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Abstract
Understanding forest structure and how it is affected by management practices and natural events is a critical part of managing 
natural resources within the Forest Service, U.S. Department of Agriculture. The Pinaleño Mountains of southeastern Arizona 
represent a Madrean sky island ecosystem and the last remaining habitat for the Mt. Graham red squirrel. This unique 
ecosystem is threatened by a general shift in species composition and forest structure as well as by high severity fires and insect 
infestations. Due to these factors, the Coronado National Forest has implemented a forest restoration effort using lidar (light 
detection and ranging) as a tool for identifying habitat and cataloging forest inventory variables at a landscape level. Forest 
inventory parameters were modeled by building regression models between forest inventory parameters measured on field plots 
and their associated lidar canopy metrics. Inventory parameters that could be successfully modeled with R2  values above 0.6 
were calculated for the full extent of the lidar data. This created landscape GIS layers for inventory parameters such as biomass, 
basal area, Lorey’s mean height, and timber volume. The resulting GIS inventory layers were qualitatively validated with local 
experts and conformed well to trends known to occur on the landscape. The layers are currently being used for additional 
analysis, project development, and monitoring.
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Overview
The Pinaleño Mountains in southeastern 
Arizona contain the southernmost 
expanse of spruce-fir forest type in 
North America. This ecosystem is also 
the last remaining habitat for the Mount 
Graham red squirrel (Tamiasciurus 
hudsonicus grahamenis), a federally listed 
endangered species. This unique 
ecosystem is being threatened due to a 
general shift in species composition and 
forest structure of the mixed-conifer 
forest type and a series of large high-
severity fires and insect infestations. The 
Coronado National Forest has begun a 
forest restoration effort attempting to 
balance fuels reduction and habitat 
conservation.

Identifying habitat and cataloging forest 
inventory variables are two key 
components to implementing the forest 
restoration effort. Lidar (light detection 
and ranging) was identified as an efficient 
tool for filling the data collection needs, 
since field data collection is restricted to a 
limited area due to rugged terrain and 
safety concerns.

During Phases 1 and 2 of this project, 
lidar acquisition specifications were 
determined and the lidar data were 
collected. The resulting lidar data were 
assessed for quality, and first order 
products (such as canopy height and 
percent canopy cover) were created. In 
addition to the lidar data collection, 
eighty .05 hectare forest inventory plots 
were established during the 2009 field 
season (Laes and others 2008, 2009). 

Objective
The objective for Phase 3 of the Pinaleño 
lidar project was to model forest inventory 
parameters at the landscape level. To meet 
this objective we built regression models 
between forest inventory parameters 
measured on field plots and their 
associated lidar canopy (plot) metrics. The 
resulting models were applied to the lidar 
data resulting in continuous GIS raster 
layers of the forest inventory parameters 
across the study area. These layers can be 
used for analysis, project development, 
and monitoring. 

Figure 1—The map A) represents the project area in the Pinaleño Moutains in 
southeastern Arizona; in B) the lidar acquisition and inventory modeling area are 
represented in a 3-D virtual globe environment. 

Study Area
The project study area covers 
approximately 85,500 acres (34,600 
hectares) in the mixed-conifer zone 
above 7,000 feet (2,133 meters) within 
the Pinaleño Mountains, located 
southwest of Safford, Arizona (figure 
1). The Pinaleño range is an isolated 
Madrean sky island which contains the 

southernmost expanse of a spruce-fir 
forest in North America and one of the 
most southern extensive mixed-conifer 
forests. The high-elevation ecosystems 
have been isolated for the last 11,000 
years and support the only habitat for 
the Mount Graham red squirrel, a 
federally listed endangered species. The 
range has experienced similar post–

A

B
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Euro-American settlement changes in 
forest composition and structure as 
other southwestern mixed-conifer 
forests. The pre-settlement and pre-fire-
suppression forests were more open with 
less forest-floor fuel, favoring more 
frequent, but less-intense, fires 
(Covington and Moore 1994). Recent 
changes have led to several large and 
uncharacteristically severe wildfires and 
a series of devastating insect outbreaks. 
Particularly hard hit have been the 
Engelmann spruce and Corkbark fir 
trees, with mortality estimates of more 
than 80 percent. This was the primary 
habitat for the Mount Graham red 
squirrel. The remaining red squirrel 
habitat is primarily in the lower 
elevation transitional zone between the 
spruce-fir and mixed conifer forest, 
sometimes referred to as wet mixed-
conifer forest (Wood and others 2007).

Data
The data required for this phase of the 
project included fully prepared airborne 
lidar data and tightly associated field 
plot data. The two datasets were 
collected on similar dates and the field 
data were collected specifically for use 
with high-resolution lidar data.

