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Abstract
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic

network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial

representation; as points within the network and as points in geographical space. Consequently, some

analytical methods used to quantify relationships in other types of ecological networks, or in 2-D

space, may be inadequate for studying the influence of structure and connectivity on ecological pro-

cesses within DENs. We propose a conceptual taxonomy of network analysis methods that account

for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

the context of stream ecology. Within this context, we summarise the key innovations of a new family

of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how differ-

ent network analyses may be combined to address more complex and novel research questions. While

our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns

in both network and 2-D space can be used to explore the influence of multi-scale processes on biota

and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or

road corridors).
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INTRODUCTION

The use of network frameworks and analyses to gain a better

understanding of ecological structure and function has dramatically

increased in recent years (Proulx et al. 2005; Dale & Fortin 2010).

Network models, such as graph-theoretic-based approaches (Urban

et al. 2009), are simplifications of reality used to conceptualise and

describe relationships, either qualitatively or quantitatively, between

a set of components interacting as an ecological system. Such topo-

logical structures have been used implicitly and explicitly in meta-

population (Hanski 1998), metacommunity (Cadotte 2006), and

metaecosystem models (Massol et al. 2011). The appeal of a net-

work-based approach across a suite of ecological and evolutionary

systems stems from the explicit emphasis on the functional relation-

ships (e.g. edges, links) between the entities of interest (e.g. nodes,

points, patches). Hence, the same network framework can be used

to investigate the effects of various processes, such as gene flow

(Fortuna et al. 2009), predator–prey relationships (Bascompte et al.

2005) or energy fluxes (Proulx et al. 2005), between nodes (e.g. indi-

viduals, populations, communities). These network models are com-

monly applied to ecological phenomenon represented non-spatially,

such as multitrophic interactions at a single location or area (e.g.

Bascompte et al. 2005). In other cases, physical space is treated as a

network (Gilarranz & Bascompte 2012), with nodes representing

spatially explicit habitat patches, and edges denoting processes such

as the rate of dispersal between habitat patches (Muneepeerakul

et al. 2008) or a georeferenced dispersal pathway (Fall et al. 2007).

Dendritic ecological networks (DENs; Grant et al. 2007) are used

to describe spatial relationships in ecosystems that naturally exhibit

a physical dendritic network topology (e.g. stream and cave
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networks or plant architecture). A number of characteristics differ-

entiate DENs from other types of ecological networks (Grant et al.

2007). First, movement of organisms, material or energy is primarily

restricted to the physical network, which forms ecological corridors

(Rodr�ıguez-Iturbe et al. 2009). However, the permeability of these

ecological corridors varies depending on the organism or process of

interest. For example, troglobites may never move outside of a cave

network (Barr & Holsinger 1985), while semi-aquatic organisms liv-

ing in, or nearby streams may also move across the terrestrial land-

scape (Carranza et al. 2012). Second, DENs have fewer redundant

pathways compared to other non-spatial or spatially structured eco-

logical networks; though braiding may occur in some stream or cave

networks. Third, directionality may also be important in some

DENs, such as cave and stream networks, where flowing water

strongly influences physicochemical and biological processes.

Fourth, biological and physicochemical processes are not restricted

to nodes, with relationships between nodes represented as edges;

instead, processes occur on the network in DENs. For example, the

availability and spatial arrangement of in-stream habitat may influ-

ence the potential distribution of a fish species, while the branching

structure of the network affects in-stream dispersal to those habitats

and resulting species interactions (e.g. competition and predation;

Angermeier et al. 2002). Given the unique characteristics of DENs

and the spatial complexity of processes on the physical network,

many analytical methods used to quantify relationships in other types

of ecological networks, or in 2-D space, are unsuitable for studying

the influence of structure and connectivity on physicochemical and

biological processes in these systems (Grant et al. 2007).

A variety of methods can be used to analyse DEN data, but they

are scattered across the literature, ranging from graph-theoretic

approaches (Dale & Fortin 2010), semivariogram analyses (Ganio

et al. 2005), to metapopulation modelling (Fagan 2002). Thus, many

researchers may be unfamiliar with these methods, as well as, the

software needed to implement them. Instead, parametric statistical

methods are commonly used to analyse DEN data, which either

ignore spatial relationships altogether, or assume that proximity and

connectivity are adequately described using Euclidean distance (e.g.

ignore network topology). When these methods are used the impli-

cit assumption is that topological relationships within the network

are unimportant. Thus, there is a mismatch between conventional

analytical approaches and the evolving ecological conceptualisation

of DENs. This disparity limits our understanding of how DENs

function, weakens our ability to make accurate and unbiased predic-

tions of DEN attributes, and ultimately reduces the effectiveness of

management actions in these unique ecosystems.

Our aim is to present a conceptual taxonomy of existing network

analyses, which allows us to describe the characteristics of, and

draw distinctions between, approaches used to describe network

structure and connectivity within DENs. Within this context, we

describe in more detail a new class of spatial statistical models for

DENs that addresses a significant gap in previous approaches, with

potential extensions to these methods. Finally, we discuss ways to

combine different network analyses so that more complex and

novel research questions may be explored. We mainly focus on

freshwater stream networks because they are a common form of

DEN (Box 1) and play a significant role in structuring spatio-tempo-

ral patterns and processes in both aquatic and terrestrial systems

(Paola et al.2006). In addition, human water security and threats to

aquatic biodiversity are a major global concern (V€or€osmarty et al.

Box 1 Stream ecosystems as dendritic ecological networks

Most studies in lotic freshwater ecology (i.e. flowing, freshwater

streams) have been undertaken at two disparate scales (Angerme-

ier et al. 2002; Fausch et al. 2002): local studies of abundance or

biotic interactions at discrete locations (� 200 m), and macro-

scale studies (> 100 km), which often use coarse, catchment or

stream network averages to provide inference about species dis-

tributions, evolutionary process, and more recently, climate

change impacts (e.g. Sanderson et al. 2009). However, key biolog-

ical and physical processes, such as metapopulation dynamics

and disturbance regimes, are thought to operate at intermediate

scales (Schlosser & Angermeier 1995; Ward 1998; Fausch et al.

2002; Benda et al. 2004), where detailed information is often

lacking (Falke & Fausch 2010). This is also the scale at which

conservation agencies and managers typically perceive the land-

scape and interact to prioritise conservation actions (Fausch et al.

2002). As a result, a spatially continuous view of streams and riv-

ers over intermediate scales (1–100 km; Fausch et al. 2002)

within the dendritic ecological network (DEN; Grant et al. 2007)

is needed to better understand key physicochemical and biologi-

cal processes (Schlosser & Angermeier 1995; Fisher 1997; Ward

1998; Fausch et al. 2002; Power & Dietrich 2002; Wiens 2002;

Benda et al. 2004; Fisher et al. 2004). The terminology used to

express these ideas is usually different than the terminology used

in graph or metapopulation theory, but the goals are similar; to

learn about ecosystem processes by investigating relationships

among a set of components, or locations, rather than treating

discrete locations independently (Proulx et al. 2005). Therefore,

we refer to this intermediate scale as the ‘network scale’ or ‘net-

work perspective’.

