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Abstract

Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is

essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spa-

tially-explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on

ideal panmictic populations in an allopatric setting in their predictions of population structure and frequency of fixation of

adaptive alleles. We explore initial applications of a spatially-explicit, individual-based evolutionary landscape genetics

program that incorporates all factors – mutation, gene flow, genetic drift and selection – that affect the frequency of an allele

in a population. We incorporate natural selection by imposing differential survival rates defined by local relative fitness

values on a landscape. Selection coefficients thus can vary not only for genotypes, but also in space as functions of local

environmental variability. This simulator enables coupling of gene flow (governed by resistance surfaces), with natural

selection (governed by selection surfaces). We validate the individual-based simulations under Wright-Fisher assumptions.

We show that under isolation-by-distance processes, there are deviations in the rate of change and equilibrium values of

allele frequency. The program provides a valuable tool (CDPOP v1.0; http://cel.dbs.umt.edu/software/CDPOP/) for the study

of evolutionary landscape genetics that allows explicit evaluation of the interactions between gene flow and selection in

complex landscapes.
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Introduction

How do evolutionary processes operate on populations

in non-equilibrium and spatially complex environments?

Despite its importance for understanding evolutionary

landscape genetics, this question has been rarely

addressed (Holderegger & Wagner 2006; Balkenhol et al.

2009). Classical models in population genetics are

founded on several critical simplifying assumptions,

including discretely bounded and panmictic populations

(Hartl & Clark 2007). Natural populations, in contrast,

occupy spatially complex landscapes and do not meet

the assumptions of the classical models. Specifically, spa-

tial heterogeneity fundamentally alters genetic processes

in ways that deviate from traditional theory (Landguth

et al. 2010). The interaction of environmental heterogene-

ity with species-specific movement behaviour and life

histories may cause deviations away from this classic

evolutionary model. Although analytical models of

dynamics are well understood for panmictic, single-locus

populations, computational models are needed for more

complex situations. Analytical solutions for such com-

plex population genetic processes are likely to be intrac-

table; hence, simulation modelling is likely to be the most

productive approach to establish mechanistic explana-

tions and provide a foundation for spatial evolutionary

genetics theory (Balkenhol et al. 2009; Epperson et al.

2010; Balkenhol & Landguth 2011).

Differential individual survival and reproduction

mediated by the interaction between individual geno-

types and the selective environment in which they reside

is the driving force of adaptive evolution (Futuyma

2009). Examples are accumulating for rapid evolutionary

change in response to strong environmental forcing, both

in response to natural forces and in response to human-

caused environmental changes (e.g., Hendry et al. 2008;

Siepielski et al. 2009). Natural selection will operate

whenever genotypes differ in fitness or the average num-

ber of offspring produced by individuals of a particular

genotype is skewed. Fitness is a measure of reproductive

success through variation in survival, fecundity, mating

ability, and other factors that ultimately determine

whether the alleles of a particular individual will be
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passed on to future generations (Hedrick 2011). It is a

measure of how well individuals with a certain genetic

trait (genotype) are expected to survive and reproduce.

Fitness is dependent on the environment; a genotype

with high fitness in one environment may have low fit-

ness in another [see Anderson et al. (2011) for examples].

One of the most influential descriptions of natural

selection is the fitness landscape (Wright 1932; Provine

1986; Schulter 2000; Gavrilets 2004). In this framework,

survival and reproduction are driven by the interaction

of genotypes in n-dimensional gene space and changes in

gene frequencies of populations (i.e., movement towards

peaks, ridges, or holes of an adaptive landscape). The

environment in which organisms reside is spatially heter-

ogeneous, with ecological characteristics that vary over

space and time. In this context, the frequency of an allele

may increase in some areas but not others as function of

heterogeneous environmental conditions. Our goal is to

provide a framework that can explicitly link the n-dimen-

sional gene space with a spatially complex fitness land-

scape in a heterogeneous environment.

