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Abstract. In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic
production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews,
dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire

suppression inputs during extensive fire suppression efforts are similar to productivity estimates derived from direct
observation and used as standard rates by the US Forest Service. The results indicated that the production rates estimated
with operational data ranged from ,14 to 93% of the standard rates. Further, the econometric models indicated that the
productivity of all inputs taken together increases more than proportionally as their use is increased. This result may

indicate economies of scale in fire suppression or, alternatively, that fire managers learn how resources may be deployed
more productively over the course of a fire. We suspect that the identified productivity gaps are primarily due to
unobserved factors related to fire behaviour, other resources at risk, firefighter fatigue, safety considerations and

managerial decision-making. The collection of more precise operational data could help reduce uncertainty regarding the
relative importance of factors that contribute to productivity shortfalls.
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Introduction

It is widely recognised that the cost of wildland firefighting in

the United States has been trending upwards since the mid-
1990s (Calkin et al. 2005). As a consequence, federal agencies
charged with wildfire suppression responsibilities have been

asked to identify means for reducing wildland fire suppression
costs while continuing to protect lives, property and natural
resources (GAO 2007). With the goal of improving efficiency,
prior economic analysis has been applied to examine tradeoffs

between fire suppression, fuel reduction and wildfire prevention
education programs (Mercer et al. 2008; Butry et al. 2010) as
well as identifying strategies that optimise the allocation of

wildfire suppression resources (Donovan and Rideout 2003).
Further, economists have argued that the current incentive
structure faced by fire managers does little to constrain the

commitment of firefighting resources or to cause fire managers
to consider the beneficial effects of wildfires (Donovan and
Brown 2005; Donovan and Brown 2007; Calkin et al. 2011).

Despite these advances, one substantial and largely overlooked
aspect of fire management that could be subjected to economic
analysis is the problem of understanding on-the-ground opera-
tional efficiency in fighting large wildland fires. Because very

little is known either about the productivity or efficiency of
wildland-firefighting resources during lengthy episodes of

extended attack, it is not possible to assess whether a change
in firefighting strategies or tactics could help reduce fire
suppression costs while meeting safety and resource protection

goals.
In this paper, we use operational data to estimate the

productivity of firefighting resources on large wildfires. Our
basic hypothesis is that the complexity of suppressing large

wildfires induces a gap between the standard fireline production
rates used by the US Forest Service and rates estimated using
economic production functions based on daily fire suppression

data. We suggest that evidence of a quantitative gap between
standard and econometrically estimated fireline production
rates may be due to the stochastic, dynamic nature of wildland

fire suppression, which induces less than optimal responses both
by fire managers and firefighters in the suppression of large
wildland fires. Further, evidence of a productivity shortfall

would suggest the need for future research to develop more
precise data and analyses for identifying sources of firefighting
inefficiency with the goal of designing better wildfire suppres-
sion strategies and tactics.
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To establish the context for our analysis, the following
section provides a review of the literature on fireline productivi-
ty as well as a limited literature that focuses on fire suppression

decision-making during wildfire events. Then we describe
the operational data used for our empirical analysis and the
method we used to estimate daily rates of fireline construction.

A description of the econometric models used to quantify
operational performance is followed by the presentation of the
results of our empirical analysis. Finally, we present our con-

clusions and make recommendations for future research.

Literature review

In this section we review several studies that have reported
quantitative measures of fireline productivity and that provide
insight into the difficulties associated with establishing pro-

duction standards, especially on large fires that may burn for
several weeks. This is followed by an overview ofwhat is known
about decision-making on actual wildland fire operations.

Estimates of fireline productivity

Estimates of fireline productivity are necessary for planning

purposes and for decisions regarding how many resources to
deploy on wildfires of various sizes. Some of the earliest studies
of fireline productivity were made by the US Forest Service in

California during 1937 and 1938 (Lindquist 1970). These
studies evaluated the productivity of three-man crews working a
maximum of four 45-min shifts under non-fire situations. Esti-

mates of the number of chains per hour that could be constructed
under different resistance to control classes were published in
the Forest Service ‘Fire Control Handbook’ in 1940, and pro-

vided the standard fireline productivity rates for 30 years.A

Recognising the potential importance of fatigue in construct-
ing firelines over longer periods of time, Lindquist (1970)
analysed fireline work logs obtained from fire-suppression

activities in California during the 1966 to 1968 fire seasons.
He found that fatigue was a significant factor in explaining
fireline production rates: after 5 h, rates were 65% of the rate at

30min. Lindquist (1970) appears to be the first to recommend
that fireline construction rates be viewed as probability func-
tions, and he fit a gamma (skewed right) function to estimate the

probability of achieving a given rate of productivity.
In addition to these early, formal studies of fireline construc-

tion rates, anecdotal evidence of fireline productivity had been

reported in several sources such as ‘Fire Control Notes’ (Hanson
and Abell 1941; Stevenson 1951). Given the availability of
several sources of handcrew productivity estimates, an effort
was made to collect and synthesise all available data on

handcrew production rates (Haven et al. 1982). The authors
reported that fireline construction rates were highly variable,
varying by as much as 500%.

