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[1] Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S.
fuel types during 77 controlled laboratory burns are presented. The fuels include SW
vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush,
manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as
well as SE vegetation types: 1 year, 2 year rough, pocosin, chipped understory, understory
hardwood, and pine litter. The SW fuels burned at higher modified combustion efficiency
(MCE) than the SE fuels resulting in lower particulate matter mass emission factor. Particle
mass distributions for six fuels and particle number emission for all fuels are reported.
Excellent mass closure (slope = 1.00, r2 = 0.94) between ions, metals, and carbon with total
weight was obtained. Organic carbon emission factors inversely correlated (R2 = 0.72) with
average MCE, while elemental carbon (EC) had little correlation with average MCE
(R2 = 0.10). The EC/total carbon ratio sharply increased with MCE for MCEs exceeding
0.94. The average levoglucosan and total polycyclic aromatic hydrocarbon (PAH)
emissions factors ranged from 25 to 1272mg/kg fuel and 1.8 to 11.3mg/kg fuel,
respectively. No correlation between average MCE and emissions of PAHs/levoglucosan
was found. Additionally, PAH diagnostic ratios were observed to be poor indicators of
biomass burning. Large fuel type and regional dependency were observed in the emission
rates of ammonium, nitrate, chloride, sodium, and potassium.

Citation: Hosseini, S., et al. (2013), Laboratory characterization of PM emissions from combustion of wildland biomass
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1. Introduction

[2] Fresh smoke from wildland biomass burning is a
complex mixture of gases and aerosol. The amount and
composition of fire emissions depend on a wide range of pa-
rameters including fuel type, packing ratio, fuel composi-
tion, chemical composition, fuel moisture, and fire
behavior (e.g., relative amounts of smoldering and flaming)
[Andreae and Merlet, 2001; Akagi et al., 2011]. While

wildland fuels are composed primarily of cellulose, hemi-
celluloses, and lignin, the composition and quantity of trace
elements vary by plant species, soil type, ambient air mass,
sea-salt deposition, and anthropogenic nitrogen and sulfur
deposition [Albini, 1976; Fenn, 1991; Hardy et al., 1996;
McKenzie et al., 1996; Yokelson et al., 2011]. Local climate
and meteorological conditions influence both plant structure
and moisture-conserving strategies, which in turn influence
fire behavior and smoke emissions when these fuel types
are burned.
[3] While the mean June–August temperatures are similar

(15–27�C), the southwestern (SW) United States tends
to be drier (34–69 cm annual precipitation) than the more
humid southeastern (SE) United States (114–160 cm) and
the seasonality of precipitation is different (23–30 cm
December–February for both regions, < 3 cm and 30-42 cm
June-August for the SW and SE, respectively. (Climatological
statistics derived from data developed by National Climatic
Data Center using U.S. Climate Division Dataset Mapping
Page and 1981–2010 base period (http://www.esrl.noaa.gov/
psd/data/ usclimdivs/), accessed on 24 April 2012.) However,
some plants and plant communities have developed similar
structure and foliar characteristics such as chaparral in
California and pocosin in North Carolina [Keeley, 2001].
Prescribed burning is a vegetation management tool used to
manage wildlife habitat, remove wildland fuel accumulation
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to reduce the potential for severe wildfire, and mimic the natural
role of fire [Chandler et al., 1983]. Recent modeling studies
have analyzed the potential use of prescribed burning as a tool
to reduce carbon dioxide emissions [Narayan et al., 2007;
Wiedinmyer and Hurteau, 2010]. Due to a variety of reasons,
prescribed burning is used extensively in the SE in contrast to
limited use in chaparral and oak ecosystems in the SW.
Between 2002 and 2011, the annual average area treated with
prescribed burning was 599,000 ha in the southeastern U.S.
(SE: Alabama, Arkansas, Florida, Georgia, Louisiana,
Mississippi, North Carolina, South Carolina, Tennessee, and
Virginia) and 134,000 ha in the southwestern U.S. (SW:
Arizona, California, Colorado, New Mexico, Nevada,
and Utah) (National Interagency Fire Center http://www.
nifc.gov/, accessed on June 14, 2012. During the same
period, wildfires burned an average of 854 kHa yr�1 in
the SW and 215 kHa yr�1 in the SE (NIFC, 2012).
[4] While prescribed burning is an important land manage-

ment tool, emissions from prescribed fires and wildfires can
have a significant detrimental impact on air quality by
degrading visibility and increasing ambient concentrations
of fine particulate matter (PM2.5, aerosol with an aerody-
namic diameter ≤2.5 mm) and ozone (O3). More generally,
emissions from biomass combustion can have a substantial
influence on local-to-global scale chemical and physical
properties of the atmosphere through short- and long-range
transport [Crutzen and Andreae, 1990; Fishman et al.,
1991]. Smoke aerosols can alter the radiation budget of the
earth, cloud properties, and climate [Reid et al., 1998;
Haywood et al., 2003; Kaufman and Fraser, 1997; Hobbs
et al., 1997]. Epidemiological studies have linked mass con-
centration of PM2.5 to human morbidity and mortality [Pope
et al., 2009]. Wildland firefighter exposure studies have
reported exposures to CO, particulates, and silica at levels
near or higher than recommended occupational exposure
levels [Materna et al., 1992]. Other studies report that smoke
exposure occasionally approaches legal and recommended
exposure levels [Reinhardt and Ottmar, 1997]. Because of
the different nature of the work, firefighters generally were
exposed to more smoke on prescribed fires than on wildfires
[Reinhardt and Ottmar, 2004]. Additionally, toxic gases
[Roberts et al., 2011] are emitted and several polycyclic aro-
matic hydrocarbons (PAHs) present in wood smoke are
known to be carcinogenic and/or associated with mutagenic-
ity [Roberts and Corkill, 1998; Ramdahl and Becher, 1982].
[5] Emissions from combustion of wildland fuels remain

to be a significant source of uncertainty in regional and global
emission estimates [Schultz et al., 2008; Wiedinmyer et al.,
2006]. To lower these uncertainties, it is necessary to provide
better characterized emissions and combustion parameters to
emission inventory algorithms that provide emission input to
transport and smoke dispersion models. This can be done
through field and controlled laboratory studies. Field studies
have the advantage of measuring emissions from an actual
fire, although sampling time, sampling phase, and number
of measured species are limited [e.g., Lee et al., 2005;
Hardy et al., 1996; Hays et al., 2002; Muhle et al., 2007;
Yokelson et al., 1999]. Controlled laboratory studies, on
the other hand, can rectify these shortcomings of field studies
[e.g., Chakrabarty et al., 2006; Chen et al., 2006, 2007, 2010;
Hays et al., 2002]. Except for the study of McMeeking et al.
[2009] that has three common fuels with this study, we are

unaware of any other laboratory measurements of emissions
from combustion of southwestern and southeastern U.S. plant
species. Finally, very few studies have a comprehensive set of
measurements [e.g., McMeeking et al., 2009] that include
speciated particle-phase emissions, along with an indicator of
combustion condition. To the best of our knowledge, no study
prior to the current study has reported particle-phase PAHs
and levoglucosan as extensively as the current study.
Compared toMcMeeking et al. [2009] that had 33 burns from
SE fuels, we had 77 burns from SW and SE. We significantly
increased the weight of the pile and characterized the particle-
phase inorganic content. The objective of our study is to
determine particulate matter emission factor (EF) for the com-
bustion of fuels representative of ecosystems commonly man-
aged with prescribed burning in SW and SE U.S. EF was
determined by measuring particulate and gas phase emissions
from the burning of fuels in the large-scale combustion facility
at U.S. Forest Service (USFS) Missoula Fire Sciences
Laboratory. The current study presents only a subset of results;
the other results from lab and field components are published
elsewhere [Burling et al., 2010, 2011; Hosseini et al., 2010;
Veres et al., 2010; Roberts et al., 2010].