Fundamentally important characteristics of streams, such as

their dendritic network structure, connectivity, stream-flow direc-

tion and spatio-temporal variability of in-stream habitat and flow,

are particularly influential at the network scale. For example, the

catchment (land area that a stream network drains) provides

nutrient inputs to streams (i.e. lateral connectivity), where in-

stream processes alter the form and concentration of those nutri-

ents, which are then transported downstream (i.e. longitudinal

connectivity; Finlay et al. 2011). In turn, mobile organisms such

as fishes and amphibians respond to the spatio-temporal arrange-

ment of conditions within or along the network (Fausch et al.

2002), which forms semi-restrictive corridors for the transport of

water, materials and organisms (Grant et al. 2007). Barriers such

as dams and water diversions may also cause longitudinal frag-

mentation in the network (Ward 1998), making it challenging for

relatively mobile organisms to complete life histories across

stream networks (Schlosser & Angermeier 1995). In addition,

food-web structure and trophic dynamics may vary depending

on network structure, position within the catchment and lateral

connectivity (e.g. predation by terrestrial organisms; Power &

Dietrich 2002). Despite the conceptualisation of stream networks

as directed and highly connected DENs, there are few studies

that have successfully incorporated all of these fundamentally

important stream characteristics into network-scale analyses.
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2010). Nevertheless, the concepts are also applicable to other DENs,

and in some cases, other spatially structured ecological networks.

CONCEPTS

A coordinate system for DENs

A key concept, when modelling DEN data, is that observations

have a dual spatial representation; as points within the network

(topology) and as points in 2-D space (geography). Figure 1 illus-

trates this concept using a minimum planar graph (Fall et al. 2007),

but topology and geography could be represented in other ways. At

a minimum, the network perspective requires a dual coordinate sys-

tem (Fig. 1a), with the DEN represented as a network (Fig. 1b),

embedded within the 2-D geographical environment (Fig. 1c).

Although it may be simpler to explore network organisation in spa-

tial ecosystems without explicitly representing geography, critical

information about ecosystem function may be lost when models fit

to DEN data do not adequately account for the dual coordinate

system. This concept will be further explored in subsequent sec-

tions, but it is worth noting that the need for a dual spatial repre-

sentation is not a new idea; a measurement always has 2-D

coordinates because it is physically collected in geographical space.

A variety of conceptual (Schlosser & Angermeier 1995; Fausch et al.

2002; Benda et al. 2004), metapopulation (Fisher 1997; Hanski 1998;

Fagan 2002; Fisher et al. 2004; Muneepeerakul et al. 2008) and

graph-theoretic-based models (Urban & Keitt 2001; Urban et al.

2009; Dale & Fortin 2010; Gilarranz & Bascompte 2012; Jabot &

Bascompte 2012) have been used use to account for the dual coor-

dinate system. However, it is worth re-emphasising this concept

because ecological data continue to be modelled solely within net-

work space, in 2-D space, or independent of space altogether.

The dual spatial representation makes modelling DEN data more

complex than data represented solely in 2-D or network space. For

example, 2-D space simply forms the coordinate system for obtain-

ing samples, which is consistent across study areas (i.e. the same

coordinate system). In contrast, the branching structure and connec-

tivity represented by network space is likely to differ and, as a sub-

space of 2-D, has interesting properties in its own right. When

network properties are inadequately described, the analysis and

results may be confounded. For example, data located in the same

network space, but resulting from different processes are likely to

produce different results (Peterson et al. 2006); yet data collected

from different networks, but resulting from the same process may

also provide different results (Fagan 2002). It is this complex inter-

play between 2-D and network space, as well as the need to sepa-

rate and understand their influence on ecological processes that

makes a taxonomy of network analyses necessary.

A taxonomy of network analyses

A wide range of data types has been used to describe the physical

structure of DENs, as well as the structure and function of ecologi-

cal processes. These data types fall into three general categories: (1)

physical network structure, (2) physicochemical and biological pro-

cesses and (3) an aggregation of structure or process (Table 1). Met-

rics describing structure can be further sub-divided into those

describing the network as-a-whole (e.g. drainage density: the total

length of the network divided by catchment area) or the sub-net-

work (e.g. stream order: a measure of upstream branching complex-

ity). Various methods have been used to analyse these data types,

which we classify as non-, about-, on-, over- and across-network

analysis methods (Table 1, Fig. 2). This taxonomy of network-analy-

sis methods is not meant to drive or be organised by ecological or

biological question. Instead, it acts as a pragmatic framework to

help ecologists understand the similarities and differences between

analytical methods commonly used to analyse ecological processes

in stream networks and other DENs.

NON-network analysis

A non-network analysis ignores the structure, connectivity and

directionality of the network (Fig. 2b). Although not technically a

network analysis, non-network warrants mention because many

studies conducted at landscape to regional scales ignore spatial rela-

tionships between locations altogether (e.g. regression; Pandey et al.

2012). In fewer cases, spatial statistical models based on a 2-D

coordinate system (Fig. 1c; Box 2) are used to account for spatial

dependence between observations (Yuan 2004). Results and conclu-

sions from many of these studies may be adversely affected by

ignoring the properties of stream networks, as we demonstrate in

the Spatial Statistical Methods for Network Analysis section.

Many researchers attempt to overcome the limitations of non-

network analyses by including covariates that represent sub-network

structure (Hitt & Angermeier 2008), direction and connectivity

(Dunham & Rieman 1999; Isaak et al. 2007; Flitcroft et al. 2012;

Table 1). For example, Hitt & Angermeier (2008) quantified the

structural position of each survey site relative to the main stem

based on stream network topology and then used Mann–Whitney

U-tests to determine whether fish metrics in headwater tributaries

(small segment at the periphery of the network) differed from main

tributaries (larger segment draining to the main stem). Other metrics

representing habitat quality, proximity, connectivity and arrangement

are typically measured using least-cost path analyses and moving-

window approaches (Le Pichon et al. 2006), or patch size, composi-

tion and distance measures (Dunham & Rieman 1999; Isaak et al.