Historically, it has been difficult to measure fireline produc-
tivity under actual conditions given the logistics of deploying
observers, and concerns for their safety. An innovative approach

that overcomes this limitation is to estimate fireline productivity
using expert opinion. This approach was pioneered by Fried and

Gilless (1989) who developed a probabilistic model of fireline
productivity for initial attack using a b (skewed right) distribu-
tion. The authors found that, compared with rates revealed by

expert opinion, previously published rates were quite optimistic,
especially for handcrews and dozers. The authors suggest that
published rates are generally based on conditions that do not

incorporate any of the unlucky events that can, and do, affect
actual production rates.

A comprehensive review of literature published in the United

States, Canada and Australia regarding the productivity and
effectiveness of initial attack fire crews was reported by Hirsch
and Martell (1996). They take particular note of the conclusion
from prior studies that fireline productivity rates appear to be

stochastic and highly variable.
The limitations of prior published studies of fireline produc-

tivity, combined with the changes in fire management and fire

behaviour since the most recent studies were undertaken,
necessitated the development of a new study to evaluate fireline
production rates. A comprehensive study of fireline production

rates observed on actual wildfires was recently reported
(Broyles 2011) and provides the best estimates of fireline
productivity on actual fires. During the fire seasons from 2006

to 2009, trained observers collected systematic data on fireline
distances, onsite weather, topography, number of personnel on
the line, fire behaviour and fuel model. The author notes that
therewere numerous days forwhich crews received assignments

to construct handlines, but were unable to engage the fire due to
extreme fire behaviour.

In addition to recording observations on fireline productivity

and using estimates based on expert opinion, a third and more
recent approach to analysing wildfire containment has been to
use operational data generated from actual wildland fire sup-

pression operations. Finney et al. (2009) used daily operations
data to estimate a statisticalmodel to identify factors influencing
the containment of largewildfires. A related analytical approach
was developed by Hesseln et al. (2010) who used aggregate

operational data to econometrically estimate the influence on
wildfire area burned and cost of labour and capital inputs,
weather and topographic variables.

Decision-making on wildland fires

The use of economic analysis to study wildland fire suppression
differs from its use in the study of most economic enterprises

because very little is known about the nature of the productive
relationship between suppression inputs and fireline construc-
tion when viewed over the duration of extended attack episodes.
This perspective was succinctly articulated by Finney et al.

(2009): ‘ythe effectiveness of suppression efforts on the
progress or containment of large fires has not been modeled or
even characterized, and it is presently not known what or how

different factors are related to successful containment’ (p. 249).
More than 40 years ago, Leibenstein (1966) argued that the
lack of a good understanding of the technical relationships

between inputs and outputs can induce a loss of efficiency
(which he labelled ‘X-inefficiency’). Further, he proposed that

AThroughout themanuscript, we usemetric units to report results and analysis. For completeness, we note that 1 chain¼ 66 feet¼ 20.1168m. Further, we note

that 1 acre¼ 0.4047 ha.
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decision-makers deviate from maximising behaviour due to
selective rationality, which he defined as the relative number of
opportunities and constraints attended to by decision-makers

(Leibenstein 1979). He argued that the degree to which people
deviate from maximising behaviour is a function of both their
personality and the decision-making context.

The idea that industrial firms exhibit various degrees of
inefficiency due to limited or selective rationality may be
anticipated to apply even more so in command and control

situations exemplified by combat operations or in the control of
structural and wildland fires. Decision making in this context is
characterised by several critical factors including continually
changing conditions, high stakes, time stress, missing data and

multiple players (Klein 1993). In these situations, the necessity
of making rapid decisions under varying degrees of ambiguity
does not afford the luxury of fully analysing all options and

tradeoffs. Rather, it is argued that decision makers are
selectively rational and seek satisfactory (rather than optimal)
decisions. This perspective reflects the concept of ‘satisficing’

proposed by Simon (1955), and is in concert with cue-based
decision models in which decision-makers rely both on their
experience and cues from the environment when making

decisions in a dynamic environment (MacGregor and
González-Cabán 2008).

Empirical testing of the selective rationality (or ‘recognition-
primed’) decision model was undertaken on a series of large

wildland fires that ultimately burned a total of 10 117.14 ha
(25 000 acres) of timber (Taynor et al. 1990). Decisions were
categorised as either functional (concerning placement of fire

control lines or the mode of attacking a fire) or organisational
(concerning the communication among members of the fire
management team and between the team and other stake-

holders). The authors reported that incident commanders on
these large wildfires used selectively rational decision strategies
for ,56% of the functional decisions and for ,39% of the
organisational decisions. Analytical decision-making was used

for the remainder of the decisions.

Data

The operational data we use in this study were drawn from
Incident Command System (ICS-209) daily reports for the

calendar year 2008 for fires equalling or exceeding 121.4 ha
(300 acres). Despite the limitations of operational data, the
ICS-209 reports contain a wealth of information that can be used

to estimate production functions for large scale firefighting
operations, including observations on the levels of resources
available for deployment on a fire (crews, dozers, engines and
helicopters), incident-management team type, fire size and

percentage of the fire contained (see Appendix for ICS-209
resource definitions).

