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ABSTRACT Mountain lions (Puma concolor) are often difficult to monitor because of their low capture
probabilities, extensive movements, and large territories. Methods for estimating the abundance of this
species are needed to assess population status, determine harvest levels, evaluate the impacts of management
actions on populations, and derive conservation and management strategies. Traditional mark–recapture
methods do not explicitly account for differences in individual capture probabilities due to the spatial
distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the
analysis of capture–recapture data have produced methods estimating abundance and density of animals from
spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the
spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models
to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency
personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-
central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and
biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture
events, including captures both with and without tissue sample collection and hair samples resulting in the
identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We
estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection
probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95%
CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to
6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and dis-
tance � sex on detection probability). These numbers translate to a total estimate of 293 mountain lions
(95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model
are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all
other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial
sampling combined with spatial capture–recapture analysis can be an effective method for estimating large
carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in
the USA.
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The management of mountain lions (Puma concolor) and
other large carnivores is complex. Wildlife managers must
consider the interests of livestock producers, the general
public, hunters, and the conservation community (Treves
and Karanth 2003, Shaw and Negri 2005). In the northern

RockyMountains, human persecution and reductions in prey
availability contributed to a dramatic decline in mountain
lion abundance during the latter 19th century and early
20th century (Logan and Sweanor 2001). Population levels
then rebounded and in 1971, the state of Montana classified
mountain lions as a game species and began to manage them
through a general harvest season (Montana Fish, Wildlife
and Parks 1996). Statewide, annual mortality estimates
from hunting, vehicle collisions, animal damage control,
and natural causes increased from 68 in 1981 to 617 in
1994 indicating likely increases in mountain lion abundance
during this time (Riley and Malecki 2001).
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In the late 1990s, concerns about the stability of the
mountain lion population were raised and hunters in
Montana urged Montana Fish, Wildlife and Parks to reduce
quotas (Robinson and DeSimone 2010). Simultaneously,
encroachment of human development into mountain lion
habitat resulted in increased rates of human–mountain lion
encounters (Riley and Decker 2000), and increased public
concern regarding mountain lion population numbers.
Additionally, a recent decline in ungulate populations in
Idaho has been partially attributed to increasing predator
abundance, including mountain lions (White et al. 2010).
Cost-effective methods for estimating abundance of large

carnivores including mountain lions are needed for conser-
vation and management (Cougar Management Guidelines
Working Group 2005, Balme et al. 2009, Marucco et al.
2011). Population estimates of harvested populations allow
wildlife managers to evaluate hypotheses regarding the
impacts of different harvest season structures on populations
(Cooley et al. 2009, Rice et al. 2010, Robichaud and Boyce
2010), and adjust season quotas to ensure harvest levels are
sustainable. Large carnivores with extensive home ranges and
low probabilities of capture represent unique challenges to
wildlife managers charged with maintaining harvestable
populations (Choate et al. 2006, Robichaud and Boyce
2010). Public perception and auxiliary data such as harvest
data, age structure of the harvested population, and game
damage complaints are often used as population indices
because of the difficulty in quantifying population sizes of
these species (Minnis 1998). Recently, survey methods such
as DNA sampling with hair snares, rub trees, snowtracking,
or other techniques, have been used to estimate abundances
of large carnivores including grizzly bears (Ursus arctos;
Kendall et al. 2008), wolves (Canis lupus; Marucco et al.
2009, Stenglein et al. 2010), mountain lions (Sawaya et al.
2011), and tigers (Panthera tigris; Mondol et al. 2009).
In 1997, a large-scale mountain lion project was imple-

mented by Montana, Fish, Wildlife and Parks to determine
cost-effective measures of monitoring lion populations and
reduce uncertainty in mountain lion abundance estimates.
The methods evaluated included using DNA sampling
for estimating population size, intensive mark–recapturing,
and minimum number known alive techniques that
include backdating older mountain lions caught in the
area (Hornocker et al. 2009).
Robinson and DeSimone (2010) used snowtracking for the

collection of genetic samples to estimate the density of
mountain lions in the Blackfoot River watershed in western
Montana. In this effort, adult mountain lion densities
were estimated through intensive capture efforts during
winters (Nov to Mar) 1997–2007 in a 915-km2 portion
(Garnet study area) of the 7,908-km2 Blackfoot watershed.
Minimum population estimates for the Garnet study area
ranged from 37 mountain lions (4.0 mountain lions/
100 km2) in 1997 to a low of 20 (2.2 mountain lions/
100 km2) in 1999 before rebounding to 33 (3.6 mountain
lions/100 km2) in 2006. To obtain a total population size for
the first year of the study (1997), the density of mountain
lions in the Garnet study area was extrapolated across the

entire watershed (7,908 km2) for an estimate of 310 moun-
tain lions. The methods used by Robinson and DeSimone
(2010) were time-consuming, costly, and relied on a number
of assumptions. For example, the backdating of individuals
for inclusion in estimates of the mountain lion population in
previous years assumes that older-age mountain lions were
present in the study area but undetected. Several years
are required to saturate the population with collars, and
the method assumes that field personnel can identify the
point in time when every mountain lion had been collared.
Though these methods provide a wealth of information on
dispersal, morphometrics, health, and age, minimum num-
ber known alive methods do not account for undetected
individuals, or provide formal uncertainty estimates.
Mark–recapture models (Seber 1973) allow for the estima-

