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Broad-scale studies of climate change effects on freshwater
species have focused mainly on temperature, ignoring critical
drivers such as flow regime and biotic interactions. We use
downscaled outputs from general circulation models coupled with
a hydrologic model to forecast the effects of altered flows and
increased temperatures on four interacting species of trout across
the interior western United States (1.01 million km2), based on
empirical statistical models built from fish surveys at 9,890 sites.
Projections under the 2080s A1B emissions scenario forecast a
mean 47% decline in total suitable habitat for all trout, a group
of fishes of major socioeconomic and ecological significance. We
project that native cutthroat trout Oncorhynchus clarkii, already
excluded from much of its potential range by nonnative species,
will lose a further 58% of habitat due to an increase in temper-
atures beyond the species’ physiological optima and continued
negative biotic interactions. Habitat for nonnative brook trout
Salvelinus fontinalis and brown trout Salmo trutta is predicted
to decline by 77% and 48%, respectively, driven by increases in
temperature and winter flood frequency caused by warmer, rain-
ier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is
projected to decline the least (35%) because negative temperature
effects are partly offset by flow regime shifts that benefit the
species. These results illustrate how drivers other than tempera-
ture influence species response to climate change. Despite some
uncertainty, large declines in trout habitat are likely, but our find-
ings point to opportunities for strategic targeting of mitigation
efforts to appropriate stressors and locations.
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Nearly all broad-scale analyses of climate effects on freshwater
species have focused on temperature shifts, to the exclusion of

other climate-driven drivers. Although temperature is a critical
determinant of metabolic and physical processes (1), important
ecosystem effects on streams and rivers may also be mediated by
flow regime and biotic interactions. Flow regime has been de-
scribed as a “master variable” (2) that controls or influences many
aspects of the physical aquatic environment, as well as the timing of
reproduction and migration of many organisms (3). Biotic inter-
actions are increasingly recognized as important components of
climate-species relationships (4, 5), but are rarely included in
projections of species distributions under future climates, with
some notable exceptions (6). Competitive interactions in particu-
lar are not commonly modeled (but see ref. 7), despite interest in
invasive-native species interaction under climate change (8). It is
likely that all three factors—temperature, flow regime, and biotic
interactions—will play important roles in future aquatic species
distributional shifts (8–11).

Trout serve as excellent model organisms for examining how
these mechanisms could alter population dynamics and species
distributions, for three reasons (“trout” include fishes in the genera
Oncorhynchus, Salmo, and Salvelinus). First, although all trout are
coldwater specialists, their temperature sensitivities and prefer-
ences vary by species (12), implying different responses to warm-
ing. Second, trout are also likely to be differentially affected by
flow regime changes. Trout are sensitive to high flows after
spawning because such flows can scour eggs from gravel nests or
wash away newly emerged fry; thus, fall-spawning trout are sensi-
tive to winter floods and spring-spawning trout are sensitive to
summer floods (13–15). In some regions, winter floods are pro-
jected to increase with warming due to precipitation shifts from
snow to a snow-rain mix (16). Third, many native trout populations
are threatened by invasions of introduced trout species. For ex-
ample, brook trout Salvelinus fontinalis have displaced brown trout
Salmo trutta in Scandinavia (17), and brown trout have displaced
native trout in North America (18). Strong competitive inter-
actions such as these set the stage for cascading effects of climate
change, whereby climate-driven population changes to one species
drive population changes in other species (7, 19).
We assessed the effects of temperature, flow regime (partic-

ularly flood seasonality), and biotic interactions, as well as to-
pographic and land use variables, on distributions of four trout
species: native cutthroat trout Oncorhynchus clarkii, and non-
native brook trout, brown trout, and rainbow trout Oncorhynchus
mykiss (native to 6% of the region and introduced elsewhere).
Our domain was the historical range of cutthroat trout in the in-
land western United States (1.01 million km2; Fig. 1), where the
species is represented by three main lineages (westslope, Lahon-
tan, and Yellowstone groups) and numerous subspecies, all of
conservation concern (20). Candidate variables predicting the
distribution of each species under current conditions were tested
using multilevel generalized linear models parameterized with fish
surveys from 9,890 sites. We used multimodel averaging to com-
bine well supported alternative models into a composite model for
each species (21). We then forecasted species suitable habitat
under climate change using estimated future temperature and flow
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metrics from general circulation models (GCMs) simulating con-
ditions in the 2040s and 2080s under the A1B emissions scenario
(22), accounting for biotic interactions. We bracketed variability in
climate warming predictions by using outputs from one GCM that
predicted high warming (MIROC3.2), one that predicted low
warming (PCM1), and a composite of 10 GCMs (23). Finally, we
used a sensitivity analysis to evaluate the relative importance of
temperature, flow, and biotic interactions in determining distri-
butional changes of each trout species under future climates.