Lidar Data

Approximately 85,000 acres of high 
pulse-density lidar data were acquired 
between September 22 and 27, 2008. 
The dataset meets the minimum 
recommended specifications for forest 
inventory modeling1 with a nominal 

pulse density of greater than or equal to 
3 pulses per square meter, greater than 
50 percent side lap, and a scan angle 
within 14 degrees of nadir. The full 
lidar data collection specifications and 
quality assessment can be found in the 
Phase 2 report (Laes and others 2009). 

Field Data

Field data were collected with the goal 
of addressing data needs of not only the 
lidar modeling but also in support of 
the Pinaleño demography study being 
conducted by the University of Arizona 
and the Rocky Mountain Research 
Station. Due to multiple objectives a 
500 meter grid was chosen as the 
sample design2. 

Eighty field plots were collected in the 
summer of 2009 based on the 500 
meter grid. Plots were 1/20th hectare 
(.05 hectare) fixed plots with a 12.62 
meter radius. Only 80 of the 200 
potential plot locations were sampled 
due to extreme terrain (the extreme 
terrain being one of the primary reasons 
for the lidar project). All plots were 
permanent and trees tagged.

Field Prep Work

Plot location maps for all plots being 
measured were created to assist the field 
crew. A color infrared aerial photo was 
used as a backdrop with the plots 
marked by a circle in the predetermined 
location (figure 2). Lidar subsets were 
also clipped from the data (based on 
location and radius) which provided the 

field crew an additional 3-D 
visualization of the plot (figure 2). 
Using map products and predetermined 
plot coordinates, the field crew 
navigated to the potential plot location 
using a GPS and recorded the actual 
location of the plot, which became the 
official plot location/coordinate.

Plot Protocol

All trees (live or dead) greater than or 
equal to 20 centimeters in diameter and 
all coarse woody debris (downed logs) 
greater than or equal to 20 centimeters 
were measured on each plot. To assess 
seedlings and regeneration three 
equal-sized wedge shaped 1/60th 
hectare subplots were created and one 
was chosen at random to measure all 
trees (live or dead) less than 20 
centimeters in diameter and coarse 
woody debris less than 20 centimeters 
and greater than 5 centimeters in 
diameter. Based on the subplot 
boundaries, three transects were 
conducted that included Brown’s Fuel 
transects, understory transects (shrub, 
forbs and grasses), and regeneration 
transects. Three photo points were also 
collected at each plot location. 

GPS Data Collection

When using lidar and field data to 
model forest inventory parameters it is 
imperative that sub-meter plot location 
accuracy is obtained3. A relatively high 
level of positional accuracy is needed to 
minimize error and maximize 
correlation between field and lidar data 
in our modeling methodology. 

1 Discrete lidar data continues to prove useful in many natural resource applications. However, not all lidar datasets are equal. Probably the most 
important single characteristic that determines the appropriate use of a lidar dataset is the mean number of pulses/m2. For example, relatively low 
pulse-density data (0.5 to 1 pulse/m²) is typically only useful for bare earth or terrain models. Medium pulse-density (1-3 pulses/m²) data has the 
additional potential of providing canopy height models. Forest structure information, however, requires relatively high pulse-density data (typically >= 3 
pulses/m2).

2 If the field data was exclusively collected for lidar modeling a stratified random sampling design based on initial lidar derivatives has been shown to 
be the most effective sampling design for this type of lidar modeling (Hawbaker and others 2009). 

3 To ensure sub-meter plot location accuracy a Trimble GeoXH with a Zephyr antenna was used to collect plot center locations. In addition Trimble 
H-Star technology was used for data collection, post processing and differential correction to ensure sub-meter accuracy.
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Figure 2—Graphic A) is an example of a MapBook page that was created for each plot to aid the field crew in locating the correct plot 
location. Image B) is the 3-D lidar point cloud visualization of the plot also provided to the field crew for each potential plot location.

Data Processing—
Preparing the 
Forest Plot and 
Corresponding 
Lidar Variables for 
Modeling
Collected lidar and field data were then 
processed and prepared for modeling. 
The goal was to process the field 
inventory and lidar data to ensure they 
corresponded as much as possible. The 
evaluation process includes summarizing 
the field inventory data to the plot level 
(e.g., basal area, stand density index, 
average tree height, trees per hectare, 
and quadratic mean diameter are 
examples of plot data versus tree-level 
data) and creating corresponding 
metrics from the lidar data. The end 
product of this step was a single table 
containing a record for each of the field 

plots. Each plot record included the 
field plot information and the 
corresponding lidar metrics. The 
subsequent two sections provide 
descriptions of the processing performed 
on each of these datasets.