tion of animal abundance corrected for imperfect detection
and characterize the uncertainty associated with the estimate.
Model-based estimates in general provide a framework for
testing alternative hypotheses regarding the processes that
generate the observed data, as well as measures of the statis-
tical significance of the effects in the model (Jolly 1982).
Traditional methods for analyzing mark–recapture data,
however, do not account for spatial variations in sampling
or arrangements of individuals on the landscape, both of
which may affect individual probabilities of detection.
Additionally, large carnivores such as mountain lions that
travel extensively may venture beyond study area boundaries
and lead to violations in the assumption of closure necessary
to obtain unbiased estimates of population size (Choate et al.
2006). Corrections for temporary emigration (Nichols and
Kendall 1995, Kendall et al. 1997, Kendall 1999) or move-
ments across study areas have included buffering with strips
equal to one-half the average territory size (Dice 1938,
Karanth and Nichols 1998, Bales et al. 2005), or using
additional information from previous studies to estimate
amounts of movement expected of individuals (White and
Shenk 2001, Parmenter et al. 2003, Lukacs and Burnham
2005). Recent developments of spatial capture–recapture
models provide explicit estimates of density using individual
trapping histories and the spatial organization of captures to
estimate trap-specific probabilities of encounter, and the
spatial distribution of individuals within the study area
(Efford 2004; Borchers and Efford 2008; Royle and
Young 2008; Gardner et al. 2009, 2010; Royle et al.
2011a). In these models, trap-specific probabilities are mod-
eled as a function of the distance of individual’s activity
center to a trap, and each individual activity center is
regarded as a random effect. Unlike minimum number
known alive techniques, these methods incorporate imper-
fect detection probability as well as the spatial locations of the
captures to generate density estimates.
Spatial capture–recapture models have been developed for

arrays of traps or encounter devices in which encounter of
individuals can occur at prescribed locations in space. This
includes camera traps (Royle et al. 2009), hair snares or scent
lure stations (Gardner et al. 2009, 2010) or networks of mist
net stations (Borchers and Efford 2008). Previously de-
scribed models for search-encounter sampling (i.e., not based
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on fixed arrays of traps) assumed a constant survey effort
across the surveyed location (Royle and Young 2008) or
assumed that sampling occurred along a pre-determined
survey path (structured search-encounter data; Royle et al.
2011b). Thompson et al. (2012) recently expanded these
methods to work with scat dog derived data where sampling
occurs along a path or transect that is not established a priori
but, rather, develops in response to observer search activity.
We apply these methods to unstructured search-encounter
data for mountain lions, where, similar to Thompson et al.
(2012), paths are not established a priori. In our study, the
intensity of effort is determined adaptively in response to the
surveyor’s previous success at detecting a mountain lion in
the area. Lastly, we include goodness-of-fit methods for
these types of analysis.

STUDY AREA

We used capture–recapture data collected in the Blackfoot
River (7,908 km2) watershed and in a portion of Lewis and
Clark County in Powell, Granite, and Missoula counties in
west-central Montana (Fig. 1). Terrain was characterized by
gentle to moderate slopes dissected by steep limestone can-
yon areas along drainages with elevations ranging from
1,160 m to 2,156 m (Robinson and DeSimone 2010).
Mean annual precipitation fell mainly as snow and ranged
from 19 cm to 33 cm of water equivalent (Western Regional
Climate Center, Ovando, MT). Habitat varied with
elevation from high elevation mixed lodgepole pine (Pinus
contorta)-subalpine fir (Abies lasiocarpa) stands, to more
mesic Douglas-fir (Pseudotsuga menziesii)-western larch

(Larix occidentalis) stands at mid-elevations, and Douglas
fir, ponderosa pine (Pinus ponderosa), and aspen (Populus
tremuloides) at low elevations (Robinson and DeSimone
2010). Prey species present in the area included elk
(Cervus elaphus), white-tailed deer (Odocoileus virginianus),
mule deer (O. hemionus), and moose (Alces alces). Large
predators besides mountain lions included black bear
(Ursus americanus), grizzly bear, and wolf (Robinson and
DeSimone 2010).

METHODS

Field Methods
From late November 2005 through February 2006, trackers
spent 77 days systematically searching for mountain lion
tracks and treeing mountain lions with the use of trained
hounds. They collected tissue from treed animals using
biopsy darts fired from a CO2-powered rifle (Beausoleil
et al. 2005). Additionally, crews on foot followed tracks of
mountain lions backwards (hereafter back-tracking) collect-
ing hair samples, which consisted of hair fragments, single
intact hairs, or clumps of hair, from logs or other natural
features along the tracks. Field crews systematically surveyed
for mountain lion tracks on Forest Service and Plum Creek
Timber Company roads within the study area using snow-
mobiles. If they located a fresh track, the houndsman would
release his hounds and tree the mountain lion. Trackers
back-tracked old and fresh mountain lion tracks on foot.
All crews used hand-held Global Positioning System (GPS)
units to record the length and location of their survey efforts.
We conducted a genetic analysis of tissue and hair samples to

Figure 1. Map of study area (gray square) surveyed for mountain lions in the Blackfoot Mountains of Montana from November 2005 to February 2006.
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identify individuals. Regardless of the circumstances under
which we sampled the mountain lion, we treated individuals
as independent in the model (i.e., female and dependent
young entered the model as separate individuals; see the
Discussion Section for more on this issue).