Three considerations were necessary to prepare the ICS-209

data for analysis. First, we determined that data records for fire
complexes are ambiguous and, therefore, we only used data
for single fires. Second, aswe needed a continuousmeasurement

of fire containment, we eliminated fires if more than one

contiguous day was missing from the fire record (and used
averages for the missing observations). Third, we truncated the
data at the day in which fires were declared 100% contained so

that final mop-up and line rehabilitation operations were not
included in the analysis. After implementing these constraints,
we had observations on 47 large fires spanning 650 total

fire days.
Fireline construction is not reported in ICS-209 data and

needed to be estimated. The estimation method we developed

proceeded in three steps. First, we used a mathematical-
statistical model, based on Mandelbrot’s (1967) description of
the fractal dimension (D) of an irregular curve, to evaluate the
spatial pattern of final fire perimeters. A prior example of the use

of the fractal dimension to estimate wildland fire perimeters was
reported byMcAlpine andWotton (1993). In this paper, we used
the slope method for estimating D (Lovejoy 1982; Dı́az-

Delgado et al. 2004) based on the following relationship
between perimeters and areas:

P ¼ C1�DAD=2 ð1Þ

where P is the perimeter, C is a constant, A is area and D is the

fractal dimension. Taking the logarithm of both sides of Eqn 1,
a linear equation is obtained.

logP ¼ 1� Dð Þ � logCþ D=2ð Þ � logA ð2Þ

Hence, given data on P and A, the fractal dimension can be

estimated using linear regression. Because fuel types and
topography may affect the fractal dimension of fire perimeters,
separate statistical estimates of Eqn 2 were made for each US

Forest Service region contained in our dataset. Further, given
estimates of the intercept ((1�D)� logC) and slope (D/2)
parameters shown in Eqn 2, the values of C and D can be
computed.B

Second, estimates of C and D by US Forest Service region
were used to construct estimates of daily fire perimeters (Pt)
using data on daily fire area (At). For this step, it was necessary to

assume that the fractal dimension of daily fire perimeters (for
which sufficient data were not available) was the same as the
fractal dimension of final fire perimeters. Although this assump-

tion may introduce error into the estimation of daily fire
perimeters, we suspect that the error is random rather than
systematic.

Third, daily fire-perimeter estimates for each fire day t were
multiplied by the percentage area contained (Pt) to estimate the
daily cumulative fireline (CFLt):

CFLt ¼ Pt �Pt ð3Þ

The daily fireline (DFLt) constructed was then computed as

the difference.

DFLt ¼ CFLt � CFLt�1 ð4Þ

BIn particular, multiplying the parameter estimate for log(area) times 2 yields estimates of D. Further, by equating the estimated value of the constant with

(1�D)� logC, the value of C can be recovered.
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We recognise that DFLt contains measurement error. In
addition to the lack of data on daily fire perimeters, a second
source of error stems from the reported estimates of the

percentage of the fire that is contained. Typically, these data
are not precisely measured and anecdotal evidence suggests
that, in some cases, these numbers may be strategically manipu-

lated in order to gain or hold resources. For example, if fire
managers are concerned about having resources removed from a
fire if it appears that the fire is nearly contained, they may report

relatively low containment percentages until they are certain
that the firelines will hold and the fire will in fact be contained.
This type of strategy could reduce the apparent productivity of
resources during the period for which reported containment is

conservatively reported. Conversely, apparent productivity of
resources would increase when managers are confident that the
fire will be contained and containment numbers are adjusted

upwards. We think that it is likely that these types of errors
introduce random noise into our estimates of daily fireline
constructed, but we do not suspect that they would introduce

systematic bias.C

Although random measurement error in the dependent vari-
able of a linear regression model is clearly undesirable, it does

not bias parameter estimates but rather will appear in the
equation error term. However, the presence of measurement
error has a substantial effect on the possibility of estimating
efficiencymeasures that rely on decomposing the error term into

random and systematic components. Consequently, in this
paper, we focus on estimates of input productivity and do not
explore issues related to efficiency.

In addition to the data on purchased inputs, two variables
related to the difficulty of fire suppression, measured on a daily
basis, were included in the model specification. First, we

included energy release component (ERC), which is an estimate
of the heat released per unit area of fuel at the head of a moving
fire. This variable is used in the National Fire Danger Rating
systems to help determine preparedness levels and is a key input

into several key institutional fire behaviour models such as
Farsite (Finney 1998), FSPro (Finney et al. 2011a) and FSIM
(Finney et al. 2011b). Both relative and cumulative ERC

variables were computed for the centroid of each final fire
perimeter. Cumulative ERC, which places the raw ERC values
on a 1–100 scale representing the cumulative probability of

observing an ERC value at a specific weather station, scales the
variable relative to normal conditions and was included in the
model specification. We also included data on average daily

wind speed and maximum gust speed in the specification.
These data were obtained from the weather station closest to
each fire centroid.

We also used data representing heterogeneous conditions

across fires, but which were fixed for any individual fire.