2007). Incorporating measures of sub-network structure as covari-

ates in non-network analyses allows researchers to explore specific

questions relating to the influence of physical network structure and

in-stream habitat on physicochemical and biological stream pro-

Spatial representation

=

2-DNetworkDual(a) (b) (c)

Figure 1 Locations within a stream network can be characterised using a (a)

dual, (b) network or (c) 2-D spatial representation. A 2-D coordinate system

lacks information about network connectivity. A network coordinate system only

uses relative position within the network, not the 2-D coordinates; thus,

distances between points within the network are equal in (b) and in that sense

they are equivalent network structures. A dual representation combines the 2-D

coordinate system with the network coordinate system. Various statistical models

use none, one or both coordinate systems.
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Review and Synthesis Dendritic ecological networks in space 3



cesses. The assumption is that the structure of the network either

affects the process directly (e.g. upstream dispersal in a branching

network) or acts as a surrogate for a process (e.g. magnitude of

changes to flow downstream after a localised rain event) (Fisher

et al. 2004). However, it is unlikely that the complexity of multi-

scale spatial processes and interactions within the dual coordinate

system (Wiens 2002) can be adequately represented through spatially

explicit covariates alone. Instead, observed patterns result from the

combined effects of in-stream flow and habitat, connectivity and tro-

phic interactions, as well as, the physical structure of the network.

ABOUT-network analysis

Many statistical methods have been developed for about-network

analyses (Kolaczyk 2009), where the primary focus is the physical

structure and/or connectivity of the network itself (Table 1;

Fig. 2c). Most methods were designed to model networks that do

not exist in 2-D space, such as social or internet networks, and sim-

ply account for network space; though, these non-spatial networks

are often N-dimensional graphs, which are affected by spatial scale.

Graph-theoretic methods represent a classic about-network

approach (Rayfield et al. 2011), which can be modified to account

for a dual coordinate system (Dale & Fortin 2010). Graph-based

approaches are uncommon in stream ecology, but may provide a

better understanding about species movement and persistence, as

well as informing spatially targeted restoration activities (Er€os et al.

2011; Fullerton et al. 2011; Carranza et al. 2012). For example,

Schick & Lindley (2007) used graph-theoretic metrics, including

degree, edge weight and node strength, to test how directional con-

nectivity influences the structure of fish populations. About-net-

work analyses for a dual coordinate system (Fig. 1a) also have a

long history in fluvial geomorphology (Horton 1945), where de-

scriptors of network structure were derived to describe landscape

evolution and understand scaling properties (e.g. stream order).

Many of these descriptors have been used to understand the influ-

ence of structure on physicochemical or biological patterns in

streams (Fagan 2002; Fisher et al. 2004). For example, the Network

Dynamics Hypothesis (Benda et al. 2004) describes how multi-scale

about-network characteristics may interact with stochastic distur-

bances to structure habitat, biological diversity and productivity. In

addition, well-known about-network measures, such as the fractal

dimension and drainage density, may be used to quantitatively

describe the structural characteristics of the entire network, while

newer measures, such as the dendritic connectivity index, may be

used to assess about-network connectivity (Cote et al. 2009).

ON-network analysis

On-network analyses (Fig. 2d) are based on point data, which

describe physical sub-network structure, as well as physicochemical

and/or biological processes or attributes (Table 1). The majority

of on-network analyses have been used to investigate the influence

of network structure on fragmentation, the movement behaviour of

organisms, population distribution and metapopulation persistence

(Fagan 2002; Grant et al. 2007; Carrara et al. 2012), as well as, the

combined effects of structure and temporal variation in mortality

on competitive metacommunity dynamics (Auerbach & Poff 2011).

Box 2 Review of spatial statistics and the spatial linear-mixed

model

Spatial autocorrelation, or autocovariance, is the degree to which

measurements are similar as a function of the distance separating

them (i.e. separation distance). It is inherent in geographical and

environmental data sets and occurs in both aquatic and terrestrial

systems at multiple scales (Peterson et al. 2006; Peterson & Ver

Hoef 2010). Spatial statistical modelling is a well-established

branch of statistics that provides a convenient way to model

these spatial dependencies (Cressie 1993; Diggle et al. 1998). As

an example, we present a spatial linear-mixed model in the usual

vector/matrix form,

y ¼ Xbþ zþ e ð1Þ

where y is a vector of random variables (i.e. the response vari-

able) measured at multiple locations on the stream network(s), X

is a design matrix for fixed effects, which contains the covariates

(i.e. explanatory variables), b is a vector of parameters for the

fixed effects (i.e. regression coefficients), z is a vector of random

variables that are spatially correlated and ɛ is a vector of inde-

pendent random errors. The linear model is convenient because

it decomposes data into three components: (1) covariates that are

measured in the field or remotely, which may be spatially patterned

themselves in Xb (e.g. percent shade at a location, land use or cli-

mate); (2) unmeasured spatially patterned covariates as random var-

iation in z; these include factors that are known to be influential,

but were not measured (e.g. land use or biotic interactions), as well

as unknown factors resulting from a lack of understanding about

the process; and (3) independent errors, including measurement

errors (e.g. calibration error), in ɛ.

An autocovariance function is simply the covariance between

any two values from z as a function of separation distance, con-

trolled by the covariance parameters. Three parameters are com-

monly used to describe the variance structure of the spatial

linear model (1): the nugget effect, the partial sill and the range.

The nugget effect is the variance of ɛ and describes the variation

between sites as the separation distance approaches zero. This

may be due to variation at a scale finer than the shortest separa-

tion distance or measurement error. The variance of z is called

the partial sill and it is the spatially structured component of the

random variation that is modelled. Note that, together the partial

sill and nugget make up the sill, which represents the overall var-

iance. Finally, the range parameter describes how fast autocorre-

lation decays to zero between any two values from z (e.g. the

distance within which spatial autocorrelation is expected to

occur).

When ecological processes are autocorrelated, a spatial statistical

approach provides parameter estimates with the proper amount

of uncertainty, whereas wrongly assuming independence often

means that significant relationships may be identified that do not

exist (Cressie 1993). In addition, spatial statistical models use

autocorrelation to make better local predictions, with estimates

of uncertainty at unobserved locations. An in-depth discussion

of spatial statistical models can be found in Cressie (1993).

© 2013 Blackwell Publishing Ltd/CNRS and Commonwealth of Australia
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These studies account for the dual spatial representation of streams

data and as a result have significantly improved our theoretical

understanding of the relationship between network structure, con-

nectivity and function. From a practical standpoint, these findings

are now being used to assess management-related questions specifi-

cally focused on physical changes to connectivity, such as interbasin

transfers (Grant et al. 2012). However, to our knowledge they have

not been used to address issues such as the influence of land-man-

agement practices on in-stream habitat and organismal distributions,

in a spatially explicit manner. For example, lateral connectivity with

the terrestrial landscape is generally not considered, movement

through the network is mainly treated as a function of distance (see

Goldberg et al. 2010 for an exception), and restrictions to organis-

mal movement due to within-network habitat heterogeneity are not

represented (Grant et al. 2007).