Results
The four trout species differed substantially in their relationships
with temperature, flood seasonality, and presence of other trout.
Brook trout and cutthroat trout occurred in the coldest streams,
whereas rainbow trout occupied warmer locations, and brown
trout the warmest locations (Table 1 and Fig. 2A). Fall-spawning
brook trout and brown trout showed a strong negative relation-
ship with winter high flow frequency, as predicted; spring-
spawning cutthroat displayed a weak negative relationship, and
spring-spawning rainbow trout had a positive relationship (Table
1 and Fig. 2B). Cutthroat trout showed a negative relationship to
the occurrence of all three other species at either the stream
reach or subwatershed scale or both, with some variability among
cutthroat trout lineages (Table S1). There was no evidence for
biotic interactions among the other species. Other variables of
importance to trout distributions were stream slope, mean flow
(primarily an indicator of landscape position or stream size), road
presence, and distance to the nearest unconfined valley bottom
(UVBs, landscape features associated with high densities of fall-
spawning trout; refs. 24 and 25). In-sample classification accuracy
of models was 64–76%. See SI Text for additional model details.
Under the climate projections, both native cutthroat trout and

nonnative brook trout showed a strong decline in length of
suitable habitat (Figs. 3 and 4). Cutthroat trout was projected to
decline by 28% in the 2040s composite scenario and 58% in the
2080s scenario; brook trout was projected to lose 44% and 77%
of its range, respectively, for these scenarios. Rainbow trout was
projected to decrease modestly (13%) in length of suitable
habitat in 2040s, with a moderate decrease (35%) in the 2080s
(Figs. 3 and 4). Brown trout was projected to decline by 16% in
the short term and 48% in the long term (Figs. 3 and 4). There
were very large differences between the MIROC3.2 and the

PCM1 model projections of suitable habitat. For example, cut-
throat trout was projected to decline by 70% under the 2080s
MIROC3.2 scenario but only 33% under the 2080s PCM1 sce-
nario (Fig. 3). We projected that the total length of habitat
suitable for one or more trout species would decline by ∼47%
under the 2080s composite scenario. This was accompanied by
a range shift from larger, low-elevation streams to smaller, high-
elevation streams, so habitat volume and trout biomass could
decline more than is indicated by the change in stream length.
The sensitivity analysis indicated that individual species declines

were associated with different variables. A combination of in-
creasing temperature and increasing winter high flow frequency
drove the brook trout losses (Table 2), whereas the declines of
brown trout (with much higher thermal tolerances) were attrib-
utable almost solely to increasing winter high flow frequency. The
more modest declines of rainbow trout resulted from negative
effects of temperature increases offset by positive effects of in-
creasing winter high flow frequency. The projected cutthroat trout
declines were associatedmost strongly with temperature increases,
but additional sensitivity analyses also showed a substantial role
of biotic interactions. Under current conditions, we projected that
cutthroat trout would occupy 239,000 km of stream if none of the

Fig. 1. Study domain andfish collection sites (blackdots;n= 9890). Boundaries
of major river basins (and Canadian border) are shown in red; state boundaries
in gray. Ranges of the three cutthroat lineages are indicated by colors.

Table 1. Model-averaged parameter estimates (means ±1 SE)
for temperature and flow predictor variables in the composite
model for each species

Trout Variable

Cutthroat
ptemp −0.59 ± 0.12
ptemp2 −0.88 ± 0.13
w99 −0.20 ± 0.11

Brook
ptemp −0.66 ± 0.12
ptemp2 −1.20 ± 0.12
w2 −0.98 ± 0.14

Rainbow
dtemp −0.32 ± 0.16
dtemp2 −0.89 ± 0.18
w99 0.58 ± 0.11

Brown
ptemp 1.90 ± 0.28
ptemp2 −1.44 ± 0.26
w95 −1.15 ± 0.22

Variable abbreviations (e.g., “ptemp” and “wtemp”) are defined in
Methods. Parameter estimates are weighted averages of multiple individual
models. Variables have been standardized by subtracting the mean and di-
viding by 2 SD.

Fig. 2. Occurrence probability of trout species as a function of air tempera-
ture (A) and winter high flow frequency (B). Green indicates cutthroat trout;
blue indicates brook trout; red indicates rainbow trout; brown indicates brown
trout. The different temperature and flow metrics for different species were
standardized to a common x axis in each panel to facilitate comparisons; the
figures are shown with original axes and with confidence intervals in Fig. S1.
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other trout species were present, rather than the 159,000 km,
suggesting that nonnative species are responsible for a 33% re-
duction in cutthroat trout suitable stream length at present (clas-
sifying rainbow trout as nonnative). Similarly, under the 2080s
composite model scenario we calculated that the length would be
92,000 km instead of 68,000 km, if the other species were absent.
Thus, we projected that nonnative species would continue de-
pressing cutthroat trout populations by about 26% in the future.