Measures ofmean elevation, standard deviation of elevation and
dominant fuel type within each final fire perimeter were com-
puted using GIS tools. Finally, we computed the estimated

daytime population living and working within the final fire
perimeter.D We anticipate that as the population at risk
increases, the effort placed on point protection of homes and

other structures will likewise increase. In turn, we anticipate that
the deployment of resources to point protection is likely to
decrease the rate of fireline production.

Econometric methods

Our econometric model is based on the well known Cobb–
Douglas production function, which has smooth, convex iso-
quants and is homogeneous of a degree determined by the sumof

the parameter estimates on purchased inputs (Douglas 1976).
This function relates a vector of wildland fire suppression inputs
(handcrews, dozers, engines, helicopters) to output (daily fire-

line constructed).
Recall that our data on fire suppression operations include

observations over multiple contiguous days for each of several
fire suppression operations (referred to as panel data). Given this

setup, the Cobb–Douglas function can be written:

DFLit ¼ gxitb ð5Þ

whereDFLit is the fireline constructed on fire i and day t, xit is a

vector of production inputs, g is a constant and b is a vector of
parameters. One advantage of the Cobb–Douglas functional
form is that, by taking the logarithm of both sides of Eqn 5, we
obtain a linear equation that can be estimated by ordinary least-

squares regression:

ln DFLitð Þ ¼ aþ b ln xitð Þ þ eit ð6Þ

where a is a constant (ln g) and eit is the equation error. The

parameter estimates b are elasticities, and indicate the percent-
age change in output associated with a percentage change in
input factors.

The literature review above indicated that fireline production
on wildland fires is highly variable and dependent on a suite of
exogenous factors that may influence the productivity of sup-
pression inputs. In contrast to purchased inputs, these variables

may be considered free inputs (Prestemon et al. 2008). Factors
that vary within fire operations can be directly entered as inputs
to the production process:

ln DFLitð Þ ¼ aþ b ln xitð Þ þ z ln witð Þ þ eit ð7Þ

CPlots of regression residuals from the fittedmodels reported in the results failed to disclose any apparent systematic bias. However, we note that our procedure

may artificially reduce the standard errors around the mean parameter estimates of fireline productivity.
DTo estimate population within fire perimeters we used the 2008 Landscan USA 3-arc-second (,90m) daytime and night-time residential population

distribution dataset (Oak Ridge National Laboratory 2008). LandScan USA refines the distribution of the population derived from census block level data for

each polygon by distributing the total block population to grid cells according to weights proportional to the calculated likelihood of being populated. The

likelihood of being populated is based on proximity to landmarks and geographic features such as roads and water bodies, as well as geologic features such as

slope (Bhaduri et al. 2007).
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where wit is a vector representing within-fire factors (such as
daily weather conditions) and z are the associated parameters to
be estimated.

The Cobb–Douglas model shown in Eqn 7 was estimated
using both fixed-effects and random parameter models
(described below), which utilise different approaches for incor-

porating free inputs into the model specification. Further, we
recognised that for a small percentage (,4%) of the fire days
included in our data, the reported fire containment percentage

decreased. A shrinkage in percentage containment likely
reflects what Fried and Gilless (1989) referred to as ‘unlucky
events’, and it appears that a loss in fire containment percentage
reflects either (1) days for which constructed fireline failed to

contain the advancing fire or (2) days for which the fire
perimeter grew faster than the containment perimeter. We refer
to either of these conditions as extreme fire days andwe estimate

the Cobb–Douglas production function with and without the
adverse days, which allows us to evaluate the effect of extreme
fire conditions on productivity.

Fixed-effects model

Note that the model shown in Eqn 7 above does not include
heterogeneous factors that remain constant during an entire fire

suppression operation, but vary across fire operations. In order
to include these factors, a fixed-effects model can be specified:

ln DFLitð Þ ¼ ai þ b ln xitð Þ þ zwit þ eit ð8Þ

where ai is a fixed effect (dummy variable) associated with
fire i.E Clearly, other factors that induce heterogeneity across
fires cannot be included as explanatory variables in Eqn 8, as

they would be perfectly collinear with the fixed effect.

Random parameters model

An alternative specification to the Cobb–Douglas panel data
model is to treat the constant term as containing random, rather
than fixed, effects. This approach has the advantage that vari-

ables representing heterogeneous conditions across fires can be
included in the model specification (because they are no longer
collinear with the constant terms):

ln DFLitð Þ ¼ aþ b ln xitð Þ þ zwit þ uhi þ eit ð9Þ

where hi is a vector of variables representing heterogeneous

conditions and u is a vector of associated parameters. Further,
the random effects model can be generalised by considering that

some or all of the parameters in the model contain random
variation. This so-called random parameters model is able to
incorporate all observed and unobserved sources of heterogene-

ity in the data that may affect production parameter estimates.
This model specification is in keeping with literature reviewed
above suggesting that fireline production parameters are sto-

chastic and highly variable.
The general form of the random parameters model permits

the b parameter estimates associated with each input in the

Cobb–Douglas production function to vary within and across
fires:

bki ¼ b0k þ ykoki ð10Þ

where bki is the parameter for the kth input on fire i, bk
0 is the

mean (to be estimated) for the kth input, yk is the scale factor (to
be estimated) and that captures the random variation in the
parameter for kth input and vki is a random variable associated
with input k and fire i. Each vi is a random draw from a