Genetic Analysis
We performed genetic analyses of tissue and hair samples at
the United States Forest Service Rocky Mountain Research
Station (Missoula, MT, USA). We successfully genotyped
tissue samples using 12 variable microsatellite loci (details
concerning amplification protocols and the genetic charac-
teristics of these loci can be found in Biek et al. 2006).
We amplified all hair samples 3 times using the protocols
outlined in Biek et al. (2006) to eliminate most genotyping
errors associated with identifying unique individuals.
When we detected inconsistencies between amplifications,
we ran samples an additional 3 times. Lastly, we used 2
computer algorithms implemented in program DROPOUT
(McKelvey and Schwartz 2004, 2005) to ensure that the
genotypes produced did not inflate the estimate of mountain
lions in this study.

Model Formulation
Spatial capture–recapture models (Borchers and Efford
2008, Royle and Young 2008, Gardner et al. 2009) extend
ordinary (non-spatial) capture–recapture models to accom-
modate individual locations. This is accomplished by intro-
ducing an individual-level random effect corresponding to
the coordinates of the center of activity of individuals in the
population during the study period. The area surveyed by the
trackers represents potential capture locations, which do not
necessarily correspond to the area where the animal is most
active. Some animals may primarily reside outside of the
surveyed area and therefore have low probabilities of capture.
An assumption of these models is that an individual’s capture
probability is greater at locations that are closer to a core area
used most frequently by the animal (i.e., activity center).
Collectively the activity centers are regarded as a realization
of a point process, and spatial capture–recapture models
estimate the number of such points in any well-defined
spatial region in proximity to the sampled region. The
number of activity centers in any spatial region is the popu-
lation size of individuals in that region.
A key element of the data structure in our study, which is

not addressed in most standard spatial capture–recapture
models, is that individual encounters do not arise from
discrete trap locations, such as camera traps, hair snares,
or mist nets used in conventional capture–recapture studies.
Instead, observers searched areas where mountain lion tracks
were detected either by the individual observer or by others
(state, Bureau of LandManagement, Forest Service employ-
ees, etc.). To resolve this, following Thompson et al. (2012),
we gridded the study area into a coarse grid of 5-km � 5-km
cells and used these grid cells as conceptual traps, producing
encounter histories (see below) based on whether individuals
were encountered or not in each grid cell. If the grid cell was
searched, then an individual could be encountered in that

trap, otherwise, if a grid cell was not searched, no encounters
were possible.
We assigned each capture to the center point of the grid cell

within which the capture took place. We assembled individ-
ual encounter histories (yijk) for individual i, trap j, and
sampling occasion k; where the value of yijk ¼ 0 if the
individual was not encountered in the grid cell on sampling
occasion k and yijk ¼ 1 if the individual was captured in the
trapping area during that sampling occasion (Gardner et al.
2010). For our study, however, we combined both hair
samples and biopsy samples because hair samples did not
allow us to determine the date whenmountain lions traversed
the sampling grid where the hair was found. As a result, we
were unable to clearly define distinct temporal sampling
occasions. Therefore, we collapsed the data matrix of sam-
pling occasions to reflect 1 sample period. We generated
individual encounter histories (yij) for individual i and trap j.
These values equaled 0 if we never captured the mountain
lion (either treed or collected hair from the individual) in the
grid cell, and 1 if we detected the mountain lion at least once
in the grid cell over the study period. As a result, information
about detection probability comes from repeated detections
of the same individual in different traps, rather than detec-
tions from visits to the same trap over a period of time. We
only included coordinates of capture locations, locations
where we collected DNA or hair samples (i.e., grids that
observers tracked mountain lions through but did not obtain
a DNA sample were not recorded as a capture location).
A problem in our study is that search intensity was likely

intensified in relation to local mountain lion density. This
differs from the scat dog transects analyzed in Thompson
et al. (2012), which were distributed uniformly and scat dog
routes deviated from these predetermined transects based on
detected scats. Here, after encounter of sign (such as a track),
observers would expend additional search effort to obtain
hair or tissue samples from that individual. Most grid cells
contained at least some effort (i.e., at least 1 GPS point was
recorded with the grid cell; see Fig. 2), and we believe this
phenomenon primarily affected encounter probabilities at
the level of the grid cell. In other words, each grid cell
had a relatively small base encounter probability simply
for being sampled by some search route length >0 m, and
subsequent increases in search effort led to increases in
effective encounter probability.
Thus, we used search intensity (sampling effort) as a co-

variate on encounter probability to adjust the baseline prob-
ability of capture. Therefore, grid-specific encounter
probabilities included 3 parameters we expected to influence
the detection probability (P) of an individual mountain lion
at a particular grid cell: Euclidian distance from activity
center, survey effort, and sex of mountain lion. In this
formulation, an activity center corresponds to the center
of an animal’s movement over the course of the study period.
We followed Gardner et al. (2010) by describing the trap-
specific encounter probabilities as a function of distance as