Integrating the framework of the adaptive gene land-

scape with spatially complex environments is the pri-

mary motivation behind this research. This integration

extends landscape genetics beyond evaluations of genetic

connectivity by exploring the links between gene flow

and selection in complex landscapes at an individual’s

level. We also report initial applications of a computa-

tional program for describing and predicting evolution in

complex spatial environments using individual-based,

spatially-explicit simulations. We address the following

research questions: (i) Can a spatially-explicit individual-

based framework be used to produce theoretical changes

in allele frequency from generation to generation caused

by selection? and (ii) How will spatially structured popu-

lations with different dispersal strategies influence a

global allele fixation or extinction?

Methods

Simulation program

The spatial model of natural selection is built upon the

existing framework of the individual-based landscape

genetic program, CDPOP (Landguth & Cushman 2010).

CDPOP models genetic exchange for a given resistance sur-

face and (x, y) located individuals as functions of individ-

ual-based movement through mating and dispersal, vital

dynamics and mutation. It provides a tool for simulating

the emergence of spatial genetic structure in populations

resulting from specified landscape resistance processes

governing organism movement behaviour.

Past versions of CDPOP modelled three sources of

genetic variation: gene flow, genetic drift and mutation.

These versions assumed that different genotypes have an

equal probability of surviving and passing on their alleles

to future generations, and thus, natural selection was not

operating. This new version of CDPOP (v1.0) incorporates

natural selection and enables extension of landscape

genetic analyses to explicitly investigate adaptive evolu-

tion in complex landscapes. As with previous versions of

CDPOP, the user specifies the genotype for each individual

(i.e., number of loci and number of starting maximum

alleles per locus). In CDPOP v1.0, the user also has the

option of choosing a single or multiple diallellic locus

selection model. For example, with 30 loci in the single-

locus model, each individual has a genotype that consists

of 29 neutral loci and one locus under selection. In addi-

tion, three relative fitness surfaces must be specified for

the three adaptive segments of the genotype (e.g. AA, Aa

and aa from the two alleles, A and a). Values for the

relative fitness surfaces are spatially-explicit for each

genotype and can be variable within one surface reflect-

ing how relative fitness changes as a function of local

environmental conditions. However, a user can consider

classical selection models, such as overdominance,

underdominance, additive, or multiplicative, by creating

uniform fitness surfaces (all values in the surface for one

genotype are equal) using the heterozygote effect and

recessive allele effect (Gillespie 2004) and specifying the

appropriate values for a given model (e.g. overdomi-

nance would include three uniform surfaces, where the

relative fitness values for Aa would be greater than both

the relative fitness values for AA and aa). Selection is

then implemented through differential survival of off-

spring as a function of the relative fitness of the off-

spring’s genotype at the location on that surface where

the dispersing individual settles.

Simulation scenarios

We conducted a simple simulation modelling experiment

with the following factors: number of loci (1 or 2), pan-

mixia vs. isolation-by-distance (IBD), and IBD for two

dispersal strategies (short range and long range). Six

groups of simulations resulted from this combination: (i)

single-locus selection with panmixia; (ii) two-locus selec-

tion with panmixia; (iii) single-locus selection governed

by IBD with short-range dispersers; (iv) two-locus selec-

tion governed by IBD with short-range dispersers; (v)

single-locus selection governed by IBD with long-range

dispersers; and (vi) two-locus selection governed by IBD

with long-range dispersers. In the single-locus selection

simulations, the genotype AA was given a relative fitness

value of 1.0 and the genotypes Aa and aa were given a

value of 0.5. In the two-locus selection simulations, the

genotype AABB was given a relative fitness value of 1.0

with the other eight possible genotypes having a value of
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0.5. In the panmixia simulations, the Wright-Fisher

model was assumed (i.e., random mating, sexual repro-

duction with both female and male with replacement,

each mated pair produces one offspring, offspring ran-

domly disperse until a constant population is reached

that has an equal sex ratio, no mutation, and non-over-

lapping generations). We simulated IBD by specifying

Euclidean distance in a resistance surface with values of

1. To address short-range species-specific movement

strategies, we constrained all mate choices and dispersal

distances to be £5% of the maximum movement distance

on the surface (6.28 km; Fig. 1). For long-range species-

specific movement, we allowed all mate choices and dis-

persal distances to be less than or equal to the maximum

movement distance on the surface (125.60 km). The prob-

ability of mate distance or dispersal distances for all IBD

scenarios were chosen within the movement limit speci-

fied by an inverse-square probability function (Landguth

& Cushman 2010).