Generating Lidar Predictor 
Variables at the Plot Scale

Using the XY coordinates and the plot 
radius for each field plot, we subset the 
corresponding lidar returns. During the 
clipping process the data were 
normalized to the ground surface so 
that the returns were expressed in terms 
of heights above the ground instead of 
elevation above sea level. After 
subsetting the lidar plot data, a set of 47 
lidar plot metrics (variables) were 
calculated for each of the plots using 
FUSION software (McGaughey 2012). 

Creating Lidar Subsets

The ClipData FUSION4 command was 
used to subset the lidar data. Four input 
data sources are necessary to complete 
the processing: plot coordinates, plot 
radius, lidar-generated bare earth surface 
covering the project area, and the raw 
lidar data tiles (.las files). The process 
produces a separate output lidar data 
file for each plot.

Creating Lidar Plot Metrics

Lidar metrics were calculated for each 
plot’s point cloud using FUSION’s 
CloudMetrics command. The resulting 
metrics became the predictor variables 
for the inventory models. Each record 
in the output table has a set of variables 
(fields) that together describe the 
vertical distribution of the lidar points 
(representative of the biomass) within 
the plot (table 1). 

4 For a more detailed explanation and technical instructions for using both the CloudMetrics and ClipData FUSION commands please refer to the 
“FUSION Tutorial” (http://fsweb.geotraining.fs.fed.us/www/index.php?lessons_ID=971) hosted on the FSWeb within the USDA Forest Service Geospatial 
Training and Awareness Website. 

A
B
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Table 1—Groups of lidar plot and grid metrics generated by CloudMetrics and GridMetrics (McGaughey 2011)

Category Output Variable
Descriptive Total number of returns

Count of returns by return number
Height statistics:
  •  Minimum
  •  Maximum
  •  Mean
  •  Median (output as 50th percentile)
  •  Mode
  •  Standard deviation
  •  Variance
  •  Coefficient of variation
  •  Interquartile distance
  •  Skewness
  •  Kurtosis
  •  AAD (Average Absolute Deviation)
L-moments (L1, L2, L3, L4)
L-moment skewness
L-moment kurtosis

Height percentile 
values

(1st, 5th, 10th , 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 
99th percentiles)

Canopy related 
metrics (calculated 
when the “/above:#” 
switch is used)

Percentage of first returns above a specified height (canopy cover estimate)
Percentage of first returns above the mean height/elevation
Percentage of first returns above the mode height/elevation
Percentage of all returns above a specified height
Percentage of all returns above the mean height/elevation
Percentage of all returns above the mode height/elevation
Number of returns above a specified height / total first returns * 100
Number of returns above the mean height / total first returns * 100
Number of returns above the mode height / total first returns * 100

Generating Lidar Predictor 
Variables at the Landscape 
Scale

The lidar metrics (table 1) were 
generated for the entire project area 
using FUSION’s GridMetrics5 
command. Previously CloudMetrics 
was used to generate output metrics 
from the lidar cloud within the 
boundaries of the 3-D plot, but in this 
process we used GridMetrics to 
generate the same output metrics based 
on the lidar cloud within the 

boundaries of each 3-D grid cell—
across the entire grid. In other words, 
the output of GridMetrics is the same 
as CloudMetrics but it is a continuous 
raster grid for each of the output 
variables across the entire project area. 

These grids are the input, or predictor, 
variables, to which the regression 
models are applied resulting in an 
estimated forest inventory parameter—
also in grid format—at the landscape 
scale. We used a cell size of 25 meters 
which approximates the same area as the 

.05 hectare plots. It is recommended to 
select a cell size that corresponds to the 
plot size used to build the regression 
models to ensure consistency of scale 
when applying such models across the 
landscape. 

Figure 3 represents an example of the 
percent Canopy Cover grid metric 
produced using the GridMetrics 
FUSION command. A similar grid 
was produced for each output variable 
listed in table 1. 

5 For a more detailed explanation and technical instructions for using the GridMetrics FUSION command please refer to the “Large Lidar Acquisition 
Processing Tutorial” (http://fsweb.geotraining.fs.fed.us/www/index.php?lessons_ID=971) hosted on the FSWeb within the USDA Forest Service 
Geospatial Training and Awareness Website. 
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Figure 3—The figure represents the percent canopy cover grid produced at a 25 meter cell size across the Pinaleños sky island 
project area of approximately 85,000 acres. All the metrics listed in table 1 can be exported to a grid format and integrated into a GIS 
as illustrated in this figure. 

Field Data

To use the field data for modeling 
inventory parameters in conjunction 
with the lidar data, we calculated the 
desired inventory parameters from our 
field data for all individual trees and 
then summed all values to the plot level 
(table 2). 

