap 

resamples to more accurately estimate model weights.   

 

Prediction uncertainty 

Our approach to characterizing prediction uncertainty was to make a large number of replicate 

Monte Carlo predictions from the supported models. For each replicate we followed three steps, 

which we summarize here and describe in detail in succeeding paragraphs. First, we randomly 

selected a model to use for prediction. Second, we selected a set of values for the model 

parameters by random draws from the multivariate normal distribution of fixed effects of the 

chosen model. Third, we used the selected model and parameter values to make predictions at 

each stream segment in the NHDplus dataset under recent historical (hereafter, “recent”) and 

future climate conditions. For predictions under recent conditions, we used estimated values for 

temperature and flow drawn from the same datasets as were used for model fitting. For forecasts, 

we randomly selected from among three datasets representing alternative future climate 

scenarios (including temperature and flow variables) available for the region. After repeating 

these steps for 50,000 replicates, we summarized the total available habitat and the uncertainty 

around this estimate, as explained below. 

 

Step 1. Model selection (incorporating model uncertainty). For each replicate prediction, we 

randomly selected one of the 11 bull trout models. The probability that each model was selected 

was given by its weight; thus, a model with a weight of 0.05 had a 5% chance of being selected 

in any given replicate, and was used in approximately 5% of all replicates. This approach to 

multimodel inference is essentially the same as that used in Bayesian model averaging (Hoeting 
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et al., 1999), wherein predictions from multiple models are weighted by the posterior model 

probabilities (i.e., the weights) and combined. It differs from the kind of model averaging 

described by Burnham and Anderson (2002), in which a single hybrid model is created by 

weighted averaging of the parameters of individual models. The approach we used is consistent 

with the ensemble modeling approach advocated by Araújo and New (2006).  

 

Step 2. Parameter selection (incorporating parameter uncertainty). Once a model was chosen, 

we randomly selected a value for each fixed effect from the multivariate normal distribution of 

all fixed effects. A multivariate normal distribution must be used because model parameters are 

rarely independent; some or all co-vary to a degree, so it is not appropriate to make random 

draws for each parameter independently. The parameters of the multivariate normal distribution 

are given directly in the model outputs for nearly all statistical analysis software: the means are 

the mean parameter estimates, and the variances and covariances are given in the parameter 

variance-covariance matrix.  

 

Step 3. Prediction (incorporating climate uncertainty and residual error). We used the selected 

model and parameter estimates to make predictions of occurrence probability (which we 

interpreted as habitat suitability) for all 56,981 stream segments in the study area. We made three 

sets of predictions: the first under recent conditions, the second under projected climate 

conditions in the 2040s, and the third under projected climate conditions in the 2080s. Recent 

conditions referred to the time frame of data collection (1985-2004) which roughly coincided 

with the baseline period for the climate and hydrologic modeling  (the 1980s; Elsner et al., 

2010). For predictions for this time period we used the same dataset for temperature and flow as 
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was used for model fitting, along with other relevant covariate values (slope, distance to the 

nearest unconfined valley bottom, and brook trout presence) for each stream segment. The values 

of these observed covariates were assumed to be known without error (see Discussion for more 

on this assumption).  

 

For forecasts under future climate conditions, we had three different sets of projected values for 

air temperature and flows for the 2040s, and three values for the 2080s; thus, there was 

uncertainty in future conditions. Each of the datasets was based on the A1B greenhouse gas 

emissions trajectory  (IPCC, 2007), but was generated by a different general circulation model, 

or combination of models. The first was the mean of the 10 IPCC models with the lowest bias in 

simulating observed climate conditions across the region (Littell et al., 2010); we refer to this as 

the composite model, which was used to generate the composite dataset. The second was a single 

model (PCM1) that predicted relatively little warming and high summer precipitation, and the 

third was a single model (MIROC 3.2) that predicted relatively high warming and low summer 

precipitation. The second and the third models bracketed the range of potential future climate 

conditions that could be associated with other warming trajectories (e.g., B1, A2); each model 

was used to produce one dataset. We assumed that the composite dataset represented a best 

approximation and that each bracketing model dataset (i.e., the dataset produced by PCM1 and 

the dataset produced by MIROC3.2) was less likely than the composite. We therefore assigned a 

50% probability to the composite dataset and a 25% probability to each of the bracketing 

datasets. For each replicate prediction for the 2040s and 2080s we selected one future climate 

dataset based on these probabilities, and made predictions at each stream segment using the 

corresponding values for air temperature and flow metrics.  
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We incorporated random effects into the predictions in two ways. For predictions at sampled 

locations under recent conditions, we included the subwatershed-specific random effect values 