2. Experimental Methods

2.1. Fuel Type Description

[6] Samples of vegetation representing important wildland
fuel types on Department of Defense installations in the SW
and SE U.S. were harvested in the field and shipped to the
U.S. Forest Service Fire Sciences Laboratory (FSL) in
Missoula, Montana, in January 2009. These fuel types were
typical for these two regions. The fuels were stored in their
shipping boxes at ambient condition for January and then
burned in the FSL combustion facility in February 2009,
3–5weeks after harvest. In order to let the fuels lose mois-
ture content, they were not placed in plastic bags.
[7] Table 1 describes the species composition and chemis-

try of vegetation comprising each fuel type studied and pro-
vides the three-letter fuel code used for fuel type in this
paper. This list encompasses nine and four fuel types from
the SW and SE, respectively, that were provided by the
United States Forest Service (USFS). The fuel types in the
current study, for most cases, are a mixture of two or more
vegetation types or fuel components. For example, maritime
chaparral (fuel code: mch) is a mixture of Ceanothus
impressus var. impressus, C. cuneatus var. fascicularis, and
Salvia mellifera. Further details regarding the fuels are pro-
vided in Burling et al. [2010], Hosseini et al. [2010], and
Yokelson et al. [2013].
[8] Fuels were analyzed for chemical composition by first

grinding the plant tissues (wood and foliage) into a uniform
coarse material using a Thomas Model 4 WileyW Mill. (The
use of trade names is provided for informational purposes
only and does not constitute endorsement by the U.S.
Department of Agriculture.) The samples were further
ground to extremely fine particles using a mortar and pestle
grinder. Approximately 5 g of each fuel sample was analyzed
for C, H, N, S, andO using a combustion technique [McGeehan
and Naylor, 1998] on a Thermo Fisher Scientific FlashEA
1112 Series Elemental Analyzer (Table 1). The vegetation
components comprising the fuel beds were also analyzed
by an outside laboratory (University of Idaho Analytical
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Sciences Laboratory) for Cl, K, and Na content (Table 1). A
0.25 g dried ground plant tissue was digested in 3mL of nitric
acid for 6 h in 30�C. Subsequently, the sample was
analyzed using inductively coupled plasma atomic emission
spectrometry (ICP-AES) method [Anderson, 1996] for
concentrations of K and Na on a Perkin Elmer Optima
3200RL ICP-AES. Similarly, 0.5 g dried ground plant tissue
was extracted using 0.01N nitric acid, and then the chloride
concentration was determined by ion chromatography on a
Dionex DX-100 Ion Chromatograph (Dionex, USA). For
anion separation, an IonPac AG4A-SC 4mm guard column
and an IonPac AS4A-SC 4mm analytical column were used.

2.2. Combustion Facility and Burn Procedure

[9] Experiments were conducted at the U.S. Forest Service’s
combustion facility at the Fire Sciences Laboratory (FSL) in
Missoula, Montana. The facility is a large air-conditioned
chamber that measures 12.5m� 12.5m� 22m in volume
(Figure S1 in the supporting information). A 3.6m inverted
funnel opening approximately 2m above the floor captures
the smoke from fires on a continuously weighed fuel bed.
The smoke is then directed through a 1.6m diameter exhaust
stack that exhausts through the ceiling. The room is pressurized
slightly to ensure complete entrainment of fire emissions. A
large sampling platform surrounds the stack at 17m elevation
where an open-path Fourier transform infrared spectrometer
(OP-FTIR) and a suite of particle instrumentation were located
(Figure 1). The smoke at the height of sampling platform is well
mixed and has the same temperature and mixing ratios across
the stack diameter [Christian et al., 2003, 2004].

[10] The fuel bedwas an aluminum framewithwiremesh and
removable heat-resistant 1.27 cm Kaowool M Board that was
removed depending on the physical characteristics of the vegeta-
tion. Two electronic balances continuously recorded the mass of
the fuel. The air speed in the stack was 1.5 and 3.0m/s for
majority of the burns. Nearly all of the fires were ignited with
a propane torch; a small number were ignited using isopropyl
alcohol in addition to the torch. Additional information on the
FSL combustion facility may be found inChristian et al. [2004].

2.3. Measurement System and Sample Analysis

[11] In addition to the sampler system demonstrated in
Figure 1, several particulate-phase instruments were also
located on the platform: an Aerodyne High Resolution Time
of Flight Aerosol Mass Spectrometer (HR-TOF-AMS,
Aerodyne Inc.), an Ultrafine Condensation Particle Counter
(UCPC Model 3776, TSI Inc.), a Scanning Mobility Particle
Sizer (SMPS), a Fast Mobility Particle Sizer (FMPS Model
3091, TSI Inc.), an Aerodynamic Particle Sizer (APS Model
3321, TSI Inc.), a Micro-Orifice Uniform Deposit Impactor
(MOUDI, MSP Corp.), and a DekatiW Mass Monitor (DMM)
[Mamakos et al., 2006].
[12] A single 1.0 cm� 1.5 cm punch from each quartz filter

was analyzed for elemental and organic carbon (EC/OC) by
both University of California, Riverside and the USFS with a
Sunset Laboratory (Forest Grove, Oregon) Thermal/Optical
Analyzer following the National Institute for Occupational
Safety and Health (NIOSH) 5040 reference method (1996)
[Birch and Cary, 1996]. The final OC concentrations were es-
timated by subtracting the OC measured on the backup filters

Table 1. Elemental Composition of Fuel Types Used in This Work and Summary of Fuel Types, Codes, and Number of Burns for
Each Burn

Fuel Type
Fuel
Code

No. of
Burns

N
(wt %)

C
(wt %)

S
(wt %)

O
(wt %)

H
(wt %)

Cl
(wt %)

K
(wt %)

Na
(wt %)

Fuel Moisture
(%)

Burn Pile Weight
(kg)

Southwestern Fuels
Ceanothusa cea 6 1.05 43.46 0.01 42.34 6.04 0.2 0.4 0.05 8.2–10.5 1.91–2.41
Chamise/scrub oakb chs 6 0.92 47.49 0.00 41.17 6.60 <0.005 0.11 <0.008 6.3–16.5 2.98–3.02
California sagec cas 6 1.12 48.11 0.22 40.59 6.69 0.3 1.1 0.16 7.8–9.8 1.99–3.50
Coastal saged cos 5 1.00 47.92 0.44 41.90 6.66 0.3 0.69 0.41 8.5–8.9 2.37–2.70
Maritime chaparrale mch 5 1.10 46.90 0.03 44.18 6.51 0.385 0.69 0.145 7.9–10.7 3.05–3.66
Manzanitaf man 6 1.00 41.33 0.20 42.07 5.74 0.058 0.42 0.046 7.5–13.5 2.00–4.11
Masticated mesquiteg mes 5 1.25 50.96 0.03 44.29 7.08 0.086 0.635 <0.008 1.4–15.0 1.19–2.13
Oak savannah oas 5 0.78 52.47 0.03 46.51 7.29 0.0053 0.28 <0.008 8.7–13.4 2.81–3.41
Oak woodlandi oaw 5 0.59 43.40 0.00 43.31 6.03 0.011 0.47 <0.008 10.4–15.0 2.53–3.69

Southeastern Fuels
1 year herbaceousj 1 year 3 0.82 53.27 0.06 40.00 7.40 0.016 0.2 0.015 2.6–27.9 0.25–0.91
2 year herbaceousj 2 year 4 1.07 49.68 0.10 39.55 6.90 0.032 0.25 0.03 19.6–31.5 0.80–1.13
Chipped understory
hardwoodk

cuh 3 -k - - - - - - - 4.2–7.2 2.48–3.24

Understory hardwoodl uh 3 - - - - - - - - 5.9–24.7 1.48–3.24
Pocosinj poc 3 - - - - - 0.028 0.12 0.012 6.6–22.5 4.75–5.57
Pine litterm lit 5 0.77 49.05 0.02 42.31 6.81 0.013 0.11 <0.008 3.4–6.2 0.96–1.56

aCeanothus leucodermis.
bAdenostoma fasciculatum, Quercus berberidifolia.
cArtemisia californica, Ericameria ericoides.
dSalvia mellifera, Ericameria ericoides, Artemisia californica.
eCeanothus impressus var. impressus, C. cuneatus var. fascicularis, Salvia mellifera.
fArctostaphylos rudis, Arctostaphylos purissima.
gProsopis velutina, Baccharis sarothroides.
hQuercus emoryi, Eragrostis lehmanniana.
iQuercus emoryi, Arctostaphylos pungens.
jLyonia lucida, Ilex glabra.
kHyphen (-) indicates “not analyzed”.
lAcer rubrum, Persea borbonia, Gardonia lasianthus.
mPinus taeda, Pinus echinata, Pinus elliottii, Pinus palustris.
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from the OC measured on the front filters according to Na
et al. [2004]. Pre-experiment and post-experiment Teflon filter
weights were obtained following the Code of Federal
Regulations (40CFR Part 1065, Washington, D. C., 2005).
[13] Following gravimetric analysis, elemental composition

of the deposited material on the Teflon filters was determined
using X-ray fluorescence (XRF). The USFS samples were
analyzed by Chester Labnet (Tigard, Oregon) using U.S.
Environmental Protection Agency Method IO-3.3. The UCR
samples were analyzed by the South Coast Air Quality
Management District (SCAQMD, Diamond Bar, California)
using an Energy Dispersion X-Ray Fluorescence (EDXRF)
spectrometer (Epsilon 5W, PANalytical, Netherlands)
equipped with dual anode (scandium/tungsten) X-ray tube.
Each filter was analyzed 10 separate times using 10 different
excitation conditions under vacuum. The instrument software
deconvoluted and calculated the concentration for each element
in mg/m3. For the EDXRF technique, analytical quality control
was determined by testing the National Institute of Standards
and Technology Standard Reference Material 2783. Most
USFS Teflon filters were analyzed by XRF method for 29
burns, while UCR analyzed one filter for each fuel type.
[14] A set of 47mm Teflon substrates was used for Ion