The Pinaleño sky island study area 
includes a variety of ecosystems ranging 
from dry savannah at the lower 
elevations to spruce-fir at the upper 
elevations. However, plots were only 
collected at elevations above 7000 feet 

which primarily represents the mixed-
conifer and spruce-fir zones (our area of 
interest) and a small amount of 
ponderosa pine type. The plots can be 
categorized into four plant association 
series as defined in the Plant 
Associations of Arizona and New 
Mexico Field Guide (Stuever and 
Hayden 1997): 

	 Spruce-Fir (dominant late seral 
species is subalpine fir and 
Engelmann spruce, 

	 Wet Mixed-Conifer (dominant late 
seral species is white fir), 

	 Dry Mixed-Conifer (dominant late 
seral species is Douglas fir) and 

	 Upper Pine-Oak (dominant late 
seral species is ponderosa pine). 

Table 3 summarizes the number of plots 
collected in each plant association series. 
As highlighted in the table, a majority 
of the field plots were collected in the 
Spruce-Fir and Wet Mixed-Conifer 
plant association series.

Attempts to stratify the data based on 
plant associations were not feasible due 
to the limited number of plots in each 
association and the lack of a plant 
association map of the project area. 

High: 100%

Low: 0%

Percent Canopy Cover
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Table 2—Inventory parameters calculated for individual trees and summed to plot level

Parameter Description
Basal Area Units: square meters per hectare 

  •  Calculations do not include stumps
  •  Basal Area was calculated for live, dead, conifer, deciduous and total

Trees per hectare   •  Calculated for live conifer, live deciduous, live total, dead, total live and dead
Stand Density Index   •  Used Ziede’s summation method

  •  Based on live trees only
Tree height Units: meters
Lorey’s Mean Height Units: meters

  •  Also known as Tree Height Weighted by Basal Area (HGTwBA)
Height of tallest tree Units: meters
Standard deviation of tree 
heights

Units: meters

Average tree height based 
on trees per hectare

Units: meters

Quadratic mean diameter Units: DBH in cm of the tree of average BA
  •  Based on live trees only

Standard deviation of DBH Units: standard deviation of DBH
Average tree crown base 
height

Units: meters

Timber volume Units: cubic meters
  •  Calculated for live conifer, live deciduous, total live, and total dead
  •  Equations taken from Zhou and Hemstrom 2010
  •  Calculations do not include stumps

Total biomass Units: kilograms per hectare
  •  Biomass calculated above ground; includes bark and branch biomass, but 
      does not include foliage or stumps
  •  Equations taken from Zhou and Hemstrom 2010

Canopy fuel load Units: kilograms per square meter
  •  Represents the mass of available canopy fuel per unit ground area
  •  Canopy fuel formulas from Cruz and others 2003

Canopy bulk density Units: kilograms per cubic meter
  •  Represents the mass of available canopy fuel per unit canopy volume
  •  Canopy fuel formulas from Cruz and others 2003

Canopy base height Units: meters 
  •  Base heights estimated as a function of average plot tree height and plot 
      basal area
  •  Canopy fuel formulas from Cruz and others 2003

Down woody fuels Units: kilograms per hectare
  •  1 hour fuels (1HrKgHa)
  •  10 hour fuels (10HrKgHa)
  •  100 hour fuels (100HrKgHa)
  •  1000 hour fuels (1000HrKgHa)
  •  Total down woody fuels (TotDWFKgHa)
  •  Down woody fuel formulas from Brown and others 1982
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Model Development
For the Pinaleño project, predictive 
models were created for 22 different 
forest and fuel inventory parameters 
(table 2). Since all parameters being 
modeled are represented by continuous 
values, regression techniques were used 
to perform the modeling. Non-linear 
regression was used to provide adequate 
predictive functions for each of the 
modeled parameters. All models created 
and applied to the landscape, along with 
the selected lidar predictor variables, are 
displayed in table 4.

The modeling process was conducted in 
three principle stages: 1. identify best 
predictors, 2. create appropriate 
modeling masks, and 3. generate forest 
inventory models. 

Find Best Linear Predictors

We used a “leave one out” cross 
validation with a generalized linear 
regression model to find the lidar-
derived parameters that best predicted 
the plot parameters. Both single and 
pairs of lidar parameters were examined. 
Parameters with the lowest Root Mean 
Squared Errors (RMSE) were selected 
for use in the final model6. In all but 
one case (live basal area) two lidar 
parameters showed a lower RMSE error 
then one lidar parameter. In agreement 
with current literature (Reutebuch and 

others 2010), the lidar-derived predictor 
variables chosen for the models (table 4) 
represent some measurement of 
vegetation height, the variation or 
distribution of vegetation height and 
vegetation density.