(thus, these predictions were considered conditional; Welham et al., 2004). We used a different 

approach for predictions in unsampled subwatersheds under recent conditions as well as all 

subwatersheds under future conditions. For these predictions the random effect values were 

unknown, but assumed to be drawn from a normal distribution (not a logistic distribution as 

might be supposed; Gelman &  Hill, 2007) with a mean of zero and a variance parameter 

estimated by the fitted model. For every set of predictions we drew one random value from this 

distribution for each subwatershed, and added this value to the logit-scale predictions for all 

stream segments in that subwatershed. These predictions were marginal as they were not 

conditioned on estimated random effect values (Welham et al., 2004). For marginal predictions 

the random effect is part of the residual error, along with the latent residual error at the data level 

(which in logistic regression is fixed at a variance of π2/3). At the end of step 3 we converted all 

predictions to probabilities on the 0-1 scale using the inverse logit transform, which is equivalent 

to calculating the probability density of the logistic distribution (with scale parameter of 1) that is 

greater than zero. 

 

Summing total suitable habitat. We repeated each of the three steps 50,000 times, producing 

50,000 replicate predictions of bull trout occurrence probability at each stream segment for 

recent, 2040s and 2080s timeframes. We considered these predicted occurrence probabilities to 

represent habitat suitability for the species, and we wished to sum the total suitable habitat across 

the study area for each of the three scenarios. To do this, we made a random Bernoulli draw of 

one or zero (representing presence or absence) for each of the 50,000 replicates for each stream 
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segment, based on the predicted occurrence probability for that replicate. This created a matrix of 

zeros and ones, with each row representing an individual segment, and each of the 50,000 

columns representing a replicate prediction. We multiplied each row of the matrix by the length 

of the stream segment it represented, and then summed the columns. This produced 50,000 

replicate predictions of total occupied stream length. From these we calculated the 2.5%, 5%, 

50%, 95% and 97.5% quantiles. We also extracted the individual segment-level predictions of 

occurrence probability that corresponded to each of these quantiles so they could be mapped. 

Finally, we calculated mean “certainty” at the stream segment scale: how close a prediction was 

to either one (highly certain presence) or zero (highly certain absence). We calculated this as 

mean (0.5 + |probability-0.50|). We repeated this process for each of the recent, 2040s and 2080s 

timeframes.   

 

Sensitivity analysis 

We conducted a sensitivity analysis to study the influence of each of the sources of uncertainty 

on overall uncertainty in total suitable habitat. To do this, we iteratively repeated the analysis for 

each of the timeframes using only one of the following uncertainty sources at a time: parameter 

uncertainty, model uncertainty, and climate uncertainty. To exclude parameter uncertainty we 

used only the mean parameter estimates. To exclude model uncertainty we used only the highest-

weighted bull trout model. To exclude climate uncertainty we used only the composite climate 

dataset.  

 

We included residual error—both at the stream segment scale and at the subwatershed scale, 

where appropriate—in all the above predictions. We did this because omitting residual error 
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would make predictions 100% certain, resulting in odd model behavior and biased results. We 

therefore conducted a separate analysis of the role of residual error on prediction uncertainty, 

focusing particularly on the consequences of omitting the estimated random effect variance from 

predictions. 

 

We conducted all analyses with the statistical software R (R Development Core Team, 2012). 

We provide code for the analyses in Supporting Information SI3. The dataset is included as 

Supporting Information SI4.   

 
Results 

Of the 11 models used to predict bull trout occurrence probability, the best-supported model had 

51.5% weight and included mean summer temperature, winter high flow frequency, distance to 

the nearest unconfined valley bottom, and baseflow (Table 1). The next-best model was the 

same, but lacked baseflow. Temperature and winter high flow frequency appeared in all the 

models; valley bottom distance appeared in all but two; slope was in five models; brook trout 

occurrence was included in only two models. Variance of the subwatershed-scale random effect 

ranged from 3.4 to 4.1, slightly exceeding variance at the data level. Model transferability 

assessments showed AUC values ranging from 0.733 to 0.763. Values in this range indicate good 

(but not excellent) predictive performance (Swets, 1988).  

 

For recent conditions, mean estimates of occurrence probability ranged from near zero to near 

one, with the highest-probability stream segments located at high elevations (Fig. 2a). 