In all scenarios, we used CDPOP v1.0 to simulate indi-

vidual genetic exchange across 50 non-overlapping gen-

erations among 1000 randomly spatially located

individuals as functions of individual-based movement,

mating, dispersal, and selection. All simulated popula-

tions contained 10 diallelic loci (nine and eight neutral

loci in the single locus and two-locus models, respec-

tively), with no mutation in a two-sex, equal sex-ratio,

female and male with replacement mating structure. We

ran 10 Monte Carlo replicates for each simulation study.

Evaluating research questions

We evaluated our first research question, ‘Can a

spatially-explicit individual-based framework be used to

produce theoretical changes in allele frequency under

selection...?’, by simulating selection with a global differ-

ential reproductive success under Wright–Fisher

assumptions in simulations for a single and double diall-

elic locus. For the single diallelic locus, spatially uniform

fitness surfaces were used with offspring differential

reproductive success of 1.0, 0.5 and 0.5 for genotypes AA,

Aa and aa, respectively. The simulated change in allele

frequency was compared with the theoretical change

(Dp1) as shown by Wright (1935),

Dp1 ¼
p1q1

w1 p1 w11 � w12ð Þ þ q1 w22 � w12ð Þ½ � ð1Þ

where p1 is the allele frequency for A, q1 is the allele fre-

quency for a, w11 is the relative fitness value for genotype

AA, w12 is the relative fitness value for genotype Aa, w22

is the relative fitness value for genotype aa, and

w1 ¼ p2
1w11 þ 2p1q1w12 þ q2

1w22 is the average fitness of

the population. From here, a difference equation for the

single-locus selection model can be derived to show the

change in allele frequency for A through time,

p1;t ¼
p1;t�1q1;t�1w12 þ p2

1;t�1w11

p1;t�1w11 þ 2p1;t�1q1;t�1w12 þ q2
1;t�1w22

: ð2Þ

With the two-locus selection simulation, we compare

the simulated change in allele frequency to the derived

expected change in allele frequency. First, the expected

frequency of the gametes after selection as

x011 ¼
w11ðx11 � cDÞ

w2
; x012 ¼

w12ðx12 þ cDÞ
w2

ð3a; bÞ

x021 ¼
w21ðx21 þ cDÞ

w2
; x022 ¼

w22ðx22 � cDÞ
w2

ð3c; dÞ

where the average relative fitness values for each gamete

is wij ¼
P2

k¼1

P2

l¼1

xklwij�kl and w2 ¼
P2

i¼1

P2

j¼1

xijwij is the average

relative fitness value for the population. We assumed

independent assortment (i.e., free recombination, c = 0)

and that there was no linkage disequilibrium (D = 0).

Assuming x11 = p1q1, x12 = p1q2, x21 = p2q1, and x22 = p2q2,

then the expected allele frequency after selection would be

p01 ¼ x011 þ x012: ð4Þ

Given the initial allele frequency of p1(0) = x11(0) +

x12(0), the difference equation for the two-locus selection

model becomes

p1;t ¼
p1;t�1q1;t�1w11 þ p1;t�1q2;t�1w12

w2
: ð5Þ

We evaluated our second research question: ‘How will

spatially structured populations influence a global allele

Fig. 1 An example of one simulation of 1000 randomly located

individuals [dots on a resistance surface of isolation-by-distance

(IBD) for a 5% maximum dispersal distance (6280 m)]. The dark

circle represents the maximum dispersal and mating distance for

the centre individual, i.e., the genetic neighbourhood for that

individual.
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fixation or extinction?’, by comparing results of simula-

tions based on IBD processes across two species-specific

movement strategies in both a single diallelic locus and a

double diallelic locus with those under panmixia. The

population genetic exchange was simulated through time

and the change in allele frequency was produced to com-

pare with the results produced from the Selection under

the Wright–Fisher model section for both the single-locus

and two-locus selection models.