Find Best Non-Linear Fit Using 
the Best Linear Predictors

Once selected, the best linear predictor 
values from the lidar derivatives were 
entered into the online curve fitting 
application ZunZun (Phillips, 2012) to 
identify the best non-linear functions to 
correlate the lidar predictors with the 
modeled parameter of interest. 
Functions were not only evaluated in 
terms of overall correlation (R² test), 
they were also selected to avoid over-
fitting (i.e. selected based on 
smoothness). The final models that 
were deemed adequate to apply to the 
landscape based on a smoothness of fit 
and an R² value greater than or equal to 
0.6 are displayed in table 4. The models 
for quadratic mean diameter (QMD) 
and canopy bulk density (CBD) were 
included for further investigation based 
on interest from the project cooperators, 
even though they didn’t meet the R² 
threshold. 

All remaining models deemed unfit 
(based on their R² values) for further 
exploration and application to the 

Table 3—Number of field plots collected in each Plant Association Series

Plant Association Series Number of Field Plots Collected
Spruce/Fir 24
Wet Mixed-Conifer 32
Dry Mixed-Conifer 17
Upper Pine-Oak 7

landscape are displayed in appendix A. 
Some of the forest inventory parameters 
that performed poorly included downed 
woody fuels, trees per hectare, and 
quadratic mean diameter. The poor 
performance of downed woody fuels 
models probably reflects lidar’s 
limitation at distinguishing between the 
bare earth surface and woody debris 
lying directly on the ground. Trees per 
hectare (TPH) are difficult to estimate 
based on lidar height and density 
metrics due to the large variation in tree 
size; modeling only tree density of trees 
larger than 20 centimeters may have 
yielded better results. We suspect that 
modeling QMD might be more 
successful in a more homogeneous 
forest stand where heights to DBH 
relationships are more consistent. QMD 
is best thought of as the diameter of the 
average tree (based on tree basal area). 
Lorey’s Mean Height is similar, in that 
it is the height of the average tree (also 
based on basal area) and may prove to 
be a better lidar forestry parameter since 
tree height is easier for lidar to estimate. 
The R2 of the Lorey’s Mean Height was 
0.83. Both QMD and TPH layers can 
be derived from the Basal Area (live) 
and stand density index (SDI) layers, 
however this was not within the scope 
of the project.

Lidar might be superior to field 
estimates at measuring parameters that 
are indirectly measured in the field, 
such as CBD, but will require more 
intensive studies. For example, CBD is 
estimated from very costly whole tree 
clipping studies and mathematically 
modeled using more easily measured 
tree attributes (height, diameter, and 
species). Clipping studies utilizing lidar 
data may be required to develop better 
models. 

6 The R Statistical Computing Package (http://cran.r-project.org/) was used to accomplish this task.
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Predicted Parameter 1 Parameter 2 Cross Val 
RMSE

Linear Fit 
R²

Nonlinear 
Fit R²

Fit 
Difference

TotBMKg 
(biomass kg per 
hectare)

Elevation mean (All returns 
above mean) 
/ (total first 
returns) * 100

3.51E+09 0.7416 0.8780 0.1364

HGTwBA 
(Lorey’s mean 
height)

Elevation mean Elevation 
Skewness

5.3452536 0.8123 0.8265 0.0142

CUMVolTot 
(volume)

Elevation P60 (All returns 
above mean) 
/ (total first 
returns) * 100

14750.004 0.7026 0.8216 0.1190

BATotal (total 
basal area)

Elevation P75 (All returns 
above mean) 
/ (total first 
returns) * 100

262 0.7024 0.7782 0.0759

SDItotal (stand 
density index)

Percentage all 
returns above 
3.00

(All returns 
above mode) 
/ (total first 
returns) * 100

58787.843 0.6994 0.7614 0.062

HGTmax (height 
of tallest tree)

Elevation L2 Percentage all 
returns above 
3.00

29.979735 0.6919 0.7529 0.0610

CUMVolD 
(volume dead)

Percentage all 
returns above 
mean

(All returns 
above mean) 
/ (total first 
returns) * 100

9921.26 0.4038 0.7361 0.3323

SdHGT (standard 
tree height)

Elevation 
variance

Elevation P50 1.7235131 0.5802 0.6817 0.1015

BALive (live 
basal area)

Percentage all 
returns above 
mean

 256.12185 0.5993 0.67 0.61007

CBH (canopy 
base height)

Elevation 
variance

Elevation CV 6.1674894 0.4855 0.6187 0.1331

CFL (canopy fuel 
load)

Percentage all 
returns above 
mean

(All returns 
above mode) 
/ (total first 
returns) * 100

0.421073 0.512 0.6 0.0880

*QMD 
(quadratic mean 
diameter)