Chromatography (IC) analysis following California Air
Resources Board Method MLD 142 [California Air
Resources Board, 2011]. The filters were uniformly wetted
using approximately 1mL of isopropyl alcohol and subse-
quently extracted into 5mL of de-ionized water by a 20min
sonication process. Aliquots of the extract were then filtered
and analyzed on a Dionex DX-120 ion chromatograph. The
analysis yielded concentrations of the following ions: sulfate,
nitrite, chloride, bromide, sodium, ammonium, potassium,
and calcium.
[15] The 47mm quartz substrates were spiked with 13C

labeled levoglucosan (purchased from Cambridge Isotope
Laboratories Inc., Andover, Massachusetts) and select
deuterated PAHs. The 13C spike volume was calculated

based on the real-time slope of levoglucosan versus OC
determined by the HR-TOF-AMS for each filter, whereas
the PAH spike volume was maintained constant at 100 mL
on each filter. The filters were extracted using a 50:50 solvent
mixture of dichloromethane and acetone by a DionexW

Accelerated Solvent Extractor 200 (ASE). A total volume
of 21mL was obtained for each filter. Half of the extracted
volume was used for levoglucosan analysis and the other half
for the PAH analysis.
[16] The half of the extracted sample used for PAH analysis

was concentrated to 5mL by rotary evaporation using a
BUCHI-3000 evaporator. The sample was further concen-
trated to 1.5mL with a nitrogen stream. This final volume
was transferred to amber wide crimp top vials, sealed, and
analyzed on an AgilentW 6890 GC-5973 MSD equipped with
a Programmable Temperature Vaporizer (PTV) large volume
inlet (7683 Series).
[17] The other half of the extracted sample was concentrated

to 5mL by rotary evaporation using a BuchiW R-3000 Rotary
evaporator. This sample was further evaporated to 250 mL
aliquot under a stream of nitrogen. Fifty microliters of the
aliquot was transferred into an amber vial and dried under a
nitrogen stream. The sample was then derivatized for 2 h at
70�Cwith 50 mL of N,O-bis(trimethylsilyl) trifluoroacetamide
and 25 mL of pyridine (obtained from Sigma-Aldrich Chemie
GmbH, Switzerland). The sample was subsequently re-diluted
to a specific calculated volume based on expected LG concen-
tration, transferred to an amber wide crimp top vial, sealed,
and analyzed on a gas chromatography-mass spectrometer
(GC-MS). Complete silylation of levoglucosan was confirmed
by the absence of partially silylated derivatives measured by
GC-MS. The mass spectrum of levoglucosan tritrimethylsilyl
ether exhibited only a small molecular ion (m/z 378) with frag-
ments due to loss of CH3 (m/z 363), CH5Si (m/z 333),
C6H17OSi2 (m/z 217), and C7H18OSi2 (m/z 204, base peak).
Fragments 217 and 333 were used for quantification.

PM10 
impactor

PUF/XAD

FTIR

Quartz

T on

Quartz

Quartz

T on

TDS tube

DNPH cartridge

FTIR mirror

FTIR light beam

Smoke flow

Pump

CPC

MOUDI

AMS

D
iluter

ltered air

DMM

PM2.5 
impactor

PM2.5 cyclone

PM3.5 cyclone

PumpFS1

FS2

QF1

QF2

TF1

TF2

Pump

Figure 1. Schematic graph of the sampling system used to measure the emissions; a PM2.5 impactor was
applied before the filter sampler system, and a PM10 impactor was used for other instruments.
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[18] The general fire behavior (i.e., the relative amount of
flaming and smoldering combustion) was characterized using
modified combustion efficiency (MCE) based on CO and
CO2 concentrations measured by OP-FTIR (further
details in Burling et al. [2010]). The MCE is defined as
the fire-integrated excess ratio of CO2 to CO plus CO2

MCE ¼ ΔCO2
ΔCOþΔCO2

� �
[Ward and Radke, 1993]. It was

assumed that the background concentrations of CO and
CO2 were constant during the burns and were equal to their
1 min averaged concentration prior to ignition.

3. Results and Discussion

[19] Seventy-seven fuel beds were burned in an 18 day
period in February 2009. Mean temperature and relative hu-
midity in the facility during this period were 23.7�C
(standard deviation (SD) = 2.0) and 15.2% (SD = 3.5),
respectively. While in storage, the samples lost much of the
moisture and were drier than living vegetation when nor-
mally burned during either a prescribed burn or wildfire.
Moisture content of the SW fuels ranged from 1.4 to
16.5%; moisture content in living chaparral ranges from 70
to 160% over the normal growing cycle [Countryman and
Dean, 1979]. Similarly, moisture content of the SE fuels
ranged from 2.6 to 31.5%; moisture content in living ever-
green pocosin shrubs ranged from about 70 to 250%
[Blackmarr and Flanner, 1975]. The fuel arrangement
significantly affected the fuel consumption. Initially, five
chamise/scrub oak and three ceanothus fuel beds were
arranged vertically; however, the fire failed to spread well
resulting in low fuel consumptions of 3% to 52% (average:
26%). The remaining fuel beds were arranged horizontally,
which greatly increased fuel consumption to ~90% for the
rest of the burns. A total of 77 fires (71 from SE and SW fuel
beds) were conducted at the Missoula FSL combustion
facility in February 2009.

[20] The fuel content of Cl, K, and Na varied greatly with
location of origin and plant type (see Table 1). Because we
did not measure fuel consumption by vegetation component,
we cannot quantitatively link element loss in the fuels to the
particle and gas-phase emissions. However, we have esti-
mated lower and upper limits on element release for each fuel
type and aggregated these limits to provide a representative
value for each location (see Table 1). The purpose of these
representative values is to illuminate the role of fuel chemis-
try in aerosol element emissions; they are not intended for
developing quantitative relationships.

3.1. Determination of the Mix of Combustion Processes

[21] Modified combustion efficiency (MCE) [Ward and
Radke, 1993; Yokelson et al., 1996], calculated for each burn,
was used to ascertain the relative amount of combustion pro-
cesses (e.g., smoldering and flaming; average MCE is shown
in Table 2). The average of fire-integrated MCE values for all
burns is 0.94 with one standard deviation of 0.02 (median:
0.94; range: 0.87–0.98) indicating that all the burns had a
mix of flaming and smoldering with high MCE indicating
relatively more flaming. The coefficient of variation of
MCE for all the burns in this study is smaller than some pre-
vious studies (e.g., 2.1% versus 3.1% of McMeeking
et al. [2009]).

3.2. Fuel Moisture (FM) Versus MCE

[22] Moisture content can affect emission factors by
lowering their modified combustion efficiency (MCE).
Wetter fuels smolder more while drier fuels burn more
completely. Fuels as found in their habitat usually have
>30% FM; however, this biomass is difficult to burn in
the laboratory. Further, during a typical prescribed burn/
wildland fire, the fire front reduces fuel FM prior to combus-
tion. Therefore, the actual FM at time of burning depends on
initial FM as well as the radiation intensity and size of the
surrounding fire.