Uncertainty in mean occurrence probability was often substantial, as illustrated by the 

histograms for two example streams segments with contrasting habitat conditions (Fig. 3a and 
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3d). Occurrence probabilities shifted lower in the 2040s and 2080s scenarios (Fig. 3b, 3c, 3e and 

3f). For some specific stream segments we observed multimodal distributions, especially in the 

2040s and 2080s (e.g., Fig. 3f). This was driven mainly by differences among climate datasets, 

and to a lesser extent by differences among the bull trout models. In Fig. 3f the three peaks 

correspond to predictions using the MIROC 3.2 dataset on the left, the composite dataset (which 

predicts warming nearly as great as the MIROC3.2 dataset for the region) in the middle, and the 

PCM1 dataset on the right. The PCM1 dataset was associated with substantially less warming in 

this region than other datasets, and so corresponds to higher probability of bull trout occurrence 

in the future.  

 

Maps of occurrence probability showed a substantial decline from recent conditions to the 2040s 

and 2080s (Fig. 2b and 2c). For the 2040s even moderately suitable habitat was limited to higher 

elevations, and for the 2080s potentially suitable streams were limited to those draining the 

highest terrain. We found that the total amount of suitable habitat declined from a mean of 

36,127 stream km under recent conditions, to 11,251 km under 2040s conditions, and to 2,898 

km under 2080s conditions (Table 2). Under nearly best-case conditions (the 97.5% quantile, 

mapped in Fig. 2d and 2e), bull trout were predicted to persist in central Idaho and isolated high-

elevation areas of Montana. The uncertainties around the mean predictions were large (Fig. 4, 

Table 2), particularly in the 2040s. The histograms of total suitable habitat displayed 

multimodality, which resulted mainly from differences among species models under recent 

conditions, differences among climate datasets under 2080s conditions, and differences among 

both species models and climate datasets under 2040s conditions. The mean certainty of 

predictions at the stream segment scale was lowest under recent conditions (Table 2) and 
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increased substantially under future climate projections. This was driven by the increasing 

numbers of stream segments where bull trout were predicted to be absent with a high degree of 

certainty.  

 

Our predictions showed that the degree of certainty varied spatially and temporally. Under 

current conditions, bull trout were predicted to be present with high certainty at high elevations 

(e.g., Fig. 3d, which is a high elevation stream), and absent with high certainty at low elevations. 

At intermediate elevations (e.g., Fig. 3a), uncertainty tended to be high. Projections for most high 

elevation locations became less certain in the 2040s and 2080s (Fig. 3e and 3f), while certainty 

increased at mid-elevation sites as absence became more likely (Fig. 3b and 3c).  

 

The sensitivity analysis showed that differences among the climate datasets (i.e., among the 

climate models) represented the largest source of uncertainty in total suitable habitat in the 2040s 

and 2080s (Fig. 5). Both parameter uncertainty and model uncertainty contributed strongly to 

total uncertainty under recent conditions, but became relatively less important under future 

climate conditions. In a separate analysis we found that residual error had a minor influence on 

total suitable habitat uncertainty, which was expected because these errors were modeled as 

independent at the stream segment scale (for data-level residual error) or subwatershed scale (for 

the random effect). Technically these errors were binomially distributed; in common language, it 

suffices to say that the many random errors tended to cancel one another out. However, this 

residual error was a dominant determinant of mean segment-scale uncertainty (as opposed to 

uncertainty in total suitable habitat). We also found that when residual error was reduced by 

omitting the random effect, estimates of total suitable habitat were biased low. This was because 
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reducing residual error pushed occurrence probabilities closer to zero and one; since there were 

more locations with low probabilities than high probabilities in all timeframes, the result was a 

net reduction in the estimate of suitable habitat.   

 
Discussion 

We have demonstrated an approach to modeling uncertainty in species distributions that accounts 

for uncertainty within models, among models, and in future climate conditions. To our 

knowledge this is the first example of a comprehensive probabilistic ensemble modeling 

approach to estimating species distributions under future climates. The resulting forecasts, which 

take the form of frequency histograms that can be easily summarized, can be valuable tools for 

studying and communicating the diversity of potential outcomes for a species at a specific 

location or range-wide. The methods are readily adapted to other applications, such as 

projections of species invasion potential or responses to land use change.  