Elevation 
minimum

Elevation P10 56.991829 0.3932 0.4909 0.0976

*CBD (canopy 
bulk density)

Elevation P20 Percentage all 
returns above 
mean

0.0261966 0.3724 0.4378 0.0655

Table 4—The table summarizes the best non-linear forest inventory models created, using lidar predictor variables to model field 
derived forest inventory parameters. All models in this table were deemed acceptable for further exploration and application at the 
landscape level. Models are sorted by descending nonlinear fit R² values.
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truncated (clipped) to the closest 
lidar values associated with existing 
field plot measurements. This 
process ensured that predictions 
made by the non-linear regression 
models did not create completely 
unrealistic values in these outlying 
areas, though as a consequence it 
does over or under estimate some 
values. For example, the clipping 
process was applied to less than 0.7 
percent of the modeled area when 
the mean height lidar metric was 
used as a predictor in the models 
(figure 4). 

Prepare Data to 
Generate GIS 
Products
Our models for estimating continuous 
forest inventory measurements across 
the lidar acquisition area performed 
poorly in two areas: areas that fell 
outside the range of plot measurements 
and thus require the model to 
extrapolate estimates, and nonforest 
areas. Predicted data outliers were 
masked and clipped in the first 
circumstance, and in the latter 
nonforested areas were excluded from 
the modeling process. 

Mask and Clip Predictor Data 
Outliers

Within the study area, there were 
small regions that were not well 
represented by the field plot 
measurements. One example 
occurred in groves of old growth 
Douglas-fir forest, i.e., dense groups 
of very large trees. The gridded plot 
system did not include plots in these 
areas and the lidar-derived 
parameters fell well outside the range 
measured in any of the field plot 
data. These locations were identified, 
flagged in a mask layer, and their 
associated lidar output grid metrics 

Figure 4—The mask layer above highlights the number and spatial location of pixels representing the mean height grid metric across 
the project area that fell outside the range of the training data used to create a number of the forest inventory models. Only 0.7 percent 
of the pixels across the project area were clipped back to the closest lidar values contained in the training data.

Total Pixels = 515,077
Pixels Within Range =  99.3% (511,848 pixels)
Pixels Below Range =  < 0.1 % (18 pixels) 
Pixels Above Range = .6 % (3,211 pixels)

Lidar metric: Mean Height
Plot Min: 2.468 meters        Project Min: 2.02
Plot Max: 20.725 meters     Project Max: 45.25

Within Model

Below Min.

Above Max.

Mean Height
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Create a Forest/Nonforest 
Analysis Mask

Before we applied the forest parameter 
models at the landscape level, we created 
a forest/nonforest mask to exclude 
nonforest areas. To create the mask, a 
forested area was defined as having 
greater than or equal to 2 percent canopy 
cover and a canopy height of greater than 
or equal to 3 meters. Each 25 meter pixel 
in the study would have to meet both 
these conditions to be considered a 
forested pixel. The percent canopy cover 
and 95th elevation percentile height grid 
metric outputs were used to identify all 
pixels that met both conditions and to 
create the forest/nonforest grid (figure 5).

Generate Forest 
Inventory GIS 
Products at the 
Landscape Scale

Estimate Forest Attributes at 
Landscape Level
Continuous inventory parameters were 
created at the landscape scale by 
applying the derived equations (table 4) 
to the lidar GridMetrics layers. Each 
calculation produced a new grid in 
which each 25-meter cell spatially 
represents the estimated forest 
parameter of interest derived from the 
lidar data (figure 6). 

Quality Check and Validation of 
Models

Models were validated qualitatively 
using local biological, silvicultural, 
and ecological knowledge of the study 
area alongside ancillary GIS data and 
imagery. For example, a mature forest 
adjacent to Riggs Lake, and a 
previously burned area that contains a 
large quantity of standing dead 
biomass, both well-known and 
familiar areas, were used to 
qualitatively validate models with local 
experts (figures 7 and 8). The lidar 
inventory models conformed well to 
trends known to occur on the 
landscape. 

Figure 5—The figure represents the forest/nonforest mask created at the landscape level. All 25 meter pixels that did not meet both 
forested area conditions (3 m canopy height and 2 percent canopy cover) were designated as no data (blue pixels in graphic) and 
masked out from the final forest inventory landscape products. 

Nonforest

Forest

Forest/Nonforest
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Figure 6—The GIS grid layers (25 m cell size) represent the forest inventory parameter models applied at the landscape level. These 
GIS layers are the end user products that will be used for future decision making, analysis and monitoring for the Pinaleño sky island 
study area (continued on next page).