Table 2. Emission Factors of Total PM2.5, EC, OC, K, Cl, Na, and S in g/kg Fuel Burned and EC/TC Ratioa

Species/Group MCE EC/TC PM2.5 EC OC K Cl Na S

Southwest
cea/FHL 0.953(0.008) 0.40(0.22) 4.62(2.08) 0.64(0.29) 1.16(0.86) 0.607(0.065) 0.345(0.034) 0.016(0.011) 0.025(0.004)
chs/FHL 0.941(0.011) 0.39(0.07) 7.38(2.11) 1.36(0.44) 2.18(0.63) 0.535(0.245) 0.171(0.058) 0.034(0.014) 0.061(0.031)
cas/VAFB 0.944(0.004) 0.58(0.07) 6.87(0.83) 1.54(0.14) 1.16(0.38) 0.725(0.057) 0.633(0.015) 0.195(0.014) 0.049(0.001)
cos/VAFB 0.939(0.004) 0.62(0.07) 6.36(0.72) 1.54(0.17) 0.97(0.35) 0.664(0.575) 0.585(0.509) 0.169(0.239) 0.053(0.046)
man/VAFB 0.948(0.007) 0.42(0.14) 3.61(1.17) 0.51(0.18) 0.85(0.71) 0.525(0.061) 0.323(0.063) 0.218(0.043) 0.044(0.007)
mch/VAFB 0.952(0.002) 0.43(0.15) 4.10(0.34) 0.57(0.12) 0.81(0.35) 0.918(0.143) 0.922(0.105) 0.253(0.042) 0.033(0.003)
Chaparral ave. 0.946(0.006) 0.49(0.11) 5.46(1.31) 1.08(0.21) 1.17(0.54) 0.652(0.269) 0.471(0.320) 0.143(0.119) 0.045(0.024)
mes/FHUA 0.954(0.002) 0.44(0.01) 2.97(0.42) 0.57(0.09) 0.72(0.13) 0.625(0.173) 0.472(0.121) 0.001(0.000) 0.035(0.008)
oas/FHUA 0.971(0.004) 0.52(0.08) 1.61(0.38) 0.50(0.17) 0.44(0.10) 0.169(0.039) 0.048(0.013) 0.005(0.004) 0.027(0.009)
oaw/FHUA 0.965(0.003) 0.44(0.14) 2.01(0.47) 0.47(0.13) 0.67(0.33) 0.147(0.100) 0.026(0.021) 0.007(0.006) 0.029(0.020)
FHUA ave. 0.963(0.003) 0.48(0.08) 2.21(0.42) 0.49(0.15) 0.58(0.18) 0.297(0.248) 0.166(0.219) 0.005(0.005) 0.030(0.013)

Southeast
lit/FB 0.894(0.016) 0.10(0.06) 19.06(6.78) 1.06(0.63) 10.60(3.64) 0.048(0.040) 0.018(0.019) 0.039(0.015) 0.024(0.009)
11 yr/CL 0.942(0.001) 0.08(0.03) 11.35(4.99) 0.46(0.17) 5.70(1.04) 0.279(0.126) 0.063(0.041) 0.054(0.020) 0.040(0.013)
2 yr/CL 0.928(0.007) 0.07(0.03) 13.78(6.19) 0.48(0.18) 6.88(2.63) 0.248(0.171) 0.085(0.040) 0.089(0.072) 0.039(0.015)
poc/CL 0.953(0.010) 0.18(0.06) 4.91(2.12) 0.44(0.16) 2.22(1.02) 0.042(0.009) 0.011(0.003) 0.018(0.002) 0.008(0.002)
cuh/CL 0.958(0.003) 0.36(0.04) 1.69(0.16) 0.41(0.03) 0.75(0.16) 0.159(0.018) 0.108(0.027) 0.034(0.005) 0.015(0.003)
uh/CL 0.954(0.011) 0.32(0.09) 7.46(2.04) 1.51(0.66) 3.07(0.73) 0.282(0.073) 0.095(0.025) 0.046(0.009) 0.047(0.015)
Camp Lejeune ave. 0.938(0.008) 0.17(0.06) 10.79(4.12) 0.81(0.37) 5.66(1.85) 0.172(0.136) 0.060(0.045) 0.047(0.037) 0.029(0.017)

aNumbers in parentheses represent one standard deviation. The acronym after fuel name represents the location the fuel was collected from—FHL: Fort
Hunter Liggett; VAFB: Vandenberg Air Force Base; FHUA: Fort Huachuca; FB: Fort Benning; CL: Camp Lejeune.
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[23] Fuel moisture (FM) may weakly affect the average
burn MCE (Figure 2). Figure 2 was produced combining data
from this study with selected other lab studies: Weise et al.
[1991] for California chaparral, Keene et al. [2006] for
African savanna, and McMeeking et al. [2009] for a wide
variety of U.S. domestic fuels. The plot shows that all these
studies have consistent MCE-FM results. The upper bound
of MCE for FM> 20% stays relatively flat around 0.95 while
the lower bound decreases with increasing FM. Upper and
lower bounds both sharply converge to MCE= 1, when
FM< 20%. The downward and upward triangles in
Figure 2 indicate heading and backing fires, respectively
[Keene et al., 2006]. As can be seen for FM up to 20%, the
averageMCE appears to be bound by the fire propagation dy-
namics (backing/heading fire). Backing/heading fires repre-
sent two limiting combustion cases: A heading fire has
larger flames, spreads faster, and leaves more unburned fuel
behind while a backing fire has smaller flames, slower prop-
agation rates, and higher combustion completeness [Ward,
1998; J. Peterson and B. Leenhouts, What wildland fire con-
ditions minimize emissions and hazardous air pollutants and
can land management goals still be met?, unpublished
support document to the EPA Interim Air Quality Policy on
Wildland and Prescribed Fires, 1997]. For example, Lobert
et al. [1991] observed a 40% increase in the CO/CO2 ratio
going from a backing fire to a heading fire for laboratory sa-
vanna grass burns. The propagation factor (heading/backing
fire) does not seem to be the dominant factor in MCE values
for FM> 30%, since after this point the MCE is seemingly
not bound by backing/heading fire data points.

3.3. Total Particulate Emissions

3.3.1. Particle Matter Mass Emission Factors
[24] The EFs in the current study are calculated based on

the carbon mass-balance method [Ward et al., 1979;
Burling et al., 2011]. Table 2 presents average particle emis-
sion factors for each fuel type studied. Particle number EFs as
measured by the CPC and DMM are discussed in Text S1 of
the supporting information. The average emission factors for
PM2.5 (g PM2.5 per kg dry biomass burned EFPM2.5)
measured in this study are plotted versus average MCE
(Figure 3). Hereafter, we will use notation of (average
one standard deviation) g kg�1 <MCE> for reporting
emission factor and its corresponding MCE.
[25] The laboratory study of McMeeking et al. [2009]

reported an average EFPM2.5 for chaparral fuels of
11.6� 15.1 g kg�1 <0.909� 0.029> that includes 7.8� 1.2
g kg�1 <0.913� 0.012>, 6.5� 4.2 g kg�1 <0.914� 0.030>,
and 23.5� 25.9 g kg�1 <0.899� 0.030> for cea, chs, and
man, respectively. The current study has lower PM emissions
for chs and man, mainly attributed to the higher MCEs (for
these specific fuels) in this study. However, cea is higher in
the current study, likely due to lower combustion temperatures
from the poorly combusted fuel bed. The EFPM2.5 response to
MCE in our study (slope =248.8, Figure 3) is 80% of
that reported by McMeeking et al. [2009] (slope =311.1 for
EFPM2.5 [McMeeking et al., 2009, Figure 9]).
[26] Size-resolved PM mass speciation using a micro-

orifice uniform deposit impactor (MOUDI) was obtained
for six burns (see Figure S2 in the supporting information).
The size distribution of PM peaked in the particle accumula-
tion mode with an aerodynamic diameter that ranged
(depending on fuel type shown in parentheses) between the
eighth stage (2 yr/CL and 1 yr/CL; 0.18 mm cut-size; CL:
Camp Lejeune) and tenth stage (oas, cea, cuh, and mes;
0.056 mm cut-size). The PM mass in the size range 3.2–
18 mm varied between 2 and 18% of the PM3.2 mass with
an average of 10%� 6%. The ratio of EFPM10 to EFPM3.2

was 1.00–1.07; this is consistent with the PM10 to PM2.5
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mass ratio of 1.09 of McMeeking et al. [2009]. For quality
control purposes, we correlated the total accumulated mass
on the MOUDI stages against the Teflon filter mass on the
same fire. The total accumulated MOUDI mass was 27%
higher than the Teflon filters mass (the correlation is shown
in Figure S2g, r2 = 0.99). According to Reid et al. [2005],
coarse-mode particles can contribute to 10–20% of the total
collected PM mass consistent with the current study.