 

In our example with bull trout we found that despite large uncertainty in future climate 

conditions, the scenario outcomes became increasingly certain at the stream segment scale. This 

was because an increasing proportion of locations became definitively unsuitable for bull trout, 

regardless of the climate dataset or species model considered. Apparently the species is already 

living at the edge of its niche space in this geographic region, and any increase in unfavorable 

conditions (rising temperatures and increasing winter high flows) led to a net decline. Under 

2080s conditions, it was likely that the species would be confined to less than 5,000 km of 

suitable habitat, and almost certainly less than 10,000 km of suitable habitat. The pattern of 

increasing certainty that we observed is likely to be typical of high-elevation species with limited 

potential to migrate, such as those on mountaintop habitat “islands”(McDonald &  Brown, 1992).  
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Past examinations of uncertainty in SDMs (Barry &  Elith, 2006, Beale &  Lennon, 2012) 

focused on the underlying causes of high uncertainty, such as false absences, missing covariates, 

small sample size, and errors in measures of covariates. We agree that it is important to 

understand these causes and try to minimize errors. However, some degree of error and 

uncertainty is inevitable, and these errors are built into many modeling frameworks. Our goal 

was to develop methods that thoroughly accounted for the uncertainties associated with 

predictions from one class of models (GLMs/GLMMs), so that the resulting uncertainties could 

be communicated along with the mean predictions, and so that we could derive valid estimates of 

prediction intervals for total suitable habitat under future conditions.   

 

It is worth asking whether we have indeed accounted for all major classes of uncertainty. In 

particular, one might question the assumption that most predictor variables (except those 

representing future climate conditions) are known without error. Although not literally true, there 

is normally no need to model these errors because any uncertainty in the measurement or 

estimation of an independent variable adds noise to the dataset, which tends to increase other 

types of model error, and these other errors are modeled and propagated into prediction 

uncertainty using our methods. Thus it would be redundant to model measurement error 

separately. Measurement error also reduces (attenuates) the magnitude of the associated 

parameter estimate, which can be a problem under certain circumstances (Warton et al., 2006). 

Most of the time, however, this bias is not of practical concern for prediction as long as the 

measurement error rate is the same for the predicted variables as the observed variables, which 

should normally be the case (Barry &  Elith, 2006, Warton et al., 2006).  
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Another source of uncertainty sometimes considered by researchers is data uncertainty (Buisson 

et al., 2010, Dormann et al., 2008a, Roura-Pascual et al., 2009). This is typically addressed by 

iteratively parameterizing models using different random subsets of the data. While we see value 

in the use of data subsets for model evaluation and model weighting, we argue that discarding a 

portion of the data for each forecast is overly conservative under most circumstances. Once a set 

of models has been selected and weighted, the full dataset is the most appropriate source of 

information for model fitting and calculation of parameter error and residual error (Fielding &  

Bell, 1997, Hartley et al., 2006). An exception might be made if some data points are of 

questionable reliability and there is an interest in exploring their influence on results (e.g., 

Dormann et al., 2008a). 

 

There is one source of uncertainty that is important, yet cannot be modeled: uncertainty due to 

misspecification of all models. If there are important predictor variables that have not been 

considered or measured, or if the form of the predictor-response relationship is grossly 

misspecified (e.g., modeling a quadratic relationship as linear), then predictions could be biased 

to an unknown degree. For example, quantitative information on fish response to fire and post-

fire disturbance is limited (Luce et al., 2012), and there is substantial uncertainty about whether 

fire frequency and severity will increase with climate warming (Holden et al., 2011), so fire 

frequency was not included as a candidate predictor in our models. We suspect any bias 

associated with this omission is small, but this remains untestable at this time.   

 

Although we used frequentist methods, the statistical foundation for the kind of multimodel 

averaging we employed lies in Bayesian model averaging (Hoeting et al., 1999, Kass &  Raftery, 
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1995). Bayesian model averaging says that for a set of models M and data D, the prediction 

 is the sum of individual predictions from each model multiplied by its 

associated model weight : 

 

Thus, the full prediction is a weighted average of individual model predictions. An alternative 

model averaging approach is to create a single hybrid model of all the individual models by 

averaging their parameters (Burnham &  Anderson, 2002), and to predict from this single model. 

These two approaches can be thought of as “prediction averaging” and “parameter averaging.” 

We find the prediction averaging approach more intuitive for this purpose, as it allows multiple 

competing hypotheses to be expressed as separate models, whose predictions are combined to 

express the range of possible outcomes, rather than creating a single hybrid model that embodies 

many (possibly mutually exclusive) hypotheses at once.  