probability distribution that is specified by the researcher, and
the model is estimated using simulated maximum likelihood
(Gouriéroux and Monfort 1996).F Although we anticipate that

the marginal productivity of fire suppression inputs will gener-
ally be positive, there may be some days when additional inputs
have a negative marginal effect. Consequently, we chose not to
restrict the productivity parameters to be strictly positive and

thus specified the random parameters to be normally
distributed.G

The random parameters model presents the opportunity to

measure both the mean productivity of purchased inputs as well
as the distribution of the productivity parameters within and
across fires. Thus, we can estimate the productivity attained for,

say, the 5%most productive fire days using the properties of the
normal probability distribution.

bk ;0:95 ¼ b0k þ yk � 1:96ð Þ ð11Þ

wherebk,0.95 is the estimated productivity parameter for the 95th
percentile (1.96 standard deviations above the mean) of the
normal distribution for the kth input.

Results

Forty-seven wildland fires from 2008 were included in the
analysis. These fires ranged in size from 121.41 to 65 892.44 ha,
and the average number of (contiguous) fire days recorded per

fire exceeded 2 weeks (Table 1). A type 1 incident management

ESchmidt and Sickles (1984) showed how the fixed-effects model could be reinterpreted and used to estimate production frontiers, where the frontier is the

maximum of output that can be produced from a collection of inputs. However, as pointed out by Greene (2005), the fixed-effects model mixes time invariant

heterogeneity with inefficiency, and this mixed effect cannot be decomposed.
FTo compute the random parametermodel, the true log-likelihood function to bemaximised is the sum of the log-likelihoods for each fire, and three procedural

steps are required to estimate the true log-likelihood. First, a draw of vk,i is made from the specified probability distribution. Second, given the draw of v for

each fire and input variable, the true log-likelihood function is maximised with respect to all of the parameters in the model. Third, the first two steps are

repeated a large number of times (for our analysis, 500 replicationswere used). Fourth, the parameter estimates are averaged across all replications to obtain the

simulated maximum-likelihood estimates of bk
0 and yk. For a complete description of the technical details, see Greene (2007, pp. E17-54–E17-55).

GWe note that sampling from an unrestricted triangular distribution yielded very similar results.
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team was engaged for approximately one-quarter of the days
spent fighting the fires in our sample. Both daily variables used
in the analysis to indicate fire suppression difficulty (cumulative

ERC and windspeed) demonstrated a high degree of variation,
and extreme firefighting conditions were observed.

The intercept and slope parameters shown in Table 2 were

used to compute the fractal dimension (D) of fire perimeters
using Eqn 2.B Regression results were obtained for Forest
Service Regions 3, 4, 5 and 6. Because an insufficient number

of observations were available for Regions 1 and 2, we used the
parameter estimates from pooling all regions to compute the
fractal dimension for those regions. We note that the fractal
dimension computed using all data was 1.19, which is nearly

identical to the fractal dimension of 1.15 reported forwildfires in
Canada (McAlpine and Wotton 1993), and smaller than the
fractal dimension of 1.49 reported for wildland fires in Spain

(Diaz-Delgado et al. 2004). Further, our results indicated that
fire perimeters were quite smooth in Region 5 (D¼ 1.05) and
Region 6 (D¼ 1.08) and were highly irregular in Region 3

(D¼ 1.32) and Region 4 (1.34). Future research could be

directed to evaluate the degree to which various factors such
as topography, fuel type and suppression technique contributed
to these findings.

For the fixed-effects model estimated using all data
(Table 3, Model 1), all of the parameter estimates (except
dozers) for the purchased inputs had the expected sign and

were significantly different from zero at the 0.10 level or
better. In Model 2 (Table 3), which excludes extreme days, all
parameter estimates on purchased inputs were significant at the
0.10 level or better, and the R2 goodness-of-fit statistic is much

larger than for Model 1. Apparently, extreme fire days induce
statistical noise in the data and reduce the explanatory power
of the production model.

The sum of the parameter estimates on the purchased inputs
specified in a Cobb–Douglas production function (excluding
management team type, which is measured as a dummy vari-

able) provides an estimate of the degree of homogeneity (returns
to scale) of the production function. For the fixed-effects model
estimated using all of the data, the degree of homogeneity is
,2.0. This means that if all purchased inputs are increased by

100%, output increases by 200% and indicates increasing
returns to scale in the suppression of large wildfires. Alterna-
tively, this result may indicate that as fire suppression resources

are accumulated on large fires, fire managers learn how to more
effectively deploy those resources to contain the fire. Further,
we note that the degree of homogeneity estimated for days in

which extreme fire behaviour are excluded (Model 2) substan-
tially exceeds the degree observed in Model 1 (,2.3 v. 2.0),
presumably because overall productivity drops on extreme fire

days. Although this is the result we would anticipate, we note
that it is largely due to the relatively large contribution of dozer
productivity on non-extreme fire days.