3.4. Particle Component Emission Factors

3.4.1. Organic and Elemental Carbon
[27] Integrated EFOC, g carbon/kg fuel burned, for all the

burns is plotted as a function of MCE (Figure 4b). EFOC is
observed to negatively correlate with MCE (r2 = 0.72). The
lit/FB (FB: Fort Benning) from SE fuels emitted the highest
amount of OC per kg fuel burned (10.60� 3.64 g kg�1

<0.894� 0.017>), and oas/FHUA (FHUA: Fort
Huachuca) from SW the lowest (0.44� 0.10 g kg�1 <0.971
� 0.004>). Comparisons of literature EFOC must account
for MCE since OC emission factors are highly dependent
on MCE. McMeeking et al. [2009] reports EFOC of 1.8
<0.913>, 1.5 <0.914>, and 7.1 <0.899> g/kg dry fuel for
chaparrals cea, chs, and man, respectively, similar to
Table 2 values but slightly overestimated by the proposed
EFOC versus MCE line (Figure 4b). Andreae and Merlet
[2001] suggest EFOC of 3.4 g kg�1 <0.94> for savanna and
grassland that agrees well with the given EFOC-MCE linear
fit. Overall, SE fuels generally led to higher EFOC compared
to SW fuels at similar MCEs. The only exception is cuh/CL
of SE, which was similar to SW fuels.
[28] Integrated EFEC as a function of MCE is plotted in

Figure 4a. The EFEC (g/kg) ranged from 0.47 g kg�1

<0.965> to 1.54 g kg�1 <0.944> for SW fuels and from
0.41 g kg�1 <0.954> to 1.51 g kg�1 <0.945> for SE fuels,
respectively. The highest EFOC in SE and SW group is from
cas/FHL (FHL: Fort Hunter Liggett) and uh/CL, respec-
tively; the lowest EFEC values for SE and SW were cuh/CL
and oaw/FHUA. No EFEC ecosystem dependency was ob-
served. Further, Andreae and Merlet [2001] suggest an
EFEC of ~0.48 g kg�1 <~0.94> for savanna and grassland
fuels that is comparable with the average of chaparral fuels
in this study 1.08 g kg�1 <0.945>. The correlation between
EFEC and MCE is much weaker (r2 = 0.10) than the correla-
tion between EFOC and MCE.
[29] Intense flaming significantly increases the fraction of

elemental carbon (EC) emissions in the total PM carbon
emissions (TC). Figure 5 illustrates the relationship between
the EC/TC ratio and average MCE. EC/TC was lower than

0.15 for MCEs smaller than 0.93, while this value strongly
rose to 0.7 for MCEs larger than 0.95. The results are consis-
tent with previous studies (e.g., as shown in the figure for
McMeeking et al. [2009] and Christian et al. [2003]). Reid
et al. [2005] suggest values between 0.05 and 0.18 for
flaming, and 0.03 and 0.075 for smoldering. However, Reid
et al. define smoldering as MCE< 0.9; furthermore, their
EC/TC numbers mostly originate from field studies, which
rarely achieve MCE> 0.95 compared to up to 0.98 achieved
in the lab where EC/TC rises quickly. Even accounting for
MCE, field EC/TC values are lower than lab EC/TC. For
example, the airborne study of Sinha et al. [2004] sampled
fires from African savannah grasses. They measured EC/TC
ratios of 0.135 <0.959> and 0.255 <0.976> for miombo
woodland and dambo grassland fires, respectively. During
the flaming phase in our experiment, we observed tempera-
tures up to ~70�C at the instrumentation platform level with
measured filter surface temperatures of 27–30�C; it is possi-
ble that the NMOC requires more time to condense to the
particle phase, as indicated by the lower EC/TC ratios of
airborne studies.

Figure 4. Fire-integrated PM2.5 emission factors plotted versus MCE for (a) elemental carbon (EC), (b)
organic carbon (OC), and (c) total carbon (TC).
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[30] EC/TC ratio increases rapidly as MCE increases past
0.94 (Figure 5). The same fact can be seen in Figures 9a
and 9b of McMeeking et al. [2009]. Reid et al. [2005] also
noted through investigation of previous studies on fires from
savanna/grass/cerrado, tropical forest, etc., for phases of
flaming/smoldering set forth that the black carbon content
of PM during flaming can be a factor of 5 higher than
during smoldering.
[31] Compared to McMeeking et al. [2009], the current

study has nearly seven times higher adsorption artifacts for
OC > 500 mg/m3 and almost twice higher for 0–100 mg/m3

(Figure 6), and the data are more scattered as well. The mass
fraction of artifact exponentially (0.146 + 0.355e�0.004x and
0.021 + 0.173e�0.012x) decreased with increase in concentra-
tion of smoke for the current and McMeeking et al. studies,
respectively.McMeeking et al. [2009] used significantly less
amount of fuel for each burn and this might have led to cooler
diluted smoke, enhanced partitioning of gas into particle
phase, and subsequently less artifacts, while in the current
study the weight of the fuel bed varied between 250 and
5500 g, averaging 2470� 1090 g. Moreover, it has been
shown that due to lower Teflon adsorption artifact, quartz fil-
ter behind Teflon filter reports higher adsorption artifact than
quartz filter behind quartz filter [Chow et al., 2006]. OC mea-
surement in the current study was not field blank subtracted.

3.5. Particle Inorganic Content

3.5.1. Particle Inorganic Content Metals:
X-ray Fluorescence (XRF) Analysis
[32] Teflon filters collected on 50 different burns were an-

alyzed for Cl, Br, Si, P, S, and metals (atomic mass number
Na-Pb). The dominant elements, by mass fraction, in order
of decreasing median ranking by burn were K, Cl, Na, S,
Zn, Mg, Si, and Ca with potassium the dominant element in
47 of the 50 filters analyzed. In the vast majority of burns
with XRF data (28 of 50), the elements K, Cl, Na, and S com-
prised >90% of the inorganic elemental mass. As discussed
in Akagi et al. [2011], the properties of particles emitted by
biomass burning can change rapidly after emission. The
cooling/dilution regime experienced by emissions in the

laboratory may be very different from that realized by emis-
sions of a “real fire” burning in the natural environment. It is
possible that the contribution of semi-volatile organic com-
pounds to organic particle formation and growth is not as ef-
ficient in the lab environment. However, the amount of
elemental carbon and metals cannot change after emission.
Therefore, the EF values of inorganic elements measured in
our laboratory burns are applicable to fires in the natural en-
vironment; however, the mass percentages are likely
overestimated due to incomplete condensation of gas-phase
semi-volatile organic compound.
[33] The mass of all inorganic elements as a percent of total

PM2.5 mass ranged from 1 to 56% and varied strongly with
fuel type and source location. The mass percent for K, Cl,
Na, and S is shown in Figure 7. Fuels harvested from SW
consistently produced particles with higher K and Cl mass
fractions than the fuels from SE. By source location, the av-
erage K and Cl mass percent for SW fuels was Vandenberg
Air Force Base (VAFB): K = 17.1(�4.0)%, Cl = 16.4
(�5.3)%; FHL: K= 10.5(�5.1)%, Cl = 4.9(�3.4)%; and
FHUA: K= 13.7(�3.0)%, Cl = 6.9(�1.3)%. The particulate
mass fractions of these elements are higher than in previous
reports, which may be due to incomplete condensation of
gas-phase non-methane organic compound (NMOC) as the
plume cools. However, Chang-Graham et al. [2011] noted
unusual metallo-organic species noted detected previously
in biomass burning aerosol and hypothesized that land use
practice on the military bases where the fuels were collected
could contribute. Further, the ratios between metals and
metals and EC should not be affected by any possible
temperature artifacts.
[34] The PM mass fractions of Cl, K (and also Na for