Results

Selection under the Wright–Fisher model

For the single diallelic locus under panmixia, the CDPOP

simulation exactly matched the expectation predicted by

eqn (2). p1,t (labelled eqn 2) is plotted against the aver-

aged simulated allele frequency for the 10 replicates in

Fig. 2. This shows that CDPOP v1.0 implements selection

under ideal Wright–Fisher conditions correctly and that

outputs match theoretical expectations. For the double

diallelic locus under panmixia, the CDPOP v1.0 simulation

results also very closely matched the theoretical expecta-

tion of eqn (5). p1,t (labelled eqn 5) is plotted against the

averaged simulated allele frequency for the 10 replicates

in Fig. 3.

Selection under the IBD model

For both the single-locus and two-locus model, the rate of

fixation for A under IBD is slower than the expectation

under ideal Wright–Fisher conditions. For example, in

the single-locus simulation time to fixation increased

from roughly eight generations under panmixia to 12

generations in the IBD maximum movement scenario

(Fig. 2). Similarly, in the two-locus simulation, time to

fixation increased from roughly 12 generations to 20 gen-

erations in the IBD maximum movement scenario

(Fig. 3). This indicates that adding spatial structure to

gene flow can alter the expectations for the rate at which

equilibrium conditions are achieved through selection.

When comparing species-specific movement strate-

gies (short-range vs. long-range disperses), we see that a

difference occurs in the scenarios in which the movement

distance is low (5%) for both the single- and two-locus

results; the highly constrained mating and dispersal

movements in these scenarios results in substantially

slower rate of approach to fixation (equilibrium). For

example, in the single-locus simulation, time to fixation

increased from roughly 12 generations for the maximum

movement strategy to 20 generations for the constrained

5% maximum movement strategy (Fig. 2). In the two-

locus simulation, time to fixation increased from roughly

20 generations to 50 generations (Fig. 3).

Fig. 2 The simulations for the single-locus selection model.

The dashed-dotted line is the averaged simulated allele fre-

quency from the 10 replicates for A under panmixia. The solid

line is the expected allele frequency given by eqn (2). The dashed

and dotted lines show the averaged simulated allele frequency

from the 10 replicates for A under isolation-by-distance for the

long-range and short-range dispersers, respectively. The dashed

and dotted lines show the deviations away from Wright–Fisher

assumptions when spatial structure is included. It should be

noted that the confidence intervals generated from the 10 Monte

Carlo runs are too small to be viewed at this scale.

Fig. 3 The simulations for the two-locus selection model. The

dashed–dotted line is the averaged simulated allele frequency

from the 10 replicates for A under panmixia. The solid line is the

expected allele frequency given by eqn (5). The dashed and dot-

ted lines show the averaged simulated allele frequency from the

10 replicates for A under isolation-by-distance for the long-range

and short-range dispersers, respectively. The dashed and dotted

lines show the deviations away from Wright–Fisher assumptions

when spatial structure is included. It should be noted that the

confidence intervals generated from the 10 Monte Carlo runs are

too small to be viewed at this scale.
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Discussion

CDPOP v1.0 can be used to examine processes and topics in

evolutionary genetics that involve both complex genetics

and spatial patterns. One such example is speciation. The

genetic architecture of the reproductive barriers required

for speciation is almost always complex. Early in the

development of evolutionary genetics, Dobzhansky

(1937) and Muller (1942) recognized that hybrid incom-

patibility (reproductive barriers that act after the forma-

tion of hybrid zygotes) requires gene interaction and at

least two genetic changes (e.g. ancestral population con-

sisting of AAbb must evolve to subpopulation aabb and

another subpopulation to AABB). Subsequent work has

characterized such Dobzhansky–Muller genetic incom-

patibilities (reviewed in Johnson 2010). The evolution of

many reproductive barriers that act before the formation

of hybrid zygotes (e.g., mating incompatibilities or

incompatibilities between sperm and egg) usually

require at least two genetic changes as well (Coyne & Orr

2004; Gavrilets 2004).