Pij ¼ Prðyij ¼ 1Þ ¼ 1� expð�l0igijÞ
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where

logðl0ijÞ ¼ l0 þ b1 � logðEFFORTjÞ þ b2 � SEXi

and l0ij is the expected number of captures in a trapping area
given the individual’s activity center. This encounter rate
model implies a constant baseline (at the average search
effort) encounter rate (l0) for each grid cell searched. The
effects of the covariates sex and effort are included in the
detection function, where effort is the distance in kilometers
covered by trackers in the grid cell. The sex of unknown
animals, including unobserved animals and observed animals
of unknown sex, are estimated from the sex ratio of males to
females in the population (csex), corrected for sex-specific
detection probabilities, P. This is accomplished by regarding
SEXi as a latent variable in the model and updating its
unknown values as part of the Markov chain Monte
Carlo algorithm (MCMC). For our models, we define
sex ¼ 1 as a male and sex ¼ 0 for as a female; therefore
csex is an estimate of the proportion of the population that is
male.
The effect of distance on detection probability is modeled

as gij ¼ expð � d 2
ij=s

2Þ (sensu Buckland et al. 2001, Efford
2004, Borchers and Efford 2008) where d 2

ij is the Euclidian
distance between an individual’s activity center and trap j,
and s is a scaling parameter (Gardner et al. 2010). This
formulation corresponds to the half-normal assumption or a
circular bivariate normal home range (Jennrich and Turner

1969). We ran several models where s was estimated sepa-
rately for males and females.
To estimate the number of activity centers in the survey

area, we assigned a prior uniform distribution to the indi-
vidual activity centers si � Uniform(S) (Efford 2004,
Borchers and Efford 2008, Royle and Young 2008,
Gardner et al. 2009); where S is the state-space of the point
process and si designates individual potential activity centers
(1, 2, 3,. . . up to the number of activity centers in the state
space). We estimated the number of mountain lions in the
Blackfoot drainage by multiplying the estimated density of
mountain lions by the 7,908 km2 (the area of the Blackfoot).
Code for running the spatial-capture recapture models
described here along with the data used in this manuscript
are available (Appendices A and B, available online at
www.onlinelibrary.wiley.com).

Bayesian Analysis by MCMC
We conducted a Bayesian analysis of the models using data
augmentation (Royle and Dorazio 2008, Royle and Young
2008), a process in which the data set is augmented with a
large number of undetected individuals, each having an all
zero encounter history. We inspected the posterior to ensure
that estimates were not being constrained by the augmented
number of animals (i.e., posterior distributions were not
truncated by the upper limit of the number of augmented
animals) to determine the size of the augmented data set (M).
An individual in the superpopulation M is a member of
population N if the indicator zi ¼ 1 and zi ¼ 0 otherwise.
Furthermore, zi � Bernoulli(c), where c is the probability
that an individual in M is a member of the population N
(Royle and Young 2008). Introducing the latent variables zi
with a uniform(0,1) prior on the data augmentation param-
eter c ensures that the induced prior distribution on popu-
lation size N is uniform, a natural uninformative prior for
population size.
We fit models using MCMCmethods implemented in the

R programming environment (R Development Core 2011;
Appendices A and B, available online at www.onlinelibrar-
y.wiley.com). Models were run for 30,000 iterations with
10,000 iterations as burn-in. Starting values for model
parameters were as follows: s ¼ 1, log(l0) ¼ 0, all b’s
were started at 0, c ¼ 0.5, csex ¼ the probability of a moun-
tain lion being a male in the sampled population (in our case
0.38), and sex for the mountain lions with unknown sex was
estimated as Bern (csex). We report 95% credible intervals
calculated from the posterior distribution, with 2.5% of the
values above and below the interval. Priors for l and b were
improper uniform (�1, 1), and we used uniform(0,1)
priors for csex and c. We used the R package, boa (Smith
2007), and ran the Gelman–Rubin statistic (Gelman and
Rubin 1992) to assess convergence.