VAFB), and the sum of all inorganics produced by the
southwestern fuels are on the upper end of values found in
the literature. The studies reviewed by Reid et al. [2005],
which covered a wide range of biomass (South American
grassland, African savanna, Cerrado, and North American
temperate forest and tropical broadleaf forest), reported that
inorganic trace species emissions were highly variable and
accounted for ~5–15% of PM mass. Of 10 studies reviewed
by Reid et al. [2005], the percent of PM mass consisting of
K ranged from 0.4 to 18% and the Cl mass percent ranged
from 0.2 to 11%. Andreae and Merlet [2001] recommend
particulate K emission factors that correspond to 6%, 3%,
and 1–3% of their recommended EFPM2.5 for savanna/grass-
land, tropical forest, and extratropical forest biomass,
respectively. In the laboratory study of McMeeking et al.
[2009], results for a large variety of fuels, classified
according to five broad vegetation groups (montane, range-
land, chaparral, southeast U.S. coastal plain, and boreal)
produced average mass percent of K and Cl that each ranged
from ~0.3 to 6%. At the less generalized classification
of fuel type, the results of McMeeking et al. [2009]
differ widely, with the mass percentages of K and Cl
varying between 0.1 and 19.4% and between 0.1 and
18.4%, respectively.
[35] Emission factors for K, Cl, Na, and S in PM2.5 are pro-

vided in Table 2. EF for K, Cl, and Na varied significantly by
fuel. Fuels from VAFB and FHL had the largest EFK, EFCl,
and EFNa (with VAFB being significantly larger than FHL),
while the fuels from the southeast had the smallest. EFK,
EFCl, and EFNa were highest for the fuels from VAFB and
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FHL and lowest for the southeast fuels. The oas and oaw
fuels from FHUA had EFK, EFCl, and EFNa similar to the
southeast fuels, while EFK and EFCl for mes were compara-
ble to that measured for the Pacific coast fuels (VAFB and
FHL). The differences can be explained largely by the chem-
ical composition of the vegetation making up the fuels. The
VAFB and FHL fuels had representative Cl, K, and Na
(Table 1). In contrast, the SE fuels and FHUA oas and oaw
had concentrations of these elements that were very low
(Table 1). The chemistry of the mes from FHUA was an out-
lier, high in Cl and K, but low in Na. The high Cl and K for
the mes fuel were largely due to the desert broom component,
a shrub species that has been identified as a possible
element hyper-accumulator.
[36] We may compare our chaparral metal/halogen results

with McMeeking et al. [2009], who report chaparral emis-
sions for K, Cl, Na, and S. Our chaparral average EFK of
0.652 g kg�1 is similar to McMeeking et al. [2009]
(EFK = 0.50 g kg

�1), while our EFCl is over twice as large
(0.471 g kg�1 versus 0.20 g kg�1) and our EFNa differs
greatly (0.143 g kg�1 versus below detection limit).
Considering the strong link we observed between the ele-
ment content of the fuels and their respective particle EF, it
is likely the differences in EF are due to fuel chemistry.
McMeeking et al. [2009] do not report fuel chemistry; how-
ever, it is possible the Cl and Na content of the fuel samples
burned in their study was significantly less than that in our
study. Among the southwestern fuels, those with an “oak”
wood component (chs of California, oas and oaw of
Arizona) produced particles with K (9.4� 3.2%) and Cl
(2.4� 1.1%) mass fractions that were significantly lower
than those of the other six fuels types studied from this region
(average 18.0� 4.4% and 11.9� 5.5%)—see Figure 7.
Interfuel differences for both elements are significant at the
p < 0.001 level. These observations, along with the lack of
a significant correlation with MCE, indicate that location
and vegetation composition both influence the chemical
composition of fuels. We believe both factors are responsible
for the difference in EFCl and EFNa observed between our

study and McMeeking et al. [2009]. The Cl content in vege-
tation and chloride deposition has been observed to show a
strong gradient with distance from the Pacific coast
[McKenzie et al., 1996]. Since our chaparral fuels were sam-
pled at coastal sites, while McMeeking et al. [2009] studied
chaparral harvested 150 km east of Los Angeles, the fuels
used in the latter would be expected to have a lower content
of Cl, Na, and other sea-salt elements.
[37] The percentage of particulate mass as K or S was

weakly correlated with average MCE (r2 = 0.20 for K and
r2 = 0.40 for S), while the Cl and Na mass fractions had no
correlation. The lack of a significant correlation between in-
organic particulate emissions and average MCE is consistent
with the findings of McMeeking et al. [2009] and Christian
et al. [2003], although Ward and Hardy [1991] found EFK
(flaming) was roughly 10 times higher than EFK (smolder-
ing). The Ward and Hardy [1991] study was all from fires
of the same fuel type, whereas this and the other studies cited
were across many different fuel types. It is possible that the
fuel variations may mask any MCE dependence for
these studies.
[38] The particulate emissions of Cl and gas-phase HCl

(EFHCl) as measured by OP-FTIR were not correlated with
average MCE and we suspect their variability is driven by
fuel composition. Any underlying dependence of PM Cl
and HCl emissions on combustion behavior, in particular,
the partitioning of evolved fuel Cl between the gas and par-
ticulate phase, if present, may be masked by wide variations
in fuel Cl content. The EFs of particulate Cl to HCl as a func-
tion of MCE were investigated to account for the variability
of the fuel Cl content. No significant correlation between
the ratio EFPM(Cl)/EFPM(HCl) and MCE (plot not shown)
was observed, a result that indicates combustion behavior
(as represented by MCE) is not an important factor in Cl
partitioning between these two species.
3.5.2. Ionic Inorganic species
[39] Inorganic ion species emission factors are provided in

Table 3. Similar to the emission factor of crustal elements,
potassium and chloride were the most abundant ions and
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were strongly correlated with each other (slope = 1.03;
r2 = 0.89). Fuels from SW, compared to the fuels from SE,
emitted much higher amounts of Cl�, K+, SO4

2�, and Na+

per unit mass of fuel burned. This is consistent with our re-
sults from the previous section. The mass concentrations of
nitrite, nitrate, and ammonium for most of filters were below
detection limit. These species form rapidly post emission as
reported elsewhere [Yokelson et al., 2009; Akagi et al., 2012].
[40] Chlorine was the most abundant inorganic species in

the PM2.5 aerosol, accounting for 0.4–24.5% of the soluble
inorganic mass concentration. McMeeking et al. [2009]
found that chlorine accounted for 2–9% of PM2.5 mass for
several of the same fuels burned in this study including chap-
arral and sagebrush. Similar to our study, they observed high
Cl�mass fraction (60% of inorganics).EFCl� varied from 0 to
1.23 g/kg of fuel burned depending on the fuel type and
source location. The study average was 0.34� 0.35 g/kg.
The EFCl� values reported were 1–2 g/kg, 0–1.8 g/kg,
0–1.8 g/kg, and 0–3.2 g/kg from Andreae and Merlet
[2001], Christian et al. [2003], Keene et al. [2006],
and McMeeking et al. [2009], respectively.
[41] Sulfate emission factors ranged from 0 to 0.22 g

SO4
2�/kg fuel and were weakly correlated with average

MCE (r2 = 0.48). Also comparing XRF to IC results, it can
be inferred that ~89% of the particulate sulfur element is in
the form of SO4

2�. Sinha et al. [2003] estimated an average
0.16 g sulfate per kg of fuel burned for savanna fires, while
Andreae and Merlet [2001] recommended 0.37 g/kg.
EFSO2�

4
is affected by the age of smoke and the nutrient con-

tent of the fuel [Yokelson et al., 2009]. As a smoke plume
ages, the SO2(g) oxidizes in aqueous phase to H2SO4 and
then partners with positive ions such as potassium and am-
monium in the particles, thereby increasing aerosol SO4 mass
fraction over time. In the airborne studies of northern tropics
deforestation, Yokelson et al. [2009] showed that sulfate
mass concentration can increase 3 times during a time inter-
val of ~1 h. In their study, sulfate made up to 1.5% of PM1

mass from nascent smoke, while in our study it made up to

7.5% of PM2.5 mass for very fresh smoke. The sulfate content
differences are attributed to the different sulfur content of the
fuel. In our study, sulfate was also weakly correlated with av-
erage MCE (r2 = 0.48).
[42] Non-soil, non-sea-salt potassium (often denoted