 

We evaluated our candidate models on the basis of transferability, the ability of models 

developed in one geographic region to predict species occurrence in another geographic region 

successfully. This approach is increasingly common with species distribution models 

(Dobrowski et al., 2011, Heikkinen et al., 2012, Tuanmu et al., 2011), and we argue that it 

provides potential insight into model performance under future climates; if a model cannot 

predict well in a new geographic location, we cannot have faith that it will predict well under 

new climate conditions in the same geographic location. A key reason for spatial and temporal 

variability in performance is that environmental (predictor) variables occur in different 

combinations, and their correlations likewise vary. One challenge in ranking models by 
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transferability is how to calculate the model weights. Commonly-used approaches for calculating 

model weights rely on the Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC) or similar metrics calculated from the model likelihood using the fitting dataset. These 

criteria cannot be calculated using a performance-based measure such as transferability. Hartley 

et al. (2006) resolved this by using an ad hoc scoring system based on transferability 

performance. We used an approach based on bootstrapping. Although this was not particularly 

difficult (as described in Supplement 2), others may wish to use the more conventional 

approaches based on AIC and BIC to generate model weights.  

 

Our approach can be generalized to models other than GLMs and GLMMs. Climate uncertainty 

is straightforward to address regardless of modeling method, and model uncertainty can be 

addressed in part by considering different subsets of predictor variables, or using multiple 

modeling methods. There are numerous examples where these sources of uncertainty have been 

examined (e.g., Buisson et al., 2010, Diniz-Filho et al., 2009, Pearson et al., 2006). Fully 

accounting for within-model uncertainty (i.e., the analog to parameter uncertainty in GLMs) is 

less common and more challenging with machine learning and other flexible methods. Some 

methods may be more amenable to this than others: for example, random forests (Breiman, 2001) 

internally produces numerous classification trees, which together should describe the within-

model uncertainty. The difficulty is in translating this to uncertainty in projections while 

accounting for other sources of variability. We have not yet explored this.  

One important question is how to best communicate the uncertainty in species distributions 

captured by these methods. Although it is impractical to show the full distributions of occurrence 

probability (Fig. 3) for all locations, the mean estimate (mapped in Fig. 2A-C) captures the most 
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critical information, as probability values farther from zero and one are inherently less certain. It 

can also be interesting to examine the full uncertainty distributions for selected locations. For 

example, the bimodality shown in Fig. 3F is not necessarily an intuitive result, and suggests two 

distinct possible trajectories for bull trout in this stream. For summary measures, such as total 

suitable habitat, we recommend histograms such as those shown in Fig. 4. These can also be 

constructed for any geographic subset of interest. At a minimum, however, we argue against 

converting maps of occurrence probability to maps of presence-absence. Although this is still 

quite common, it completely discards all uncertainty information, and it gives a false sense of 

confidence in predictions. 

 

Three limitations of our example must be mentioned. The first is that we used just three future 

climate datasets, because these were the only ones available with accompanying hydrologic 

projections across the study area. Other studies have employed a larger number of climate 

datasets by using multiple models and multiple emissions trajectories  (Bagchi et al., 2013, 

Buisson et al., 2010) or even resampled from an ensemble climate forecast of 21 models 

(Fronzek et al., 2010). More datasets are desirable, and it is unlikely that our projections 

represented all reasonable combinations of temperature and flow change. However, the 

bracketing models did encompass a broad range of predicted increases in air temperature (mean 

2.49-5.51 °C increase by the 2080s), and, though larger increases are possible, increases smaller 

than this range are unlikely given current emissions trajectories (Peters et al., 2013) . The second 

limitation is the use of air temperature in lieu of stream temperature. Air temperature is an 

imperfect surrogate (Mayer, 2012) and in particular does not account for localized cold-water 

refugia produced by groundwater inputs (Arismendi et al., 2012). However, while the use of air 
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temperature undoubtedly contributes to model uncertainty, it should not otherwise cause model 

bias unless such coldwater refugia become relatively more common in the future. The third 

limitation is that we ignored the spatial arrangement of habitat fragments. In reality, many 

potentially suitable habitat segments will be located in isolated locations and will be too small to 

sustain populations over time (Roberts et al., 2013). This limitation implies that our forecasts of 

suitable habitat could be optimistic. 