Model Selection, Evaluation, and Goodness-of-Fit
We selected a priori variables (lion sex and survey effort)
that we thought would be associated with mountain lion
detection rates. However, no published literature currently
exists on factors affecting mountain lion detection rates in a
mark–recapture survey. Given that these models are newly
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Figure 2. Schematic of area surveyed for mountain lions in the Blackfoot
Mountains of Montana from November 2005 to February 2006. Each grid
cell is 5 km2. White cells indicate that the cell was surveyed (i.e., observers
recorded at least 1 location in the cell), black cells were not surveyed.
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developed, our candidate model set included a suite of mod-
els that represented an exploratory approach with all possible
combinations. We ran 8 models including the null model
with an effect of distance-only on detection probability. The
other 7 models represented various combinations of sex and
effort effects on detection probability (including sex specific
estimates of s).
We assessed goodness-of-fit of the model using a

standard Bayesian P-value approach (Gelman and Rubin
1992). Following Royle et al. (2011a), we tested the
goodness-of-fit of the encounter process separately from
goodness-of-fit of the underlying spatial point process.
For the encounter process, we computed a discrepancy mea-
sure for the encounter frequencies of each individual at each
trap location, and compared posterior samples of this dis-
crepancy measure to an analogous one based on encounter
frequencies of new realizations of the data set generated from
the posterior distribution. We used the Freeman–Tukey
statistic (Freeman and Tukey 1950) as the basis for the
Bayesian P-value calculations:

D ¼
XN

i�1

ffiffiffiffi
ni

p � ffiffiffi
ei

pð Þ2

where ni is the (observed or simulated) encounter frequency
conditional on si (the activity center) and ei is the expected
value under the model. The Bayesian P-value is the propor-
tion of times D(obs) > D(posterior).
We evaluated the assumption that activity centers are

independently distributed uniformly over the state space
(similar to complete spatial randomness, CSR; Cressie
et al. 2009) using a similar Bayesian P-value approach but
based on the statistic I ¼ (G � 1) � s2/n, where n, and s are
the mean and variance of the number of activity cells per grid
cells, and G is the total number of grid cells. We compare I
calculated using posterior realizations of the point process to
the value of I obtained by simulations under complete spatial
randomness (see Royle et al. 2011a for additional details).

Sensitivity to Model Assumptions

Similar to Thompson et al. (2012), we evaluated the sensi-
tivity of estimates to buffer size by running our original
models with 5-km, and 10-km buffers, in addition to the
15-km buffers we report in this manuscript. We buffered
our survey area by 15 km, 10 km, and 5 km and therefore
our state-space encompassed 8,800 km2, 7,000 km2, and
5,400 km2, respectively. Additionally, we evaluated sensitiv-
ity to choice of the grid size within the state space, by running
models with 2 � 2 km, 4 � 4 km, and 8 � 8 km grid sizes,
in our largest state space.
To investigate the effects of dependence in mountain lion

movements, we ran 1 simulation where we grouped any
mountain lions captured and biopsied in the same grid
cell on the same day. We re-ran the model with family
groups instead of individual mountain lions and estimated
the density of group activity centers. Then we multiplied
density of activity centers by the area of the Blackfoot

Drainage and the mean family group size to estimate the
total number of mountain lions.
To investigate the effects of the half-normal detection

function on our estimates of mountain lion abundance
we ran simulations where we adjusted the exponent of
the detection probability function (u) where u ¼ 2 for the
half-normal detection model. We ran an additional model
where u ¼ 1 (exponential). Lastly, we investigated the
effects of potential sampling bias due to non-random search-
ing of space on estimates of population size. We simulated
populations of different sizes where search effort was
proportional to the unknown number of activity centers in
a grid-cell, and used effort as a covariate on encounter
probability. In other words, we assumed a search pattern
that resulted in areas with more animals being searched
more thoroughly. We compared true population size to
population size estimated by spatial-capture recapture mod-
els in which we used effort as a covariate on encounter
probability, in order to assess potential bias in estimating
population size by not using the correct covariate (number of
activity centers, which is unknown) in the spatial-capture
recapture model.

RESULTS

We recorded 72 individual capture events, including captures
both with and without tissue sample collection and hair
samples, resulting in the identification of 50 individual
mountain lions (30 females, 19 males, and 1 unknown sex
individual). We collected 52 tissue samples, which repre-
sented 38 individual mountain lions. In addition, field per-
sonnel back-tracked 73 lion tracks and collected 204 hair
samples. We analyzed 165 samples of which 23% of back
tracks and 13% of hair samples resulted in DNA of sufficient
quality to allow for individual and sex identification. Nine of
the mountain lions identified from hairs collected on back-
tracks were individuals not detected from the treed mountain
lion group and 4 were recaptures. In addition, 3 mountain
lions were captured, identified by ear tags, and released
without a tissue sample. Houndsmen and back-tracking
crews covered a total of 15,852 km and captured up to
5 different mountain lions in a grid cell over the course
of the sampling period. Field crews captured 1 mountain
lion 4 times, 3 mountain lions 3 times, and 10 mountain lions
twice. They captured the majority of mountain lions (36)
only once.
Density estimates of mountain lion adults, including females

with dependent young, and sub-adults ranged from a mini-
mum of 3.7 mountain lions/100 km2 (95% CI 3.6–5.7) from
our base model (including only an effect of distance on detec-
tion probability) to 6.7 mountain lions/100 km2 (95% CI 3.1–
11.0) from our full model (including effects of distance, sex,
survey effort, and distance � sex on detection probability).
The posterior distributions of density overlapped considerably
among the different models fitted (Table 1).
For model selection, we evaluated 95% credible intervals