The parameter estimates on the variables reflecting the

difficulties posed by daily conditions had the anticipated (nega-
tive) sign in Models 1 and 2, although only the parameter
estimate on the ERC variable in Model 1 was statistically

significant. In Model 1, the results can be interpreted to mean
that a 1% increase in daily ERC will decrease daily fireline
constructed by,2.2%. In turn, this suggests that sustained high

levels of ERC (particularly if combined with high levels of
maximum wind speed) could have substantial negative effects
on fireline productivity. Further, the lack of statistical signifi-
cance of either variable in Model 2 suggests that these variables

Table 2. Parameter estimates from regressions used to compute

fractal dimension of fire perimeters

The dependent variable is the logarithm of final wildland fire perimeter.

Standard errors reported in parentheses. Probabilities are significant at

**, ,0.05; ***, ,0.01

Variable Coefficient

(standard error)

Adjusted

R2

Number of

observations

All Regions

constant 4.793*** (0.283) 0.89 47

log(area) 0.595*** (0.031)

Region 3

constant 4.057*** (0.683) 0.90 10

log(area) 0.661*** (0.073)

Region 4

constant 4.029** (0.633) 0.94 7

log(area) 0.671*** (0.069)

Region 5

constant 5.424*** (0.315) 0.95 16

log(area) 0.527*** (0.032)

Region 6

constant 5.370*** (0.741) 0.79 11

log(area) 0.538*** (0.087)

Table 1. Descriptive statistics

ERC, energy release component; IMT, incident management team

Variable Mean s.d. Minimum Maximum

Final fire size (ha) 10 569.91 15 339.91 121.41 65 892.44

Fire duration (days) 16.402 15.24 3 80

Handcrews (number of crews) 13.08 13.78 0 105

Bulldozers (number of machines) 3.67 5.55 0 39

Engines (number of machines) 22.67 30.43 0 185

Helicopters (number of machines) 4.35 3.87 0 20

Type 1 IMT (dummy variable) 0.23 0.42 0 1

Cumulative ERC 85.35 17.55 22 100

Max wind speed (kmh�1) 29.07 11.52 8.05 119.09
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are collinear with extreme fire days (and therefore insignificant
when extreme fire days are excluded from the analysis).H

The use of a type I incident management team on large

wildfires substantially enhanced fireline productivity. For each
day that a type I teamwas used on a fire inModel 1, daily fireline
productivity increased by ,1.9%. Although it is not clear
exactly how this result was achieved, it may simply reflect

management team dynamics during a large wildland fire.IWhen
a fire blows up and escapes initial attack, a type 1 team may be
called in to engage the fire at a time when it is necessary to

construct a substantial amount of fireline. When containment
appears certain, the fire may be turned over to other teams to
begin mop-up and rehabilitation activities. Clearly, further

research is required to gain a clearer understanding of the role
that management plays in wildfire suppression productivity and
efficiency.

The results of the random parameter models provide further
insight into the effect of firefighting conditions on the produc-
tivity of purchased inputs (Table 4). In all models, the
homogeneity of the production function was greater than unity,

which is consistent with the results of the fixed effects model.
The variables reflecting the difficulties posed by daily condi-
tions were not significantly different from zero in three of the

four models, suggesting that they were collinear with other
sources of heterogeneity not included in the model specifica-
tions.J The log-likelihood statistics for the random parameter

models indicate that including all sources of heterogeneity
improves the statistical fit over models that include only daily
heterogeneity (comparing Model 4 v. Model 3 and Model 6 v.
Model 5).

The mean parameter estimates on handcrew, engine and
helicopter productivity were statistically significant and rela-
tively constant across all of the random parameter models. The

mean parameter estimates on dozers were only statistically
different from zero in the random parameter models when we
excluded extreme fire days (similar to the results of the fixed-

effects model).

To gain some idea of the levels of maximum productivity
revealed in these data, we evaluated the distribution of the input
elasticities using parameter estimates for mean productivity as

well as the scale parameter estimates. In Model 5 (non-extreme
days and including daily heterogeneity in fire suppression
difficulty), the mean and scale parameter estimates were signif-
icantly different from zero for helicopters and dozers. Plugging

these parameter estimates into Eqn 11, we calculate that input
elasticities for the best 5% of fire suppression days were 1.31 for
helicopters and 2.28 for dozers. Relative to Model 2 (which

likewise excludes extreme fire days, and for which estimated
mean elasticities were 0.60 and 0.49 for helicopters and dozers),
these elasticity estimates indicate that the most productive days

of fireline construction for these suppression resources vary
from approximately twice to nearly five times greater than
average days of fireline construction. This result is consistent

with those of prior research suggesting that fireline production
rates are stochastic and highly variable (Lindquist 1970; Haven
et al. 1982; Fried and Gilless 1989; Hirsch and Martell 1996).

The statistical significance of the scale factors on dozers and

helicopters remains when factors that vary across fires are
included in the model specification (Model 6). This result
implies that the variation in purchased input productivity

reported in Model 5 can be attributed to heterogeneity in factors
varying both within and across fires. The parameter estimates on
several factors representing heterogeneity across fires were

statistically significant at the 0.05 level, suggesting the impor-
tance of topography, fuel type and population at risk on fireline
productivity for large wildland fires. In particular, we note how
the standard deviation of elevation (a proxy for terrain rough-

ness), timber fuel type, and population living and working
within the final fire perimeter (a proxy for intensity of point
protection effort) are all significant factors in Model 6.