 

There is increasing recognition that uncertainty in species distributions should be taken into 

consideration in conservation planning and reserve design (Bagchi et al., 2013, Carvalho et al., 

2011, Moilanen et al., 2006). A probabilistic approach to uncertainty is particularly valuable in 

estimating the strength of evidence for species extinction at local and regional scales—

information that is of critical conservation importance. For bull trout, there are many areas where 

the amount of suitable habitat is projected to be near zero, with >95% certainty, even by the 

2040s. These are likely to be poor conservation investments. In contrast, areas where the amount 

of suitable habitat is highly uncertain in coming decades may be important locations to monitor, 

and potential candidates for restoration activities that could offset climate warming effects. In 

cases such as this, in which a climate-sensitive species faces range-wide decline, a probabilistic 

understanding of uncertainty is essential for directing limited resources to the locations where 

they have the greatest potential for conservation benefit.  
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Supporting Information Legends 

SI1. CandidateModels.docx. List of 25 candidate models to explain bull trout occurrence. 

SI2. BootstrapMethods.docx. A summary of bootstrap methods used to calculate model weights. 

SI3. Rcode.txt. R code for implementing the methods described in this article. 

SI4. Dataset.zip. The bull trout dataset used as an example in this article. Eight files are included: 

the bull trout data used to fit models (newbull.csv), data to make predictions across the study 

area under recent (historical) conditions (bdhist.csv), data to make predictions for the 2040s 
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timeframe (bd2040c.csv, bd2040m.csv, bd2040p.csv) and data to make predictions for the 2080s 

timeframe (bd2080c.csv, bd2080m.csv, bd2080p.csv). 

 

Table 1. The top 11 bull trout models, with model weights and mean AUC score based on 

transferability. 

 

Model Weight Transferability 

AUC

temp + winterflow + valleybottom + baseflow 51.5% 0.763

temp + winterflow + valleybottom 27.1% 0.758

temp + winterflow + valleybottom + baseflow + baseflow2 6.7% 0.757

temp + winterflow + slope + valleybottom + baseflow 4.6% 0.755

temp + winterflow + slope + valleybottom + baseflow + 

baseflow2 3.4% 0.752

temp + winterflow + slope + valleybottom 2.3% 0.751

temp + winterflow + valleybottom + brooktrout 1.2% 0.739

temp + winterflow 1.0% 0.737

temp + winterflow + baseflow 1.0% 0.738

temp + winterflow + slope + valleybottom + baseflow 0.6% 0.733

temp + winterflow + slope + valleybottom + baseflow + 

brooktrout 0.6% 0.733
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Table 2. Mean certainty of predictions at the segment scale and estimated total length of suitable 

habitat under recent conditions, 2040s climate projections and 2080s climate projections.  

 

 Segment-scale 

certainty 

Kilometers of suitable habitat 

Timeframe 2.5% quantile Mean 97.5% 

quantile 

Recent 77.9% 30,144 36,127 42,500 

2040s 88.5% 5,268 11,251 18,914 

2080s 98.8% 496 2,898 7,946 

 

Figure Legends 

Figure 1. Study area. Sample sites are indicated as circles. The two stars are the locations of 

streams used as examples in Figure 3.  

Figure 2. Mean projected occurrence probability (habitat suitability) for bull trout under recent 

conditions (a), 2040s climate projections (b) and 2080s climate projections (c). Also shown are 

the 97.5% quantiles for the 2040s (d) and 2080s (e), representing nearly best-case conditions for 

projections. Dark grey shading indicates regions outside of the study area. 

Figure 3. Example histograms of predicted occurrence probability (habitat suitability) for two 

individual stream segments under three scenarios, based on 50,000 Monte Carlo predictions for 

each. The first stream segment, shown in panels a through c, is on the Crooked River, a mid-

elevation tributary to the Clearwater River (indicated on Fig. 1 as the star within the state of 

Idaho). The second segment, shown in panels d through f, is a high-elevation segment of the 

Blackfoot River headwaters (indicated on Fig. 1 as the star within the state of Montana). Colors 
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correspond to those in Fig. 2. These histograms reflect uncertainty due to parameter uncertainty, 

model uncertainty, and climate uncertainty, but do not include uncertainty due to the random 

effect.   

Figure 4. Histograms of 50,000 replicate estimates of total suitable habitat for bull trout under 

recent conditions (a), 2040s climate projections (b) and 2080s climate projections (c). 

Figure 5. Results of sensitivity analysis, showing the 95% intervals of suitable habitat for the full 

models and each of the reduced models for the recent, 2040s and 2080s timeframes. The wider 

the band, the greater the uncertainty contributed by that source.  
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