for individual parameters across models. As expected, the
probability of detecting a mountain lion increased with
the amount of effort expended in a grid cell (i.e., only positive
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values were included in the 95% credible intervals for the
effort parameter; Table 2). Parameter estimates from all
models indicated that the effect of a mountain lion’s sex
on the baseline encounter probability was negligible (i.e.,
credible intervals overlapped zero for 3 out of 4 models;
Table 2). Model parameter estimates indicated that s was
larger for males than for females (Table 2). Larger values
for s indicated a slower decline in the detection function
at greater distances from activity centers. Lastly, mean
estimates of the proportion of male mountain lions in the
population (csex) were relatively similar across all 8 models

ranging from 0.26 to 0.39. Goodness-of-fit tests indicated
that we could not reject the null hypothesis of complete
spatial randomness and that the fit of all encounter models
were adequate (i.e., P-values were between 0.05 and 0.95).
Convergence diagnostics reported R̂ values <1.2 for all s, l,
and b parameters.

Sensitivity Analysis

Field crews captured 8 mountain lions in 4 pairs (i.e., in the
same grid cell during the same sampling period); therefore,
we estimated mean group size as 1.1. A null model collapsing

Table 2. Parameter estimates � 1 standard deviation from spatial capture recapture models of mountain lion abundance in the Blackfoot Drainage of western
Montana. The 95% CI rows indicate the lower and upper Bayesian credible intervals. The sparameters estimate a scaling factor on the distance effect in the
detection function (this parameter can be estimated separately by sex), csex is the probability a mountain lion in the population is male, the bparameters denote the
effect of survey effort (km traveled), and lion sex on the detection probability.

Model Female s Male s beffort bsex csex

Distance
Mean 1.31 � 0.21 1.31 � 0.38 0.00 0.00 0.38 � 0.08
Median 1.30 1.30 0.00 0.00 0.38
95% CI 0.99, 1.82 0.99, 1.82 0.00 0.00 0.24, 0.56

Distance þ effort
Mean 1.38 � 0.26 1.38 � 0.26 1.18 � 0.15 0.00 0.39 � 0.08
Median 1.34 1.34 1.18 0.00 0.39
95% CI 1.07, 1.80 1.07, 1.80 0.92, 1.49 0.00 0.25, 0.56

Distance þ sex
Mean 1.25 � 0.18 1.25 � 0.18 0.00 0.40 � 0.49 0.32 � 0.11
Median 1.22 1.22 0.00 0.33 0.12
95% CI 0.97, 1.66 0.97, 1.66 0.00 �0.39, 1.60 0.12, 0.54

Distance þ effort þ sex
Mean 1.35 � 0.20 1.35 � 0.20 1.19 � 0.16 0.45 � 0.55 0.37 � 0.09
Median 1.32 1.32 1.22 0.35 0.36
95% CI 1.02, 1.80 1.02, 1.80 0.88, 1.51 �0.42, 1.83 0.21, 0.57

Distance þ distance � sex
Mean 1.11 � 0.21 1.48 � 0.30 0.00 0.00 0.31 � 0.10
Median 1.09 1.42 0.00 0.00 0.31
95% CI 0.80, 1.57 1.04, 2.26 0.00 0.00 0.12, 0.52

Distance þ effort þ distance � sex
Mean 1.14 � 0.21 1.47 � 0.31 1.22 � 0.13 0.00 0.30 � 0.10
Median 1.11 1.47 1.27 0.00 0.29
95% CI 0.82, 1.64 1.05, 2.27 0.66, 1.53 0.00 0.12, 0.54

Distance þ sex þ distance � sex
Mean 1.04 � 0.19 1.49 � 0.34 0.00 �0.12 � 0.72 0.31 � 0.09
Median 0.86 1.19 0.00 �0.78 0.30
95% CI 0.48, 0.80 1.27, 2.44 0.00 �1.59, �0.45 0.16, 0.52

Distance þ effort þ sex þ distance � sex
Mean 1.18 � 0.26 1.61 � 0.39 1.23 � 0.19 0.23 � 0.86 0.26 � 0.12
Median 1.14 1.53 1.25 0.26 0.26
95% CI 0.77, 1.81 1.05, 2.61 0.86, 1.57 �1.36, 1.72 0.06, 0.52

Table 1. Estimates of total numbers and density of the population of mountain lions in the Blackfoot Drainage, a 7,908-km2 portion of west-centralMontana.
Estimates are from spatial capture–recapture models containing the covariates sex, distance, and survey effort on detection probability.We also report goodness-
of-fit (GOF) results; point process P-value tests the hypothesis that the spatial locations of individuals violate the uniformity assumption (P-values between
0.05–0.95 indicate an adequate fit). Goodness-of-fit P-value tests the overall adequacy of the model fit to the observed encounter frequency (P-values between
0.05 and 0.95 indicate an adequate fit).