On-network analyses that use measurements of physicochemical

and biological processes are less common than those based on

descriptive metrics of sub-network structure. Mantel tests (Mantel

1967) and partial Mantel tests (Smouse et al. 1986) are on-network

approaches commonly used to investigate the differences in beta

diversity among sites based on various distance measures. However,

Legendre & Fortin (2010) showed that alternative methods, such as

regression or canonical redundancy analysis, had more statistical

power when the goal was to investigate relationships between spe-

cies similarity/dissimilarity and environmental variables. More

recently, a new family of spatial statistical models (i.e. spatial linear

regression) has been developed for on-network analyses (Ver Hoef

et al. 2006), which account for the structure, connectivity, direction

and dual spatial representation of streams (see Box 2 for an intro-

duction to spatial statistical models). To date, these models have

not been used to investigate the influence of network structure on

stream processes. Instead, they have been applied to better under-

stand the influence of catchment characteristics on in-stream pro-

cesses (Gardner & McGlynn 2009; Isaak et al. 2010) or to make

predictions at unobserved locations, with estimates of uncertainty

(Cressie et al. 2006; Garreta et al. 2010; Isaak et al. 2010). The model

predictions have also been used for a variety of purposes including

the assessment of in-stream thermal suitability (Ruesch et al. 2012)

and to provide spatially explicit estimates for broad-scale monitoring

(Garetta et al. 2009; Money et al. 2009a,b). These on-network meth-

ods are similar to traditional linear regression techniques commonly

applied to point measurements in stream ecology; except that the

assumption of independent errors is replaced with the notion that

random errors co-vary in both 2-D and network space. These con-

cepts will be further explored in the Spatial Statistical Methods for Net-

work Analysis section.

OVER-network analysis

Data describing the physical network structure, physicochemical and

biological processes or an aggregation of those characteristics within

an area or feature may be summarised over a network or multiple

networks (Table 1; Fig. 2e). The complexity of the over-network

analysis depends on data type and spatial representation (Fig. 1).

For example, measurements describing physical structure at single

time points, such as confluence angles (the angle of two stream seg-

ments converging) calculated from a static geographic information

system (GIS) data set, do not have a variance; therefore, a simple

over-network summary (e.g. mean) may be sufficient. However, bio-

logical or physicochemical measurements (e.g. stream temperature)

are temporally dynamic and each has their own variance, which can

be summarised over the network(s). For instance, empirical semi-

variogram analysis has been used to explore over-network spatial

Table 1 A description of network data types and the potential network analysis methods that can be used to analyse them

Data type Examples

Analysis method

NON ABOUT ON OVER ACROSS

Physical network structure

(whole network)

Drainage density, fractal dimension or metric of network

connectivity

✔ ✔

Physical network structure

(sub-network)

Confluence angle, stream order, node degree, edge weight,

patch connectivity or composition

✔ ✔ ✔ ✔

Physicochemical and biological

processes or attributes

Pool depth, pH or fish counts ✔ ✔ ✔

Structure and processes

aggregation

A special case where measurements are aggregated over an

area (e.g. a hydrologic unit), a network, or multiple networks

Mean fish count or confluence angle

✔ ✔

On

River network About

Across

Non

Over

(a) (b) (c)

(d) (e) (f)

Figure 2 (a) A real stream is represented as a network embedded in 2-D space.

(b) Non-network analyses use explicitly sampled values in 2-D space, but they

make no use of the network structure. (c) Analyses about a network look at

characteristics of the network structure such as segment lengths, branching and

connectivity. (d) Analyses on a network use explicitly sampled values at points in

network space. (e) Analyses over a network average or aggregate the spatially

explicit point values, whereas (f) analyses across networks compare network

values, either about or over the individual networks.

© 2013 Blackwell Publishing Ltd/CNRS and Commonwealth of Australia
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dependency of Oncorhynchus clarki clarki (coastal cutthroat trout)

counts in western Oregon as a function of hydrologic (i.e. in-

stream) distance (Ganio et al. 2005). Multiple over-network patterns

of spatial dependency may also be evaluated separately for network

and 2-D space, allowing spatial patterns across the dual coordinate

system to be explored simultaneously (Isaak et al. 2010). Another

example is block kriging, which can be used to scale up an on-net-

work model to an over-network analysis (Ver Hoef et al. 2006).

ACROSS-network analysis

An across-network analysis is used to compare or contrast charac-

teristics between whole networks or sets of networks (Fig. 2f). The

analysis generally takes two forms, depending on whether it is based

on data describing the whole-of-network structure (a single mea-

surement without an variance estimate) or data that have been

aggregated previously using an over-network analysis (estimates with

a standard error) (Table 1). Across-network analyses are relatively

simple for whole-of-network structure data measured at a single

time point; a t-test could be used to compare two types of net-

works, while an ANOVA may be appropriate when whole networks

can be categorised (e.g. catchment size or climatic region), assuming

proper transformations. When an across-network analysis is based

on aggregated measurements of sub-network structure or physico-

chemical or biological processes, these data will have an associated

variance measure. In that case, statistical models that incorporate

measurement error (i.e. uncertainty or variance in the data value),

such as a Bayesian hierarchical model (Cressie et al. 2009), should

be employed. For example, the mean heavy metal concentration in

networks draining mined and unmined catchments could be

obtained by block kriging point samples, after which a hierarchical

model that uses the means and variances from the block kriging

model could be used in the across-network analysis.

SPATIAL STATISTICAL METHODS FOR NETWORK ANALYSIS

As we examined the literature and developed the taxonomy

described above, it was clear that most research that explicitly

acknowledges fundamental stream characteristics has been based

on about- or on-network models that use sub-network data struc-

tures. Data describing stream-network structure are readily available

at broad spatial scales via remote sensing or GIS data sets and

may be used with all of the network-analysis methods (Table 1).

The primary focus of these studies has been to investigate the

influence of physical network structure on biological processes,

such as dispersal (Fagan 2002; Schick & Lindley 2007). In contrast,

on- or over-network models fitted to measurements of point data

representing physicochemical and/or biological processes are

needed to study the effects of stream processes on another physi-

cochemical or biological response; for example, the influence of

heterogeneous in-stream water quality on organismal distributions.

These studies are less common because near-continuous, network-

wide data sets describing in-stream processes are rare (Falke &

Fausch 2010). Spatial statistical methods fill a number of needs

that are not addressed by other network analysis methods; they can

be applied to spatially dependent data and may be used to generate

near-continuous, within-network predictions of physicochemical

and biological processes (Cressie 1993). This is especially important

in DENs, where processes occur on the network (Grant et al.

2007). Consequently, in this section, we further explore on- and

over-network analyses using spatial statistical methods, which were

briefly described in the On Network Analysis and Over-Network

Analysis sections.