“nsnss-K”) is an important tracer of biomass burning aerosol
[Andreae and Merlet, 2001]. Potassium was the second most
abundant ionic species in this study varying between 0.03
and 1.40 g/kg fuel burned. The emission factor of potassium
from XRFwas 12% higher than the ionic K from ion chroma-
tography (IC) (r2 = 0.83) indicating the vast majority of po-
tassium is in ionic form. Our results are consistent with the
laboratory studies of McMeeking et al. [2009] and
Christian et al. [2003] that reported an emission factor of
0.03 to 1.50 g/kg for a variety of U.S. domestic fuels and
0.02 to 1.29 g/kg for African, Indonesian fuels. However,
we report EFKþ that is twice the EFKþ that McMeeking et al.
[2009] obtained for chaparral.
[43] Among all the southeastern and southwestern fuels,

fuels from VAFB had the highest mass percent of ionic inor-
ganic species ranging from ~9 to 62%, while emissions from
Camp Lejeune fuels had the lowest amount of inorganic PM
(~2–15%). Other than fuel source location, fuel type also af-
fected the ionic species emissions. For example, among the
fuel from VAFB, fuel code “man” has the least amount of
Cl� (301.0� 97.7mg/kg fuel burned), while fuel code
“cas” from the same location has the greatest amount
(1406� 457mg/kg fuel burned). These observations coupled
with the lack of significant correlation with MCE suggest that
fuel composition and vegetation type play the dominant role
in emissions of ionic species. Very little to lower than detec-
tion limit amounts of calcium, ammonium, bromide, and ni-
trite were found. These species comprise the remainder of
the inorganic ions. No dependency on average MCE was ob-
served for any of these ions. A slight correlation between Na+

and average MCE (r2 = 0.19) without any regional depen-
dency was observed.

Table 3. Aerosol-Phase Emission Factors of Cations and Anions (mg/kg Fuel Burned)a

Species/Group Sulfate Nitrite Chloride Bromide Sodium Ammonium Potassium Calcium

Southwest
cea/FHL -b - 481� 175 - 713� 953 - 392� 94 103
chs/FHL 141� 51 - 178� 36 - 243� 229 - 365� 160 -
cas/VAFB 208� 59 - 1410� 460 - 458� 178 130 1190� 340 -
cos/VAFB 248� 28 60.0 1070� 120 - 332� 44 - 1280� 200 -
man/VAFB 102� 18 27.3 301� 98 8.11 143� 59 - 409� 101 -
mch/VAFB 92� 25 - 874� 103 - 213� 47 91.4 823� 86 -
Chaparral ave. 158� 46 43.7� 23.1 719� 341 8.11 350� 707 110� 38 743� 254 103
mes/FHUA 118� 16 - 590� 125 - 187� 80 167� 7 622� 146 -
oas/FHUA 78.9� 10.1 - 61.4� 4.2 - 95.6� 17.1 - 119� 28 -
oaw/FHUA 85.2� 6.1 - 43.4� 10.8 - 64.6� 13.6 - 143� 72 -
FHUA ave. 94.0� 12.1 - 231� 86 - 116� 56 167� 7 295� 105 -

Southeast
lit/FB - - 125� 40 - 379� 150 - - -
1 yr/CL - - 125� 15 - 402� 77 - - -
2 yr/CL - - 175� 60 - 357� 64 - - -
poc/CL - - 114� 12 - 117� 63 - 101� 51 -
cuh/CL - - 33.8� 11.1 - 97.5 - - -
uh/CL 142� 10 231 16� 39 - 195� 7 - 246� 148 189
Camp Lejeune ave. 142� 10 - 92.8� 44.5 - 233� 64 - 173 �110 189

aThe values represent mean� one standard deviation across repeated experiments.
bHyphen (-) indicates “below detection limit”.
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4. Elemental Analysis of the PM Filters

4.1. Mass Balance

[44] The PM2.5 mass was reconstructed based on OC, EC,
metals, and water-soluble ions from ion chromatography (IC)
analysis. The relation that is considered here is as follows:

EFPM2:5 ¼ EFEC þ EFOM þ
X

EFXRF þ
X

EFIC (1)

where the terms on the right-hand side are the sum of the
emission factors of elemental carbon (EFEC), organic mass
(EFOM= factor�EFOC), elemental crustal material
(
P

EFXRF), and inorganic salts (
P

EFIC) for the ith burn.
[45] Mass reconstruction followed Levin et al. [2010]; Cl�

was paired to K+ as KCl, excess K+ was then balanced with

K2SO4 and KNO3, whereas excess Cl
� was balanced with

NH4Cl and NaCl. Any remaining ions were explicitly
accounted for in the salt group. Following the IMPROVE
protocol [Pitchford et al., 2007], an assumption was made
to consider all Ca and Al from XRF analysis as CaO
and Al2O3.
[46] The EF of organic matter (EFOM) was estimated by

multiplying the organic carbon emission factor by a factor
of 1.52 to account for associated O, H, and N. This OM/OC
value minimizes the difference between the actual and the
constructed PM masses, is within the range recommended
by Reid et al. [2005], and is consistent with the OM/OC ratio
acquired by the AMS in this study [Qi et al., 2012].
Additionally, the value is similar to the factors of 1.5 and
1.55 used by Levin et al. [2010] and McMeeking et al.
[2009], respectively. A coefficient of determination of 0.94
is observed (Figure 8).

5. Emission Factors of Levoglucosan

[47] Levoglucosan (1,6-anhydro-b-D-glucose), an anhydro
sugar and by-product of pyrolysis of cellulose, is a well-
established biomass burning marker [Shafizadeh and Fu,
1973; Shafizadeh et al., 1979; Shafizadeh, 1984; Simoneit
et al., 1999]. Cellulose itself accounts for 40–45% of wood’s
dry weight and is composed of linear chains of D-glucose
linked by ß-1,4-glycosidic bonds with a degree of polymeriza-
tion of up to ~15,000 unit [Pettersen, 1984].
[48] Emission factors of levoglucosan (LG) versusMCE are

listed in Table 4. This subset of data encompasses 43 burns.
Measured emission factors for levoglucosan vary substantially
with fuel type. For the 15 fuel types of this study, EFLG varied
over 2 orders of magnitude (Table 4). On average, fuels from
“Camp Lejeune” emitted the highest amount of levoglucosan
per kg fuel burned, while the lowest per mass LG emissions
were from the chaparral fuels. The reported values from the
current study are within the range reported by Schauer et al.
[2001] for residential wood burning, with average EFs of
1375, 706, and 1940mg/kg fuel for pine, oak, and eucalyptus,

Figure 8. Reconstructed PM2.5 mass emission factor (g/kg
fuel burned) versus gravimetric PM2.5 mass emission factor.
Solid line represents the regression line with slope of 1 and
correlation coefficient of 0.94.

Table 4. Levoglucosan (LG) Emission Factors (mg/kg Fuel Burned), and Fraction of LG in the PM, Organic Carbon (OC), and Organic
Mass (OM) (Wt %)a

Fuel type EFLG mg/kg LG/PM% wt% LG/OC% wt% LG/OM% wt% EC/TC wt%

Southeast
cea 187� 172 3.19� 2.42 6.24� 3.14 4.1� 2.1 36� 23
chs 234� 117 3.03� 1.24 6.44� 3.05 4.2� 2.0 38� 8
cas 25.2� 9.3 0.37� 0.17 1.46� 0.13 1.0� 0.1 58� 7
cos 19.7� 6.4 0.31� 0.08 1.53� 0.47 1.0� 0.3 63� 9
man 30.2� 10.3 0.79� 0.21 3.71� 1.13 2.4� 0.7 47� 9
mch 79.2� 42.7 1.64� 1.18 6.05� 2.86 4.0� 1.9 44� 18
Chaparral ave. 95.9� 35.6 1.56� 0.50 4.24� 0.90 2.8� 0.6 48� 6
mes 28.9� 10.9 0.75� 0.08 2.07� 0.37 1.4� 0.2 44� 1
oas 29.1� 13.6 1.80� 0.67 4.31� 0.91 2.8� 0.6 52� 8
oaw 58.6� 35.1 2.74� 1.12 6.53� 4.12 4.3� 2.7 42� 15
FHUA ave. 38.9� 13.1 1.76� 0.44 4.30� 1.41 2.8� 0.9 46� 6