Biomass

R²=0.88

Canopy Fuel Load

R²=0.6

Canopy Base Height 

R²=0.62

Canopy Bulk Density

R²= 0.43

Total Basal Area

R²=0.78

Live Basal Area

R²=0.67

(kg/m^2)

High: 3.6

Low: 0

Canopy Fuel Load

(sq. meter/ha)

High: 172.839

Low: 5.973 94

Total Basal Area

(meters)

High: 20

Low: 0

Canopy Base Height

(kg per cubic meter)

High: 0.408 775

Low: 0

Canopy Bulk Density

(sq. meter/ha)

High: 92.144 1

Low: 0

Live Basal Area

Units: kg/hectare

High: 611,789

Low: 7,816.4

Biomass
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Figure 6 (continued)—The GIS grid layers (25 m cell size) represent the forest inventory parameter models applied at the landscape 
level. These GIS layers are the end user products that will be used for future decision making, analysis and monitoring for the 
Pinaleño sky island study area.

Stand Density Index

Total Volume

R²=0.82

Dead Volume

R²=0.74

Lorey’s Mean Height

R²=0.83

Quadratic Mean Diameter

R²=0.49

Standard Deviation of Tree Height

R²=0.68 R²=0.76

Value

High: 13,686.2

Low: 0

Standard Density Index

(meters)

High: 11.37

Low: 0.63

Std. Deviation of Hgt.

(DBH cm)

High: 56.089

Low: 6.478 8

QMD

(cubic meters)

High: 714

Low: 0

Dead Volume

(cubic meters)

High: 1,349.26

Low: 22.444 9

Total Volume

Value

High: 30.831 7

Low: 0.250 671

Lorey’s Mean Height
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A limiting factor for this type of 
modeling methodology and the 
resulting products is the range of 
structural variation covered by the field 
plots used to create the models. For 
example, based on the limited number 
of plots (only seven) collected in the 
Upper Pine-Oak plant association 
series, we observe the Live Basal Area 
model performing poorly in certain 
areas as illustrated in figure 9. In 
contrast the Biomass model performs 
relatively well in the same area.

Because lidar technology directly and 
continuously measures the structural 
characteristics of the forest vegetation 
across the landscape, and the modeling 
methodology used has been replicated 
and accepted internationally (Means 
and others 2000, NÆSSET 2002), we 
are cautiously optimistic that our 
statistically-validated models provide 
reasonable results representing trends 
known to exist on the landscape—in 
those plant association series that had 
sufficient field plot data. 

Conclusions
Phase 3 of the Pinaleño Canopy 
Mapping Project illustrates that forest 
inventory parameters measured in the 
field can be successfully modeled across 
the landscape with continuous lidar 
data. Parameters such as biomass (above 
ground), basal area, Lorey’s Mean 
Height, and timber volume appear to 
lend themselves to this methodology, 
which is not surprising as they are 
directly related to the size and density of 
the vegetation. We can see that this 

Figure 7—The lidar-derived biomass model accurately reflects the trends in biomass surrounding Riggs Lake. Areas highlighted with 
the white grid cells represent known areas where large mature forests exist. A) Riggs Lake is visible in the color infrared satellite 
imagery. B) Represents the lidar-derived biomass model estimate.  

Units: kg/hectare

High: 611,789

Low: 7,816.4

Biomass

A

B
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A

B

C

Figure 8—The lidar models accurately reflect the trend of standing dead basal area—within the Spruce-Fir plant association series. 
The burned area in figure A is clearly visible in the WorldView 2 high resolution satellite image. The two figures below represent 
total (B) and live (C) basal area respectively. Both images are scaled the same and a grid has been draped on the images for easier 
comparison. This model was not as accurate in other plant associations series.
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Figure 9—An example area of poor live basal area model fit. The bright red vegetation in A) represents lower-elevation oak brush. 
Figure B) represents modeled total biomass, which appears to be accurate in both the oak brush and the pine forests. However, live 
basal area (which accurately portrays forest biomass in the Spruce-Fir plant association series) over estimates biomass in the oak 
brush communities. Figure C) highlights areas where live basal area was modeled as higher than total basal area (an obvious error). 
The likely cause for poor model fit in the oak brush areas is the paucity of field plot data in those areas.