Spatial statistical modelling on stream networks

Spatial statistical modelling is a well-established branch of statistics,

which provides a convenient way to model spatially dependent data

(Box 2). However, standard spatial statistical models may not ade-

quately represent the unique spatial relationships found in stream

networks and other DENs. For example, lattice models, which are

used to model spatial dependency in aerial units, model autocovari-

ance (i.e. autocorrelation) based on neighbourhoods, whereas

Euclidean distance has typically been used to build autocovariance

models in geostatistics (i.e. kriging; Cressie 1993). These metrics of

distance and proximity do not reflect the influence of dendritic

structure, connectivity and directionality within a network. In addi-

tion, a model is not guaranteed to be statistically valid when hydro-

logic distance is used in a geostatistical model developed for

Euclidean distance in 2-D space (Ver Hoef et al. 2006).

Ver Hoef & Peterson (2010) summarised the development of the

tail-up and tail-down autocovariance models for stream networks

(Cressie et al. 2006; Ver Hoef et al. 2006; Money et al. 2009a,b; Gar-

reta et al. 2009), which are based on a branching, continuous spatial

analogue to moving averages in time series. These models account

for two types of spatial relationships based on hydrologic distance:

flow-connected and flow-unconnected (Fig. 3). Two locations are

considered flow-connected if water flows from the upstream loca-

tion to the downstream location. Flow-unconnected locations reside

on the same stream network (e.g. share a common confluence

somewhere downstream), but do not share flow. Although the tail-

up (Fig. 4) and tail-down (Fig. 5) models are both adapted for

branching in streams and account for directionality, there are signifi-

cant differences in the way that spatial relationships are represented

in the two models. In the case of the ‘tail-up’ model, the tail of the

moving-average function points in the upstream direction (Fig. 4).

As a result, the function must be split at confluences to allow for

Figure 3 There are two types of spatial relationships in a stream network: flow-

connected and flow-unconnected. For two locations to be flow-connected, water

must flow from an upstream location to a downstream location (S3 and S1, S2
and S1). Flow-unconnected locations share a common confluence (e.g. junction)

somewhere downstream, but do not share flow (S2 and S3).
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the disproportionate influence of one converging segment over

another (e.g. a large stream segment converges with a smaller one)

using flow volume or another ecologically influential variable. Infor-

mation, such as flow volume, is rarely available for all segments in

the network and so catchment area is often used as a surrogate for

flow (e.g. Ruesch et al. 2012). Spatial autocorrelation occurs between

locations when the moving-average functions overlap, and as a

result, spatial autocorrelation only occurs between flow-connected

locations in the tail-up model (Fig. 4). In contrast, the moving-aver-

age function for the tail-down model points in the downstream

direction (Fig. 5). Notice there is overlap in the moving-average

functions when two sites are flow-connected and flow-unconnected,

so there is spatial autocorrelation in both situations. In addition,

weights are not necessary because segments converge in the down-

stream direction. The tail-up correlation structure may be useful for

modelling materials or organisms that move passively downstream,

such as nutrients (Gardner & McGlynn 2009), while the tail-down

models may be useful for modelling the abundance of organisms,

such as fish, which have the capacity to actively move both up and

downstream.

The need to quantify patterns of spatial autocorrelation that are

best described in network space is intuitive in a DEN where the

network structure is obvious. However, DENs are also embedded

within 2-D space and complex, multi-scale processes and interac-

tions occur across the dual coordinate system. This is especially true

in stream ecosystems where topographic and climatic gradients (e.g.

elevation and air temperature), as well as, land-management or dis-

turbances within the catchment and riparian zone (e.g. tree cover or

wildfires) have direct and indirect effects on physicochemical and

biological in-stream processes (Isaak et al. 2010). Thus, it is not

uncommon for stream data to show evidence of multiple Euclidean

and/or hydrologic patterns of spatial autocorrelation (Peterson et al.

2006; Garreta et al. 2009). To address this issue, autocovariance

models developed for Euclidean distance may be combined with

stream-network models to produce mixed models based on variance

components (Ver Hoef & Peterson 2010), through an extension of

the spatial linear model:

y ¼ Xbþ zTU þ zTD þ zE þ e ð2Þ
where y is a vector of response variables, X is a matrix of covari-

ates, b is a parameter vector, zTU and zTD are vectors of zero-mean

random variables with a correlation structure based on the tail-up

and tail-down stream-network models, respectively, zE is a vector

of zero-mean random variables with a correlation structure based

on Euclidean distance, and e is a vector of independent random

errors (see Box 2 for an overview of the spatial linear-mixed

model). When spatial random effects are added to form a mixed-

covariance structure and then combined with covariates within a

single model, a flexible modelling framework is formed that can be

used to account for measured and unmeasured variables at multiple

scales (Peterson & Ver Hoef 2010).

Is it worth it?

Creating a stream-network model involves more effort than employ-

ing standard geostatistical methods. Calculating hydrologic distances

and spatial weights requires advanced GIS expertise, whereas the

Euclidean distances can be calculated easily using site coordinates,

with or without a GIS. So, how much is really gained by using spa-

tially explicit on-network models? We explore this with a simple

example from the Middle Fork of the Lower Snake River, Idaho

(Fig. 6a). Daily stream temperatures were recorded in the summer

of 2004 and summarised to produce a summer mean temperature

for each location (Isaak, D.J., unpublished data). We fit two models

to these data: (1) a standard geostatistical model using Euclidean

distance with a constant mean (no covariates) and a spherical au-

tocovariance model (i.e. ordinary kriging; Cressie 1993), and (2) a

stream-network model, with a constant mean and a tail-up spherical

autocovariance model (Ver Hoef et al. 2006). A small portion of the

stream network (black square, Fig. 6a) is shown in Fig. 6b, which

contains three locations labelled with the observed temperature val-

ues. First, we used all of the data locations shown in Fig. 6a to esti-

mate the covariance parameters (nugget, partial sill, and range;

Box 2) for both the standard geostatistical model and the tail-up

Figure 4 The tail-up model points upstream from each location and restricts

autocorrelation to flow-connected locations. The moving-average functions are

shown in red, yellow and blue in the vertical dimension. Spatial autocorrelation

occurs between locations when their moving-average functions overlap and the

amount of overlap contributes to the magnitude of spatial correlation. The size

of the stream (blue line) is proportional to the line width. A spatial-weighting

scheme based on stream size is used to split the moving-average function at

confluences (C1) so that locations on larger segments (S2) are more strongly

correlated with downstream locations (S1) than locations on smaller segments

(S3); even though the distance between S3 and S1 is shorter than the distance

between S2 and S1.