Southeast
lit 1090� 510 5.76� 1.65 5.76� 1.65 3.8� 1.1 10� 6
1 year 888� 522 6.92� 0.33 6.92� 0.33 4.5� 0.2 8� 4
2 year 1270� 540 9.52� 1.04 9.52� 1.04 6.2� 0.7 6� 4
poc 208� 142 4.03� 1.11 4.03� 1.11 2.6� 0.7 17� 8
cuh 50.2� 6.8 3.02 3.02 2.0� 0.0 37
uh 337� 136 5.14� 3.46 5.14� 3.46 3.4� 2.3 32� 9
Camp Lejeune ave. 641� 155 5.73� 0.83 5.73� 0.83 3.7� 0.5 18� 3

aThe values represent mean� one standard deviation across repeated experiments.
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respectively. The LG/OC ratios for the three fuel groups were
4.24� 0.90, 4.30� 1.41, and 5.73� 0.83mg/g for Chaparral,
FHUA, and CL, respectively. Sullivan et al. [2008] during the
Fire Laboratory at Missoula Experiments (FLAME) studies
measured an average LG/OC value of 70mg/g for their 73
burns. Engling et al. [2006] reported values from 36 to
1368mg/mg OC. The current study values are 2–3 times lower
than reported LG/OC ratios for “man” and “chs” [Sullivan
et al., 2008] of 8.8–11.4 and 6.3–10.6mg/g, respectively. In
general, fuels from SE emittedmore LG per unit weight of fuel
compared to the SW fuels. Average MCE alone is unable to
account for the differences observed between these studies.
Lab experiments suggest that presence of salts, especially salts
containing K, Li, and Ca, significantly reduces LG pyrolysis
yields [Richards and Zheng, 1991; Eom et al., 2012]. Thus,
higher K/PM ratios in this study suggest lower EFLG. As
shown in Figure 9, a sharp decrease in LG production is ob-
served at K/PM ratio of ~0.03. Moreover, Ward and Hardy
[1991] found that potassium emissions were high during
high-temperature flaming phase. Hence, potassium could not
be identified as a predictive factor for determining EFLG that
varied 2 orders of magnitude.
[49] The PM mass fractions of levoglucosan in this study

were 1.56(�0.50)% (FHL), 1.76(�0.44)% (FHUA), and
5.73(�0.83)% (CL) and varied largely between burns from
0.3 for “cos” (lowest) to 9.5% for “cuh” (highest). SE fuels
had the highest levoglucosan PM mass fraction ranging from
3% (cuh) to 9.5% (2 year), while SW fuels varied between
0.3% (cos) and 3.2% (cea). No correlation between mass
fraction of levoglucosan in PM and average MCE was found
in contrast to the previous findings of Dhammapala et al.
[2007] for wheat and Kentucky bluegrass (only based on
three samples).

6. Emission Factor of Particle-Phase PAHs

[50] The major emissions of particle-phase PAHs from
southwestern fuels are benzo[k] fluoranthene, pyrene, benzo
[a] fluoranthene, chrysene, benzo[a] pyrene, fluoranthene,
phenanthrene, and fluorene, which contribute approximately
80% of total particle-phase PAHs for both Chaparral and
FHUA groups. Pyrene and benzo[k] fluoranthene alone made
up 13–20% of PAH emissions. Chaparral and FHUA had a

mean emission factor of 6550 and 1720mg/kg. The highest
observed amount of total PAHs per kg fuel burned was
11300mg/kg from “cos” and the lowest was 1300mg/kg from
“oas”. In general, Chaparral fuels emitted approximately 4
times higher amount of PAHs than FHUA fuels.
[51] The mass fraction of PAH in the PM varied from

0.03%(chs) to 0.54%(cos) and averaged 0.20% and 0.26%
mass of PM for Chaparral and FHUA fuels, respectively.
Despite having less PAH per kg fuel burned, FHUA
resulted in higher fraction of PM in PAHs compared to
the Chaparral group.
[52] It has been suggested that the ratio of certain diagnos-

tic ratios for PAHs is useful in determining combustion
source [Goncalves et al., 2011; Wang et al., 2009; Alves
et al., 2010]. The ratios of Fla/(Py + Fla) and Ph/(Ph +Ant)
as suggested by Wang et al. [2009] and Ind/(Ind +Benzo
[ghi]P) by Goncalves et al. [2011] are shown in the bottom
of Table 5 for all the fuel types and the two fuel groups.
The ratio Fla/(Py + Fla) was 0.40� 0.04 for Chaparral
group and 0.20� 0.10 for FHUA group. The FHUA ratios
are similar to those reported from combustion of cereal straw
(0.50–0.53) [Hays et al., 2005], shrubs (0.54–0.60)
[Wang et al., 2009], and agricultural residue (0.46–0.63)
[Goncalves et al., 2011]. The “mes” and “oas” did not fall
within the range of suggested ratios for the ratio of Fla/
(Py + Fla). The Ph/(Ph +Ant) ratio averaged 0.72� 0.17
(except for “mch”) and was consistent with the range
reported by above mentioned studies. The “mes” and “oas”
from FHUA significantly have higher Ph/(Ph +Ant) ratios
(~0.9) close to the values seen from cooking emissions/en-
gine exhaust [He et al., 2004; Rogge et al., 1993; Schauer
et al., 1999], which in addition to a differing fuel type, the
disparity might be due to the high MCE values. Most of the
studies used byWang et al. [2009] are combustion processes
involving mostly smoldering (based on small EC/TC ratios).
Therefore, the range of suggested diagnostic ratios might not
be robust due to the overlap of suggested ranges between dif-
ferent emission sources [Goncalves et al., 2011] and also not
covering the wider range of possible MCE values (e.g.,
higher MCEs were observed in the current study). Ind/
(Ind +Benzo[ghi]P) was 0.40� 0.04 for both fuel groups.
Our data are close to the lower end of evaluated values from
the study of Hays et al. [2005] for cereal straw. Chinese
cooking [He et al., 2004] and automobile and trucks
[Rogge et al., 1993] have ratios of 0.19 and 0.04–0.09,
respectively.

7. Conclusions

[53] We report detailed particle-phase emission measure-
ments from combustion of different vegetation types typi-
cally managed with fire on military bases in the southwest
and southeast U.S. Since these fuels burn periodically (pre-
scribed or wildfire), the results of this study will help to better
understand and manage air quality impacts in neighboring
areas. Emission factors for numerous species are provided
as a function of MCE. At a certain FM, all observed average
MCEs were limited between two heading and backing fire
average MCEs. Due to lack of sufficient data, it was impossi-
ble to model the fire behavior; more effort is needed for char-
acterizing the MCE.
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[54] On average, the SE fuels emitted more PM mass
(10.8 g/kg fuel burned) compared to SW fuels (3.83 g/kg fuel
burned) consistent with lower average MCE for SE fuels. No
regional trend was observed after accounting for MCE. Some
of the observed differences between field and lab results for
similar MCEmay be attributable to the smoke temperature, fuel
bed differences as discussed in more detail elsewhere [Yokelson
et al., 2013], and also time scale of the MCE measurement
(field is on order of hours, laboratory on order of a few
minutes). Due to the nonlinear emissions behavior with MCE,
comparison of fire-integrated values from lab and field studies
might result in unexpected and unexplainable differences.
[55] The SE and SW fuels showed large regional depen-

dency in their emission factors for particle inorganics. The
PM mass fraction of chlorine and potassium in the SW fuels
was on the high end of values reported in the literature. Any
correlation between these emission rates and the average
\MCE was masked by large variations due to fuel composi-
tion. Chlorine alone accounted for 0.4–24.5% of the water-
soluble mass fraction. Sulfate correlated weakly with the
average MCE. Comparison of XRF and IC results indicates
the vast majority (~88%) of sulfur and potassium are present
as SO4

2� and K+, respectively. Inorganic species contributed
9–62% and 2–15% of PM mass for SW and SE fuels, respec-
tively. No correlation was observed between average MCE
and calcium, ammonium, bromide, and nitrate. Unlike the
current study that considers average emissions for duration
of a burn, studies such as Lee et al. [2010] investigated
transient fire emissions using high-resolution time-of-flight
aerosol mass spectrometer (HR-TOF-AMS) and found
strong change in potassium emissions between the flaming
and smoldering stages of combustion.
[56] Levoglucosan/OC ratios were observed to be a

function of the fuel type with little to no correlation with
the average MCE. Finally, the emission factor of 15 PAHs
totaled 1–11mg/kg burned for SW. Eighty percent of
measured particle phase PAHs were attributed to benzo[k]
fluoranthene, pyrene, benzo[a] fluoranthene, chrysene,
benzo[a] pyrene, fluoranthene, phenanthrene, and fluorene.
Pyrene and benzo[k] fluoranthene constituted 13–20% of
particle-phase PAHs emissions. Previously published PAH
diagnostic ratios were not observed to be good markers for
our biomass burning samples.
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