Estimate for
Blackfoot

Mean
density

Median
density 95% CI

Point process
P-value

GOF
P-value

Distance 301 3.7 � 0.9 SD 3.6 2.4–5.7 0.56 0.30
Full 529 6.7 � 3.1 SD 5.6 3.1–11.0 0.52 0.58
Sex þ distance � sex 395 5.0 � 1.9 SD 3.5 2.5–4.0 0.62 0.40
Distance þ sex 344 4.0 � 1.7 SD 4.0 2.5–10.3 0.61 0.38
Distance � sex 364 4.6 � 1.3 SD 4.4 2.4–7.8 0.64 0.32
Effort þ distance 316 4.0 � 1.0 SD 3.9 2.5–6.4 0.52 0.47
Effort þ sex þ distance 435 5.5 � 1.5 SD 5.3 3.3–9.0 0.53 0.63
Effort þ distance � sex 427 5.4 � 1.6 SD 4.5 3.0–9.0 0.52 0.56
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8 individuals into 4 pairs for a total of 46 mountain lions
versus 50 individual lions estimated 3.2 lion groups per 100
km2 or 3.5 individual lions per 100 km2 (95% CI 1.9–5.1).
Our simulations to assess the effects of buffer size and grid
size on model results indicated no effect on density estimates
(Table 3). Adjusting the exponent of the distance metric, u,
in our models resulted in no change to our abundance
estimates (Fig. 3a); however, baseline encounter rates, l0,
and estimates of s changed in response to changes in u
(Fig. 3b and c). Our assessment of the effects of sampling
bias induced by knowledge of mountain lion presence indi-
cated that population size estimates from spatial-capture
recapture models display moderate negative bias (1–3%)
when search effort is used as a covariate on encounter prob-
ability (Appendix C, available online at www.onlinelibrary.
wiley.com).

DISCUSSION

Estimates from our base model were similar to Robinson and
DeSimone’s (2010) estimate of 3.6 mountain lions/100 km2

for the Garnet Mountains, an area located within the
Blackfoot Drainage. Estimates of mountain lion densities
from other studies also correspond to the range of values we
estimated from our models. For example, Robinson et al.
(2008) reported mountain lion densities of 5.03 mountain
lions/100 km2 for a game management unit in Washington,
Ross and Jalkotzy (1992) report estimated densities of 2.7–
3.3 mountain lions/100 km2 to 4.5–4.7 mountain lions/
100 km2 for a hunted population in Alberta, and Logan
et al. (1986) reported 3.4 mountain lions/100 km2 and
4.5 mountain lions/100 km2 during two winters on study
sites in Wyoming. Choate et al. (2006) compared several

Table 3. Results of simulations comparingmountain lion density estimates for models with a) different buffer sizes around the surveyed area (i.e., different state
space sizes), and b) different grid sizes within the state space. Point process P-value tests the hypothesis that the spatial locations of individuals violate the
uniformity assumption (P-values between 0.05 and 0.95, indicate an adequate fit). Goodness-of-fit (GOF) P-value tests the overall adequacy of the model fit to
the observed encounter frequency (P-values between 0.05–0.95, indicate an adequate fit).

Grid size ¼ 4 by 4

Buffer size

5 km 10 km 15 km

a)
Mean abundance 208 263 334
Mean density 3.5 (�0.9 SD) 3.7 (�0.9 SD) 3.8 (�0.9 SD)
Median density 3.3 3.6 3.7
95% credible interval 2.2–5.6 2.4–5.7 2.4–5.9
Point process P-value 0.62 0.58 0.56
GOF P-value 0.30 0.31 0.30

Buffer size ¼ 15 km

Grid size

2 by 2 4 by 4 8 by 8

b)
Mean number 332 334 324
Mean density 3.8 (�0.9 SD) 3.8 (�0.9 SD) 3.7 (�0.8) SD
Median density 3.6 3.7 3.7
95% credible interval 2.3–5.7 2.4–5.9 2.3–5.8
Point process P-value 0.59 0.56 0.64
GOF P-value 0.30 0.30 0.30

Figure 3. Simulation results for estimates for different values of the decay function in the detection probability (u). We present posterior densities of (a)
N(abundance), (b) sigma (s, scaling factor for the detection function), and (c) lam0 (l0, intercept term for the detection function) for the half-normal (black line),
and the exponential (gray line).
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different indices and methods for estimating mountain lion
abundance and concluded that costly and intensive mark–
recapture efforts were the only method that produced reliable
estimates of lion abundance. Estimates from the mark–
recapture study conducted in Utah were 3.2 adult and
sub-adult lions/100 km2 in 1997 and 1.2 mountain lions/
100 km2 in 2001 for a hunted population and 2.8 mountain
lions/100 km2 for a nearby non-hunted population (Choate
et al. 2006).
In winter, mountain lion populations often concentrate

around congregations of prey populations (Seidensticker
et al. 1973). Additionally, female mountain lions and
their offspring typically remain together for 1 year, and
the mean dispersal age in the Garnet mountain lion study
was 15 months (Robinson and DeSimone 2010);
therefore, movements of females and their offspring may
not be independent. In our study, females traveling
with dependent young, overlapping male and female moun-
tain lion ranges (Hornocker 1969, Seidensticker et al.
1973), and winter concentrations of prey, may have resulted
in higher densities of mountain lions than what is typical
for areas where prey do not congregate in the winter. We
attempted to correct for non-independence of movements
in our study by grouping animals together that were
captured in the same grid during the same time period.
The estimates from this model were slightly less than our
estimates from models that assumed lion movements were
independent. However, our estimates of group sizes were
likely underestimates (we assume that we did not capture all
female and young combinations). We suggest that, particu-
larly in cases where family groups are larger, some effort
should be expended in identifying individuals with move-
ment patterns that are dependent in some way on other
individuals.
As with many models of large carnivores, our study pro-