Figure 5 The tail-down model allows spatial autocorrelation between both flow-

connected and flow-unconnected locations. The moving-average functions are

shown in red, yellow and blue in the vertical dimension. Spatial autocorrelation

occurs between locations when the moving-average functions overlap and the

amount of overlap contributes to the magnitude of spatial correlation. The

moving-average function for the tail-down model points downstream from each

location and so a spatial-weighting scheme is not needed to split the function at

confluences (C1). The size of the stream (blue line) is proportional to its line

width.
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stream-network model using restricted maximum likelihood; the

covariance parameter estimates are shown in a Table in Fig. 6b. We

then withheld one measurement and used the two observed data

points, as well as the estimated covariance parameters to make pre-

dictions at the withheld location. Using ordinary kriging and the

geostatistical methods based on Euclidean distance, the predicted

value for the withheld location was 11.98 °C, with a 95% prediction

interval of 10.26–13.70 °C. This interval does not capture the true

value of 14.10 °C. In contrast, the tail-up stream-network model

predicted a higher value of 12.94 °C, with a prediction interval of

10.29–15.58 °C, which captures the true value.

The network-based model yields a more accurate prediction

because ordinary kriging generally interpolates between observed

locations. From this perspective, the Euclidean model produces a

sensible prediction of 11.98 °C, which lies between the two

observed values and is more similar to the closer downstream loca-

tion (Fig. 6b). Yet, this may not make sense for a flowing stream.

Before we discuss the prediction made by the tail-up model, notice

that the temperature increased from 11.16 °C to 12.42 °C down-

stream between the two observed locations (Fig. 6b). This suggests

that the unobserved tributary added warm water, causing the rise in

temperature. Logically, the downstream temperature of 12.42 °C
should be some weighted average of temperatures from the two

upstream segments; one has a temperature of 11.16 °C, and the

other temperature is unknown, but is surely greater than 12.42 °C.
Thus, the kriging estimate of 11.98 °C is not sensible, whereas the

estimate from the stream-network model, 12.94 °C, is much more

reasonable. Furthermore, the prediction intervals provided by the

tail-up model are wider, which better reflects the uncertainty coming

from the physical structure of the network, rather than the interpo-

lation based on Euclidean distance.

This simple example clearly demonstrates the potential benefits of

implementing a spatial stream-network model. However, these

benefits only materialise when (1) the data are spatially correlated,

(2) spatial autocorrelation is best described using a hydrologic

(e.g. flow-connected or flow-unconnected) rather than Euclidean

relationship and (3) data are distributed across a branching network

rather than a single, non-branching stream channel. In addition, the

spatial distribution of survey sites has important implications on the

number of neighbouring pairs used to fit the autocovariance func-

tion (Peterson et al. 2006; Box 2). If there are too few flow-con-

nected or flow-unconnected locations, there is little to gain from

fitting a spatial stream-network model.

Generalised linear models and other extensions

Non-Gaussian data, such as counts of organisms or species pres-

ence-absence, are commonly collected for monitoring programs and

ecological studies. Spatial linear models may be applied to non-

Gaussian data if transformations are used to normalise the response

and homogenise the variance. However, another approach is the

generalised linear model (GLM), which uses Poisson or binomial

distributions directly, and this approach has already been adapted

for spatial statistical models based on Euclidean distance (Diggle

et al. 1998). To our knowledge, spatial GLMs using stream-network

models as reviewed by Ver Hoef & Peterson (2010) have not been

described in the literature, but in principle stream-network covari-

ances can be used in GLMs in exactly the same way as Euclidean

distance covariances are used; consequently, no new methodological

developments are needed to fit a spatial GLM for stream networks.

Empirical semivariogram analysis and the Torgegram

Empirical semivariogram analysis is used to explore how the spatial

dependence between observations changes as a function of distance.

These patterns may be particularly interesting in stream networks,

where the dendritic structure, as well as longitudinal and lateral con-

nectivity can produce multiple patterns of spatial autocorrelation

(Peterson & Ver Hoef 2010). An empirical semivariogram estimates

the semivariance (0.5 9 var(Yi�Yj) for all i 6¼ j) plotted as a func-

tion of increasing distance among observed locations, where pair-

wise distances (i.e. separation distances) are aggregated into bins.

Empirical semivariograms that display a patterned increase in semi-

variance with increasing distance indicate that the data, or model

residuals, exhibit positive spatial autocorrelation.

In the case of stream-network processes, a Torgegram (Ver Hoef

et al. in review) is used to display semivariance as a function of

hydrologic distance separately for flow-connected and flow-uncon-

nected relationships (Fig. 3); making them useful exploratory tools

for visualising different network-based patterns of spatial autocorre-

lation in raw data or model residuals, which we illustrate next using

two examples.

The Torgegram: Visualising network-based patterns of spatial autocorrelation

We constructed a Torgegram using 178 mean summer stream tem-

perature observations (Fig. 7a) collected in the Bear Valley Creek

catchment (13,000 km2), upper Middle Fork of the Salmon River,

Idaho, USA (Isaak, D.J., unpublished data), assuming a constant

0 100 m

0 25 km

14.10

11.16

12.42

Covariance
Parameter Euclidean Tail-up
Nugget 0.292 0.000
Partial Sill 7.72 11
Range 16200 203300

Flow

Model
Estimate
(°C)

95% Prediction
Interval (°C)

Kriging 11.98 10.26 – 13.70
Tail-up 12.94 10.29 – 15.58

Retained

Withheld

Stream temperature dataSubset Middle Fork Basin (b)

Middle Fork
Basin (a)

Figure 6 (a) Daily stream temperatures (°C) were measured in the summer of

2004 throughout the Middle Fork Basin, USA and summarised to produce a

mean summer temperature for each location (n = 90). Two models were fit to

these data: (1) a standard geostatistical model using Euclidean distance (i.e.

kriging) and (2) a stream-network model (i.e. tail-up). (b) We withheld one

datum and used the two neighbouring observed data points, as well as the fitted

covariance parameters to make predictions at the withheld location.
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mean among all locations. The second Torgegram (Fig. 7b) relies

on 386 juvenile Oncorhynchus mykiss (rainbow trout) abundance data

collected in the Elk River catchment (238 km2), located in south-

western Oregon, USA (Burnett 2001). The Torgegram in Fig. 7b

was constructed using residuals from a spatial linear model where

abundance values were first loge transformed, and a regression coef-

ficient for trend in upstream distance was estimated using model

covariates. Three parameters are used to describe the shape of the

semivariogram: the nugget effect, the sill, and the range (Box 2).