The Cobb–Douglas parameter estimates were used to com-
pute the average daily productivity (measured in metres) of
inputs affecting fireline production (Table 5) and then compared

with standard fireline productivity estimates (Broyles 2011;

Table 3. Parameter estimates for the fixed-effects Cobb]Douglas fireline production model

The dependent variable is the logarithm of daily fireline constructed, measured in metres. Standard errors reported in

parentheses. Probabilities are significant at **, ,0.05; ***, ,0.01. IMT, incident management team

Variable Model 1 Fixed-effects (all data) Model 2 Fixed-effects (non-extreme days)

ln(crews) 0.709** (0.324) 0.782*** (0.235)

ln(dozers) 0.036 (0.292) 0.488** (0.215)

ln(engines) 0.550** (0.283) 0.411** (0.207)

ln(helicopters) 0.690** (0.338) 0.595** (0.249)

ln(erc_cumulative) –2.148** (1.096) �0.287 (0.796)

ln(maxwindspeed) �0.663 (0.618) �0.304 (0.454)

Type 1 IMT 1.944*** (0.530) 1.763*** (0.385)

Adjusted R2 0.25 0.48

n 650 626

HSubsequent analysis using a logit model specification indicated that the probability of experiencing an extreme fire suppression day was positively correlated

with ERC. The removal of extreme fire days in Model 2 thereby reduces the effect of ERC on fireline productivity.
IAn alternative hypothesis is that Type 1 teams are more likely to burn out fuels leading to natural fuel breaks, thereby increasing fireline productivity.
JIn Model 5, which excludes extreme fire days, the parameter estimate on the cumulative ERC variable was positive and significant.
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G. Broyles, pers. comm.).K Our estimates of engine and dozer
productivity demonstrated the largest gap from the standard

rates (representing ,14 and 18% of the standard rates). We
suspect that these results are largely explained by the fact that
engines and dozers are commonly used for point protection

rather than for constructing fireline. Dozers are also used to
construct contingency lines, which often do not contribute to the
final fire perimeter. Handcrew productivity was ,35% of

standard rates, on average. This result is likely due to a variety
of factors that affect crew productivity, such as crew size
(Broyles 2011), shift assignments (such as building contingency

lines) and fire conditions under which it was unsafe to engage
the fire. The highest rates of productivity, relative to standard
rates, were estimated for helicopters (,93% of the standard).

Discussion and conclusion

The results of this study are largely exploratory in nature
and have left unaddressed many issues related to a complete

evaluation of on-the-ground wildland firefighting productivity

and efficiency. However, given the ability of the econometric
models to provide a set of robust parameter estimates obtained

under a variety of model specifications, we conclude that the use
of economic production models, coupled with econometric
analysis of operational data, provides a useful framework for

analysing the productivity of fire suppression efforts during
extended attack episodes. Despite the data limitations we faced,
which likely introduced random error into our measure of daily

fireline constructed and reduced estimates of production
parameter standard errors, we further conclude that standardised
fireline production rates are typically greater than rates esti-

mated utilising economic models and operational data recorded
on extended attack episodes.

The advantage of using operational data to estimate produc-
tivity of firefighting resources is that these data reflect the

challenges faced by decision-makers as they make actual day-
to-day fire containment and resource protection decisions. Over
lengthy episodes of extended attack, operational data provide

the ability to identify transient factors that impede fireline

Table 4. Parameter estimates for random parameters Cobb]Douglas fireline production models

The dependent variable is the logarithm of daily fireline constructed, measured in metres. Standard errors reported in parentheses. Probabilities are significant

at *, ,0.10; **, ,0.05; ***, ,0.01. IMT, incident management team

Variable Model 3 Random

parameters (all data)

with daily heterogeneity

Model 4 Random

parameters (all data)

with all heterogeneity

Model 5 Random

parameters (non-extreme days)

with daily heterogeneity

Model 6 Random

parameters (non-extreme days)

with all heterogeneity

Means for random parameters

constant 2.866 (3.020) 7.686** (3.743) �1.390 (2.123) 2.466 (2.512)

ln(crews) 0.850*** (0.244) 0.753*** (0.264) 0.712*** (0.128) 0.777*** (0.152)

ln(dozers) 0.046 (0.217) 0.233 (0.259) 0.502*** (0.181) 0.533*** (0.189)

ln(engines) 0.428** (0.183) 0.364* (0.194) 0.486*** (0.140) 0.324** (0.146)

ln(helicopters) 0.410* (0.220) 0.561** (0.231) 0.430*** (0.156) 0.508*** (0.166)

ln(erc_cumulative) �0.240 (0.629) �0.398 (0.735) 1.028** (0.468) 0.754 (0.514)

ln(max windspeed) 0.260 (0.472) �0.213 (0.619) �0.041 (0.302) �0.103 (0.385)