CDPOP v1.0 can address the question of the extent to

which reproductive isolation can evolve without com-

plete geographical separation. The evolution of reproduc-

tive barriers, either premating or postmating, with

complete geographical separation is much easier than

when there is gene flow (Coyne & Orr 2004). Previous

theoretical models and simulations do show that such

parapatric speciation can occur if selection is sufficiently

strong (Gavrilets et al. 2000; Gavrilets 2004; Porter &

Johnson 2002), but these models generally examine only

pairs of populations or populations on a cline. Our

framework allows for a much greater variety of spatial

arrangements in an individual-based setting.

Hybrid zones are regions where hybrids of two spe-

cies persist along with the parental species (Harrison &

Rand 1989). Traditionally, they have been modelled in a

simple clinal setting: one species is most prevalent at one

end of the cline, and the other is found at the other end,

and hybrids are found in between (e.g. Endler 1977; Dur-

rett et al. 2000). In reality, many hybrid zones are mosaic

hybrid zones, wherein the frequencies of genotypes can

fluctuate substantially on a local level (Rand & Harrison

1989). The most common explanation for such mosaic

hybrid zones is environmental heterogeneity on a small

spatial scale (Rand & Harrison 1989; Ross & Harrison

2002). CDPOP v1.0 can be used to examine such mosaic

hybrid zones, as modelling these hybrid zones requires

incorporation of both genetic and spatial complexity.

CDPOP v1.0 can also incorporate sex chromosomes,

which play a major role in speciation (Coyne & Orr 2004).

Sex chromosomes play an important role in several of the

explanations for Haldane’s rule (Haldane 1922), the find-

ing that the sex with heteromorphic sex chromosomes

being more adversely affected in hybrids from interspe-

cific crosses (Turelli & Orr 1995; Tao & Hartl 2003; Coyne

& Orr 2004). We can also allow for differences between

the sexes in their dispersal patterns in studies of hybrid

zones, as sexes often differ in dispersal patterns (e.g.,

Helbig et al. 2001).

Wright (1931, 1932, 1977) proposed the shifting bal-

ance theory as an explanation for both the evolution of

novelty and as a means of diversification. In Wright’s

shifting balance, a large population is divided into

many local, semi-isolated subpopulations, and these

subpopulations, which experience more genetic drift,

can explore more of the adaptive landscape, eventually

reaching new peaks. In the shifting balance, as Wade &

Goodnight (1998) put it, nature does many small experi-

ments, and those subpopulations that successfully

reached higher peaks can export their successes to the

rest of the population. This process was the subject of

much criticism in Wright’s lifetime (see Provine 1986;

for historical details), and aspects of the shifting balance

process continue to be controversial (Coyne et al. 1997;

Wade & Goodnight 1998). Part of the reason for this

controversy is that only parts of the process have been

modelled, not the full shifting balance. With CDPOP v1.0,

we can explore the whole process of the shifting balance

theory.

The ability to couple gene flow that is governed by the

underlying landscape with natural selection, which is

governed by spatially-explicit selection surfaces, allows

for a broad range of applications in adaptive landscape

genetics. For example, how does fine-scale environmental

variability affect the balance of local adaptation and gene

flow? What are the balances between rate of change of

the environment, species-specific movement abilities,

mutation rates, and selection strengths? This simulator is

the basic tool needed to begin to address questions of

how spatially and temporally varying environments

affect the adaptation of populations to perturbations such

as caused by climate change, anthropogenic changes in

landuse and land cover, and innate spatial and temporal

dynamics of natural landscapes (see reviews Morris 2011;

Neale & Kremer 2011). However, as with most modelling

efforts, the goals are realism and models only get so

close. Future programming work to CDPOP should involve

recombination, linkage disequilibrium, multiallele and

multilocus models, and different forms of selection (e.g.

fecundity, gametic, sexual, frequency dependent and

dynamical).
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