For stream temperature, there can be only one overall sill, which

appears to be around 5. The nugget effect for flow-connected sites

is near zero and the semivariance increases more slowly towards the

sill (Fig. 7a), which suggests that the range of spatial correlation for

flow-connected stream temperature sites may be near 15,000 m, or

greater. In contrast, the flow-unconnected pairs exhibit a larger nug-

get effect and the semivariance increases more rapidly to a range of

approximately 10,000 m. These characteristics suggest that the data

exhibit both flow-connected and flow-unconnected patterns of spa-

tial autocorrelation and that fitting a mixed-covariance structure that

includes both tail-up and tail-down autocorrelation models may be

appropriate. A relatively strong pattern of spatial autocorrelation

between flow-connected pairs is also evident in the Torgegram for

the abundance residuals (Fig. 7b); the nugget effect is approximately

0.8 for flow-connected sites, with a sill near 1.6, and a range

approaching 4,000 m. Yet, the semivariance for the flow-uncon-

nected pairs does not appear to change as a function of hydrologic

distance, which suggests that flow-unconnected locations may not

be spatially correlated after accounting for the upstream trend. As

such, adding a single tail-up autocorrelation model might be suffi-

cient.

Abundance estimation and block kriging

Estimates of averages or totals, along with their estimated precision,

over stream networks, sub-networks or stream segments are particu-

larly important for managing populations of aquatic organisms or

monitoring pollution impacts. For example, Poos et al. (2012)

derived sub-catchment-scale population estimates of Clinostomus elon-

gates (redside dace), an endangered minnow, by extrapolating pool-

scale density estimates based on a combination of quantitative and

qualitative rules. These pool and sub-catchment-scale estimates were

then used to better understand the relationship between the distri-

bution of redside dace and impervious land use. Classical

approaches to abundance estimation use exhaustive surveys to mini-

mise bias and achieve reasonable precision, which increases the cost

of sampling and limits the survey area (e.g. Hankin & Reeves 1988).

Classical random-sampling techniques can also be used, such as

simple or stratified-random sampling, but lack predictive ability and

precision for small areas. In addition, it may not be feasible to truly

randomise sample placement due to a lack of access (e.g. no roads,

steep canyons or uncooperative land owners). Even if a randomised

design can be used, there may be better estimators, such as block

prediction, or universal block kriging on stream networks (Ver Hoef

et al. 2006), to scale up from an on- to an over-network analysis.

Future research

The full suite of spatial statistical models described thus far, includ-

ing mixed models, spatial GLMs and block kriging on stream net-

works, may be fit using the SSN package (Ver Hoef et al. in review)

for R statistical software (R Development Core Team 2010). How-

ever, other methods would also be useful and more research is

needed to make them spatially explicit on stream networks. For

example, incomplete-detection occupancy models (MacKenzie et al.

2002) provide a way to estimate occupancy rates from binary data,

while also accounting for the probability of detection. Analysis of

extremes for water quality often involves converting continuous

data to a binary response at the threshold level (Clement & Thas

2009) or using generalised extreme-value models that depend on a

distribution (Towler et al. 2010). Analyses at broad scales may lead

to computational issues with large sample sizes (e.g. in-stream sen-

sor networks, Porter et al. 2012); therefore, spatial statistical meth-

ods for large data sets, such as fixed-rank kriging (Cressie &

Johannesson 2008), could be adapted for stream networks. Current

methods only account for spatial dependency in stream data, but

there is clearly a temporal-dynamic structure that should be incor-

porated simultaneously using spatio-temporal analytic methods

(Cressie & Wikle 2011). Finally, inferences for spatial data are sub-

stantially affected by the spatial configuration of survey sites on the

network (Zimmerman 2006). Many survey designs seek spatial bal-

ance over the geographical range (Stevens & Jensen 2007), but

proximity and connectivity in stream networks are functionally dif-

ferent than in terrestrial systems, requiring research on stream-spe-

cific survey designs to optimise objectives.

INTEGRATING NETWORK ANALYSES

Previous network analyses in stream ecosystems have focused on

the influence of either network-explicit variables (e.g. physical net-

work structure and flow direction) or network-implicit variables (e.

g. continuous, hierarchical and spatio-temporally heterogeneous in-

stream habitat quality). However, the tendency to focus solely on

either spatial structure or function is not unique to stream ecology

and there has been an effort to integrate disparate perspectives to

gain a more holistic understanding of the study system (Paola et al.

2006; Rodr�ıguez-Iturbe et al. 2009). For example, Massol et al.

(2011) noted that much of the research on spatial food webs in

ecology has been developed independently from research on ecosys-

tem dynamics, and proposed a ‘metaecosystem’ framework for

bringing concepts from landscape ecosystem and food-web meta-

community ecology together. In another study, Jabot & Bascompte
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Figure 7 The Torgegram is used to display semivariance as a function of

hydrologic distance separately for flow-connected and flow-unconnected

relationships, with the size of the circle proportional to the number or paired

locations used to estimate the semivariance. The two Torgegrams shown here

are based on (a) raw stream temperature data collected in the upper Middle Fork

Salmon River, USA and (b) juvenile rainbow trout abundance data collected in

the Elk River catchment, USA.

© 2013 Blackwell Publishing Ltd/CNRS and Commonwealth of Australia

Review and Synthesis Dendritic ecological networks in space 9



(2012) demonstrated how a metacommunity model, which focuses

on spatial processes in a single trophic group, could be integrated

with a network model that considers multiple trophic groups at a

single location, to obtain a better understanding of how network

structure affects metacommunity dynamics. The combined influence

of spatial structure and ecological interactions on in- or near-stream

processes is also of interest in stream ecology (Angermeier et al.

2002; Power & Dietrich 2002; Fisher et al. 2004; Falke & Fausch

2010), but the dual coordinate system makes explicitly accounting

for their combined influence more complicated than in other spa-

tially structured ecological networks.

The taxonomy of network analyses provides a framework to aid

in the integration of different models preferred by ecological subdis-

ciplines, such as community, landscape or population ecology. As a

first step, studies that include both on- and about-network analyses,

potentially within a single statistical framework, are relatively

straightforward to implement and will provide a means of investi-

gating the influence of in-stream habitat availability and physical net-

work structure on the distribution of organisms. For example, a

spatial statistical model could be used to generate semi-continuous

predictions of in-stream habitat based on physical sub-network

structure or other remotely derived covariates, such as climate,

topography or land cover. Then, about-network metrics could be

used to relate the configuration and connectivity of predicted habi-

tat patches to species distributions using a graph-theoretic-based

model. Different types of on-network analyses may also be com-

bined to address more complex questions. Goldberg et al. (2010)

developed a matrix population model to investigate the effects of

dendritic network structure and within-network habitat patches on

species distributions. Habitat patch characteristics were assigned

based on distance upstream from the stream outlet; however, a spa-

tial statistical model could be used to estimate more realistic seg-

ment-scale habitat characteristics (e.g. temperature or substrate type)

thought to influence organismal dispersal, survival or reproduction,

based on catchment land-management practices. These examples

demonstrate how spatial statistical methods can be used to predict

biologically relevant information at an intermediate scale (1–100 km),

which can then combined with about- or on-network analyses;

thus, accounting for the interplay between network structure,

within-network habitat characteristics or processes, and/or the

characteristics of the 2-D landscape the network resides within.