Type 1 IMT 1.205*** (0.447) 1.894*** (0.641) 1.137*** (0.333) 1.545*** (0.423)

Scale parameters

constant 0.870*** (0.162) 0.139 (0.149) 0.854*** (0.118) 0.130 (0.114)

ln(crews) ,0.001 (0.067) 0.004 (0.065) 0.005 (0.049) 0.046 (0.050)

ln(dozers) 0.019 (0.118) 0.117 (0.078) 0.906*** (0.108) 0.505*** (0.010)

ln(engines) 0.078 (0.058) 0.074 (0.056) 0.066 (0.042) 0.004 (0.044)

ln(helicopters) 0.190* (0.107) 0.406*** (0.116) 0.450*** (0.086) 0.444*** (0.092)

ln(erc_cumulative) 0.231*** (0.038) 0.024 (0.034) 0.379*** (0.030) 0.078*** (0.026)

ln(max windspeed) 0.284*** (0.057) 0.360*** (0.057) 0.131*** (0.040) 0.387*** (0.039)

Type 1 IMT 0.022 (0.340) 0.054 (0.330) 0.315 (0.252) 0.013 (0.249)

Non-random parameters

s.d. elevation (1000m) – �11.635*** (2.613) – �11.287*** (1.777)

mean elevation (1000m) – 0.269 (0.300) – 0.291 (0.217)

timber model – �1.636*** (0.413) – �1.339*** (0.292)

population at risk – �0.033*** (0.008) – �0.035*** (0.006)

s 3.683*** (0.064) 3.642*** (0.067) 2.527*** (0.052) 2.556*** (0.044)

n 650 650 626 626

log-likelihood �1795.77 �1781.87 �1526.398 �1513.693

KTomake ameaningful comparison, the productivity estimates in Broyles (2011) (which are reported in chains per hour) were adjusted to a daily rate assuming

that crews work a 14-h shift per day, and that 33% of each shift (4.62 h) is dedicated to line construction (Broyles 2011). These rates were then adjusted to

metres.
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productivity (such as extreme fire days) as well as providing a

framework for investigating the influence of management
decisions on fire containment and the investment of suppression
resources.

Of particular interest was the finding that fire suppression on

large wildland fires demonstrated increasing returns to scale.
Although this result suggests a reason why fire managers may
obtain levels of resources that appear to be excessive when

viewed ex post (i.e. that resource productivity increases with the
scale of resource use) this result also may be explained by the
possibility that resource use becomes more productive over the

course of a fire as managers learn how to deploy resources more
effectively. Further research is needed to evaluate the nuances of
economies of scale in firefighting operations.

Inferences of substantial gaps between economic production

function estimates of input productivity and standards based on
field studies provide an indication of the effect of unlucky
events, point protection, the construction of contingency line

and other factors on contiguous fireline productivity over the
duration of a fire. Efforts are currently underway to obtain more
complete, spatially explicit, data from fire suppression opera-

tions during extended attack episodes. It is anticipated that these
data will help remove or reduce the ambiguity implicit in our
comparative analysis.

Our results indicated that helicopters had higher productivity
rates than did other suppression resources relative to established
production rates. One potential explanation for this may be that
helicopters are one component of an overall aviation package

that engages the fire. If helicopter use is correlated with other
aviation use not measured in this study, helicopter productivity
would be overstated in this study. Efforts to include the effect of

fixed-wing aircraft on fireline productivity within our economic
framework are currently being pursued. A better understanding
of the influence of fixed-wing resources on fire suppression is

critical given the considerable costs, and safety factors, associ-
ated with their operation.

Economic production models based on spatially explicit data
acquired during real-time events would likely produce improved

understanding of the relative effectiveness of resources in
producing fireline, the amount of fireline that engages the final
fire perimeter, and other activities that suppression resources

engage in that do not result in fireline production. In addition to

measuring productivity and efficiency, geospatial analyses may
allow for enhanced evaluation of exposure of firefighters to
fireline dangers. A formal system to collect and archive relevant

data could provide opportunities to better understand the com-
plexities of the fire management environment and methods to
improve strategic assessment and resource acquisition strate-

gies, and could facilitate after-action reviews for improved team
learning and outside training opportunities.

Finally, we emphasise that a better understanding of where

and when large fire suppression resources are most productive
and efficient has the potential to improve wildfire management
by reducing potential resource loss, unnecessary exposure to
wildland firefighters and management costs. Hopefully, future

collaborations between research and field personnel will be able
to assist the attainment of these goals.
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Appendix. ICS-209 resource definitions

� Handcrew: 20 firefighters that have been organised and
trained and are supervised principally for operational assign-

ments on an incident.
� Engine: any ground vehicle providing specified levels of

pumping, water and hose capacity but with less than the

specified level of personnel: typically 3–5 firefighters per
engine.

� Dozer: any tracked vehicle with a front-mounted blade used

for exposing mineral soil.
� Type 1 Helicopter: ‘heavy’ helicopter. Greatest overall

capacity due to power and size.

� Type 2 Helicopter: ‘medium’ helicopter. Moderate capacity
due to power and size.

� Type 3Helicopter: ‘light’ helicopter. Smallest capacity due to
power and size.
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