duced a sparse data set with few individuals and even fewer
recaptures. This necessitated the use of relatively simple
models with few parameters. For example, we used a simple
2-parameter encounter model, which implies that space
usage by individuals is approximated by a bivariate normal
(Jennrich and Turner 1969) distribution. We regarded
activity centers not as equivalent to individual home ranges
but rather as the centroid of space used by an individual
during the specific time period of the study (i.e., over which
samples accumulated). Therefore, the model implies a
bivariate normal approximation to this area of space usage.
Our model also assumes that activity centers are distributed
uniformly in space. Although both these assumptions
represent simplifications of actual patterns of space use,
our goodness-of-fit evaluation based on Bayesian P-values
suggest these assumptions provide adequate descriptions of
our data.
We adapted a spatial capture–recapture model for oppor-

tunistic search-encounter data based on unstructured spatial
sampling (Thompson et al. 2012). In our application, observ-
ers track mountain lions until a sample of DNA can be
obtained. As a result of this non-independence, the encoun-
ter model of Royle et al. (2011b) based on cumulative hazard

to the search path is not reasonable. Instead, we developed
spatial encounter histories for a coarse (5-km grid) based on
whether each grid cell had any non-zero amount of search
effort. We then used search effort (length of search path) as a
covariate in the model. The Royle et al. (2011b) model
accommodated individual locations as the outcome of
some movement model. In the present case, locations of
individuals correspond (typically) to points along the search
path because of the non-independence of the sampling and
thus the second stage of the model in Royle et al. (2011b) is
not meaningful in the context of opportunistic search-en-
counter data.
When detection is uncertain and probabilities of detection

are not taken into account, abundance is likely to be under-
estimated. Conversely, our methods were susceptible to
sampling bias that could have inflated estimates of abun-
dance. Overall, we suspect the amount of effort exerted in a
grid cell may have reflected the a priori estimated probability
of capturing a mountain lion; rather than more effort result-
ing in a greater probability of detecting a mountain lion, a
higher probability of detecting a mountain lion resulted in
more effort being expended. This type of survey will poten-
tially bias density estimates high (as indicated by our sim-
ulations). Indeed our models with effort in the detection
function generated the greatest estimates of mountain lions
for the Blackfoot. Sampling of random transects in addition
to areas where mountain lions were known to occur may have
provided additional information to allow for unbiased esti-
mates. Though statistical methodology can potentially cor-
rect for differences in detection probability and survey effort,
sampling bias can compromise estimates especially if that
bias is unstated.
The methodology presented here is flexible enough to

accommodate search patterns that can result in grid cells
being characterized as surveyed or not surveyed. Previous
results indicate that the selection of grid cell size should
reflect the ecology and movement ability of the species
(Thompson et al. 2012). Cells should be large enough to
minimize resampling of an individual because of spatial
autocorrelation of hair, scat, or track samples, and yet
small enough to avoid the negative bias in population esti-
mation resulting from a failure to account for individual
heterogeneity (Dorazio and Royle 2003, Thompson et al.
2012).
Our results indicate that genetic sampling combined with

spatial locations of captures provides a promising method for
estimating population sizes of animals that are difficult to
sample with systematic sampling methods. Repeated system-
atic surveys conducted in traditional mark–recapture studies
would likely have led to very low capture and recapture rates
for the mountain lion population, thus increasing our esti-
mation error. Estimates of abundance for harvested wildlife
populations are useful for assessing the impacts of manage-
ment actions such as different harvest quotas, or season
lengths. Additionally, periodic population estimates can
help determine the value of population indices, the accuracy
of population models, and allow managers to evaluate popu-
lation trends.
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MANAGEMENT IMPLICATIONS

Snow tracking has been shown to be an effective technique to
collect hair samples for multiple low density carnivores in-
cluding lynx, mountain lions, and wolverine (McKelvey et al.
2006, Ulizio et al. 2006, Sawaya et al. 2011). Snow tracking
inevitably involves a non-random search pattern as individual
observers attempt to follow the path of the carnivore. The
recent development of spatial capture–recapture models,
including those developed here, provides managers with a
flexible technique for estimating abundance of animals that
are difficult to survey because of their elusive behavior or low
density occurrences, while accounting for the spatial distri-
bution of traps or animal detections.Without a methodology
for accurately enumerating mountain lion populations across
space, perceived densities of mountain lions may influence
wildlife stakeholders’ acceptance levels for mountain lions
(Riley and Decker 2000). An effective way of estimating
carnivore population sizes will help inform science-based
decisions about predator harvest levels and will facilitate
evaluations of different management policies and strategies
on mountain lion populations.
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