Discussion
We found that multiple drivers—temperature, flow regime, and
biotic interactions—determined the response of trout species to
climate change in the western USA. For example, projected

declines of one species (brown trout) were driven by increasing
frequency of winter high flows, with minimal influence of tem-
perature (except as mediated by flow changes). The projected
shift in flow regime also negatively affected brook trout, which like
brown trout is a fall-spawning species. However, spring-spawning
cutthroat trout and rainbow trout showed a modest negative re-
sponse and a strong positive response, respectively, to winter high
flows. The positive response of rainbow trout likely reflects pre-
adaptation to this flow regime, which is characteristic of much of
the species’ native range (14). Other researchers have recognized
that climate-driven shifts in flow regime will play a role in changes
to stream biota and aquatic ecosystems (9, 26), and some have
modeled climate-related flow effects on species at the stream
scale (27). However, until now this has not been extended to
broad scales due to a lack of quantitative estimates of hydrologic
metrics under future conditions. Despite the important influence
of flow regime, we nevertheless found that temperature increases
themselves were likely to play a dominant role in driving future
declines of cutthroat trout, brook trout, and rainbow trout. The
actual mechanisms for temperature-driven extirpations are likely
to be manifold and complex, involving growth rates, incubation
times, competitive ability relative to other species, and asynchrony
with prey, which can cause negative population growth rates even
if temperatures never reach the lethal range for individuals (28).
Biotic interactions were an important driver of native cut-

throat trout distributions, which, consistent with past observa-
tions, responded negatively to the presence of nonnative trout
(24). Both currently and under future climate conditions, the
presence of other species reduced the distribution of cutthroat
trout by 26–33%, although the species primarily responsible for

Fig. 4. Projected distribution of suitable habitat for trout under current conditions, 2040s A1B, and 2080s A1B climate change scenarios, based on the
composite GCM. Black indicates mostly suitable; gray indicates mostly unsuitable.

Fig. 3. Projected stream length of suitable habitat for trout under current
conditions and climate change scenarios. Whiskers show 90% confidence
intervals for projections.
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this shifted from brook trout to rainbow trout. This adds to the
evidence (6, 19, 29) against the argument that biotic interactions
are relatively unimportant in determining species distributions
at broad scales (30). We did not find evidence of negative inter-
actions among the nonnative species. We had hypothesized that
westslope cutthroat trout, with a recent evolutionary history of
sympatry with other trout, would have weaker biotic interactions
than cutthroat trout lineages that evolved in isolation, but the
evidence for this wasmixed.Whereas westslope cutthroat trout did
show a weaker response to brook trout and rainbow trout, its re-
sponse to brown trout was stronger than that of the other lineages.

Modeling Notes. We found that the predictive accuracy of our
models was only moderate for most species. We attribute this in
part to the inconsistent introduction of nonnative species across
the study area, to the historical extirpation of cutthroat trout
from portions of its range, and to our inability to include fine-
scale variables such as fires and debris flows (31) and natural and
artificial movement barriers (32), because the data were not
consistently available. Consequently, we do not recommend us-
ing these models for fine-scale predictions without local valida-
tion. In addition, forecasting future distributions is inherently
uncertain. Our results indicated that just one source of un-
certainty, the choice of GCM, can account for >50% variability
in estimates of suitable habitat. Therefore, our results are most
useful for understanding the different trajectories and relative
climate sensitivities of the different trout species, as well as the
habitats that are most sensitive to change (e.g., those where winter
flooding will increase along with temperatures), rather than
making precise predictions of habitat losses.
Broad-scale species distributional modeling such as this com-

plements results from laboratory studies and finer-scale analyses
in advancing our understanding of species niches, because it can
describe the full range of actual species relationships to envi-
ronmental variables. For example, laboratory studies showed
that brook trout in Wyoming outcompete cutthroat trout at
warmer temperatures (33), but a recent analysis of trout dis-
tributions in the interior Columbia River Basin (a subset of the
range studied here) indicated that warm temperatures were
more limiting for brook trout than cutthroat trout (34). Our
results help resolve this apparent contradiction by showing that
cutthroat trout have a broader thermal niche than brook trout
across the western United States, even though individual cut-
throat trout populations could have thermal preferences higher
or lower than sympatric brook trout due to local adaptations.