A

B

C

         Live BA exceeds  
         Total BA

Poor Model Fit

  Units: Kg/Hectare 
  High: 611,789

  Low: 7,816.4

Biomass
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Table 5—Project timeline summarizing all efforts from the Pinaleño Lidar Canopy Mapping Project

Project Phase Duration 
(weeks)

Comments

Project initiation 4 to 52 Based on the project coordinator’s existing knowledge and 
experience. Can also depend on clearly defining objectives and what 
resource managers are interested in contributing to the acquisition

Determine lidar 
acquisition specifications

1 Once a decision has been made on what management objectives will 
be addressed with the technology the appropriate specifications can 
be identified and documented

Contracting phase (RFQ 
posting and evaluation)

6 This time estimate includes creating contract specifications, and 
posting the request for quotation. It does not include additional 
amendments to the contract

Acquisition 1
Vendor post processing 8
Data delivery and client 
quality assessment

4 Client generally has six weeks to perform an independent quality 
assessment and determine if the contractor delivered acceptable 
products

Initial data processing 6 GIS analysis with vendor deliverables and the creation of first order 
lidar derivatives (canopy cover, vegetation density, canopy height, 
etc.)
*The first order derivatives can be used as standalone information 
products to assist in natural resource management without 
proceeding any further into the advanced modeling explored in 
Phase 3. This includes all project phases below

Field data collection 12 Depends on crew size and access 
Summarize forest 
inventory plots

6

Extract lidar plot metrics 1
Create forest inventory 
models

12 Assumes a skilled modeling analyst on staff or available to assist in 
project

Apply models at the 
landscape level to create 
GIS products 

1

Model validation 2 Review initial GIS products with local experts
Make model adjustments 1
Total modeling project 
budget

65 to 113

logical relationship is reflected in the 
lidar predictor metrics selected, one 
describing the height and one describing 
the density, as the best predictors for 
these inventory parameters (table 4). 
These models also appear to be the most 
robust across plant associations with 
differing forest structures. Our 
methodology failed to adequately model 
trees per hectare or any of the down 
woody debris parameters. 

The first order lidar derivatives and the 
landscape GIS inventory layers created 
from this project are currently being 
incorporated into habitat characterization 
studies for the Mt. Graham red squirrel 
and the Pinaleño Demography study. 
The landscape GIS layers are also being 
used by the Coronado National Forest 
to create better strategies for managing 
and conserving the Pinaleño Sky Island 
ecosystem.

The three phases of the Pinaleño 
Canopy Mapping Project, from scoping 
and data acquisition to production of 
usable GIS layers took approximately 65 
weeks (table 5). This project 
demonstrated that first order lidar 
derivatives, such as canopy height and 
percent canopy cover, can be used in 
natural resource management activities 
without the added cost of field data 
collection and the in-depth modeling 
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For additional information, contact: 

Haans Fisk, RSEAT Program Leader 
Remote Sensing Evaluation,  
Applications & Training  
Remote Sensing Applications Center  
2222 West 2300 South  
Salt Lake City, UT 84119

phone: (801) 975-3750 
e-mail: mailroom_wo_rsac@fs.fed.us

This publication can be downloaded from the 
RSAC Web site: http://fsweb.rsac.fs.fed.us

The Forest Service, United States 
Department of Agriculture (USDA), has 
developed this information for the guidance 
of its employees, its contractors, and its 
cooperating Federal and State agencies 
and is not responsible for the interpretation 
or use of this information by anyone except 
its own employees. The use of trade, firm, 
or corporation names in this document is 
for the information and convenience of 
the reader. Such use does not constitute 
an official evaluation, conclusion, 
recommendation, endorsement, or approval 
by the Department of any product or 
service to the exclusion of others that 
may be suitable.

The U.S. Department of Agriculture (USDA) 
prohibits discrimination in all its programs 
and activities on the basis of race, color, 
national origin, age, disability, and, where 
applicable, sex, marital status, familial 
status, parental status, religion, sexual 
orientation, genetic information, political 
beliefs, reprisal, or because all or part of 
an individual’s income is derived from 
any public assistance program.  (Not all 
prohibited bases apply to all programs.) 
Persons with disabilities who require 
alternative means for communication of 
program information (Braille, large print, 
audiotape, etc.) should contact USDA’s 
TARGET Center at (202) 720–2600 
(voice and TDD). To file a complaint  
of discrimination, write to USDA, Director, 
Office of Civil Rights, 1400 Independence 
Avenue, S.W., Washington, D.C. 20250–
9410, or call (800) 795–3272 (voice) or 
(202) 720–6382 (TDD).  USDA is an 
equal-opportunity provider and employer.

described in this report. The lidar 
approach to obtaining forest structure 
data had several benefits over a ground-
based approach. First, it provided 
continuous coverage of all forested 
areas, rather than stand or plot-level 
estimates of various parameters created 
from stratified sampling methods. 
Second, it sampled areas that field crews 
could not safely measure due to extreme 
terrain. Third, it was very cost effective. 
The Coronado National Forest 
estimates that obtaining data sufficient 
to implement the Pinaleño Ecosystem 
Restoration Project and other 
anticipated projects would cost 
approximately $500,000 (assuming that 
crews could safely work in all areas, 
which is not the case). By comparison, 
the Pinaleño Lidar Mapping Project 
cost $250,000 including acquisition, 
processing, and analysis.
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