The ability to integrate various network analyses in DENs also

opens the door to a suite of previously intractable research ques-

tions. For example, cutthroat trout is a species of concern in the

northwestern United States, where their distribution is relatively

limited compared to historical distributions (Young 1995). Evidence

suggests that these declines may be due to habitat degradation

(Harig et al. 2000), isolation of populations (Haak et al. 2010) and

competition with invasive species such as Salvelinus fontinalis (brook

trout; Fausch 2008). It remains unclear, however, which factors are

responsible for most of the decline, and whether their influence is

spatially heterogeneous or varies depending on scale. An integrated

approach using both on- and about-network methods provides a

way to investigate each component’s respective contribution, as well

as, its influence on other ecological dynamics. This information

could then be used to develop a network-explicit reserve design

(Urban et al. 2009) or to undertake a risk or cost–benefit analysis

to identify areas with the greatest conservation or restoration

potential (Urban & Keitt 2001). Other taxa of concern also share

habitat with cutthroat trout (e.g. Dicamptodon sp.) and a spatially

structured network model (Jabot & Bascompte 2012) would pro-

vide a way to move from single species conservation to a multispe-

cies approach (Urban et al. 2009). In addition, air and stream water

temperatures are expected to increase in the future, causing shifts

in fish distributions (Hari et al. 2006), which adds to the challenge

of spatially explicit, conservation prioritisation efforts. One solution

would be to study potential metacommunity dynamics using time-

ordered networks (Blonder et al. 2012) under a series of future cli-

mate and thermal habitat scenarios to account for new species

interactions, as well as, changes in habitat quality and network

structure resulting from lower stream flows. Finally, ecological pro-

cesses (e.g. movement and dispersal) are often facilitated or

impeded by non-natural transport mechanisms such as human rein-

troductions and the intercatchment transfer of water, nutrients or

organisms (Fullerton et al. 2011; Grant et al. 2012). Thus, there is a

need to understand the effects of these human-imposed networks

on physically constrained networks, such as DENs. The taxonomy

of network analyses provides a conceptual framework to select and

combine complimentary analytical methods to understand complex

ecological systems composed of both physicochemical and biologi-

cal processes that operate across multiple scales in the dual coordi-

nate system.

OTHER DENS AND SPATIALLY STRUCTURED ECOLOGICAL

NETWORKS

Although our primary focus has been on stream ecology (Box 1),

the conceptual taxonomy of network analyses is relevant for any

dendritic ecological network, which exists within a dual coordinate

system. The same concepts and models could be used to select and

combine analyses of preferential, but not exclusive, use and migra-

tion of terrestrial or semi-aquatic species along riparian corridors

(Naiman & D�ecamps 1997; Carranza et al. 2012); the effects of both

pollution and the distribution of refugia on fauna in cave networks

(Wood et al. 2008); or studies investigating the effects of plant

architecture on foraging intensity or pest infestation patterns in den-

dritically structured plants (Legrand & Barbosa 2003; Sylvaine et al.

2012). For example, spatial statistical methods have previously been

used to explore pest and nutrient distributions in trees (Habib et al.

1991; Audergon et al. 1993) and the tail-down covariance model

would be particularly suited for these problems. In addition, a

model based on a covariance mixture (i.e. tail-down, tail-up and

Euclidean) would allow complex patterns of spatial autocorrelation

associated with proximity to the plant’s main stem or differences in

light exposure to be accounted for, in addition to those associated

with network structure.

The taxonomy of network analyses would also be relevant in

other ecological settings where processes are not limited to Euclid-

ean space, but rather follow pathways that are constrained by the

physical environment. For example, the effects of ocean currents on

larval dispersal (Hidalgo et al. 2011); patterns of dissolved oxygen in

estuaries (Rathbun 1998); animal movement along habitat corridors

(Castell�on & Sieving 2006); and plant (Spooner et al. 2004) and ani-

mal dispersal along road networks (Brock & Kelt 2004). Note that,

the specific models and examples provided here may not be suitable

in every situation (e.g. a spatial statistical model for stream networks

cannot be applied to a non-dendritic road network). Nevertheless,

other models found within the same families of models, such as
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spatial statistical methods, graph-theoretic approaches and metapop-

ulation models, can be combined in a myriad of ways to systemati-

cally account for the interplay between network structure, within-

network characteristics or processes, and the characteristics of the

2-D landscape the network resides within.

SUMMARY

Dendritic ecological networks, such as streams ecosystems, are a

unique form of spatially structured ecological network that play a

vital role in ecology (Paola et al. 2006). Analytical methods that

explicitly account for fundamental characteristics, such as network

structure and connectivity within the dual coordinate system, are

needed to better understand the processes governing physicochemi-

cal and biological properties within DENs and the surrounding

environment. This is especially true in streams, where longitudinal

connectivity strongly influences in-stream processes and lateral con-

nectivity blurs the boundary between the aquatic and terrestrial

environment (Fisher et al. 2004). If the fundamental characteristics

of DENs are not accounted for in the analyses, it can lead to poor

scientific inference, and in turn, poor management decisions. There-

fore, the ability to account for these fundamental characteristics

within an analytical framework is especially important for bridging

the gap between research pertaining to fine-scale processes and

broad-scale management decisions (Fausch et al. 2002).

We proposed a unifying taxonomy of analyses non-, about-, on-,

over- and across- networks to help researchers (1) understand the

differences between the processes of interest and the analytical

methods available, (2) select the most suitable method for their

study and (3) integrate network analyses to acquire a more coherent

system-wide understanding. We then considered on-network analy-

sis in more detail because it has received the least attention and

there have been recent novel developments, while the taxonomy of

network analyses provided the context for such development. There

are undoubtedly other analytical methods that were not discussed,

which account for network characteristics to varying degrees, such

as process-based models used to predict sediment movement in

streams (Gassman et al. 2007) or network-explicit spatial optimisa-

tion methods used to prioritise conservation efforts (Hermoso et al.

2011). Nevertheless, the taxonomic framework allows ecologists to

place other methods, including those yet to be developed, within

the broader context of potential network analyses.

Our hope is that this taxonomic framework will help ecologists

quantitatively embrace the spatial complexity of DENs, as well as,

explore and test the evolving ecological conceptualisation of DENs

as a unique form of spatially structured ecological network. Interdis-

ciplinary collaboration between ecologists and statisticians made it

possible to develop this framework. Further cross-disciplinary col-

laboration is needed to ensure that new statistical methods represent

the fundamental characteristics of spatially structured ecological net-

works, so that ecologists can push the boundaries of their science,

while also providing managers with tools for solving real-world

problems.
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