Broader Implications. Our models forecast significant declines in
trout habitat across the interior western United States in the 21st
century, a result we expect will apply to much of the rest of the
temperate world because three of our study species (rainbow,
brown, and brook trout) are common on multiple continents.
This decline will have significant socioeconomic consequences,
as recreational trout fisheries are valued at hundreds of millions

of dollars in the United States alone (35). To some extent, warm-
water species are likely to replace trout in many streams, pro-
viding alternative recreational fishery opportunities, although it
is unclear whether common introduced species such as small-
mouth bass (Micropterus dolomieu) can fully exploit the range of
habitats currently occupied by trout. In any case, there will be
ecological consequences of a shift in dominant fish species that
will affect such things as nutrient cycling and reciprocal terres-
trial-stream subsidy balances (36) in ways that are difficult
to foresee.
For management agencies charged with maintaining healthy

trout populations, global change creates obvious challenges; these
are exacerbated by the uncertainty inherent in climate forecasts
and the complexity of the climate responses we describe here. We
argue that efforts to understand this complexity, in terms of which
climatic and biotic drivers are significant for different species in
different locations, can point to management actions that are
efficiently targeted and robust to uncertainty. For example, there
is little that can be done to influence the predicted increase in
winter high flows, so some declines in fall-spawning species (e.g.,
brook trout and brown trout) may be inevitable in regions where
flows are likely to shift. In contrast, stream temperature is often
influenced by anthropogenic activity and future increases can be
offset by restoration measures such as maintenance of stream
flows and reforestation (37). Thus, managers interested in con-
serving cutthroat trout or rainbow trout habitat may wish to focus
on such restoration activities, which are likely to provide some
benefits regardless of the precise climate trajectory. In selecting
actions, managers should consider local conditions; for example,
the response of cutthroat trout depends substantially on which
nonnative species are present, and this varies from region to re-
gion. Overall, we argue that considering biotic interactions and
variables other than temperature not only gives us a richer un-
derstanding of species-climate relationship, but also can inspire
a more strategic portfolio of management alternatives.

Methods
Dataset. Thefish occurrence dataset was assembled from fish collectionsmade
by state and federal agencies (see Acknowledgments) and collectively repre-
sented a geographically extensive sample of stream habitats of the interior
west of the United States (Fig. 1). As an assembled dataset, it did not have
a formal sampling designandwas subject to spatial autocorrelation,whichwas
addressed in the analysis as described below. We included only sites sampled
using electrofishing (n = 9,522) or snorkeling (n = 368) between 1985 and 2004.
Cutthroat trout were detected at 5,055 sites, brook trout were detected at
2,820 sites, rainbow trout were detected at 1,031 sites, and brown trout were
detected at 655 sites; 1,437 sites had none of these species. In developing
models for the nonnative trout, we used subsets of the database that excluded
sites in subbasins (watersheds delineated by 8-digit US Geological Survey hy-
drologic unit codes; http://water.usgs.gov/GIS/huc.html) where there was no
evidence of species introductions. More details are in the SI Text.

We selected 12 abiotic variables as candidate predictors of trout species
occurrence (see SI Text), based in part on an earlier study assessing the rel-
ative sensitivities of different trout species to climatic factors in the interior
Columbia River Basin (34). We used air temperature as a surrogate for

Table 2. Results of sensitivity analysis, indicating importance of climate-related variables in determining suitable
habitat for trout under climate change

Condition Cutthroat Brook Rainbow Brown

Current suitable stream length 159 130 112 80
Projected suitable stream length under 2080s scenario 68 30 73 42
Projected in 2080s if no change in temperature 187 (×2.8) 92 (×3.1) 162 (×2.2) 45 (×1.1)
Projected in 2080s if no change in winter high flows 77 (×1.1) 45 (×1.5) 46 (×.63) 75 (×1.78)
Projected in 2080s if no change in temperature or winter high flows 205 (×3.0) 131 (×4.4) 114 (×1.6) 81 (×1.9)
Projected in 2080s if no change in mean flow 69 (×1.0) 30 (×1.0) 72 (×0.99) 41 (×0.98)

Values indicate projected length of suitable habitat under current conditions (row 1), under projections for the 2080s A1B composite
scenario (row 2), and under the 2080s A1B composite scenario with selected climate metrics held constant at current levels (rows 3–6).
Units are km × 1,000. Values in parentheses indicate change relative to the 2080s A1B composite scenario (row 2).
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stream temperature because data for the latter were not widely available.
Candidate temperature metrics included a point measurement for the site
(ptemp) and the mean temperature in the drainage above a site (dtemp).
We calculated four candidate metrics of winter high flow frequency: the
probability of the 2-y recurrence interval flow occurring in the winter (w2),
the probability of the 1.5-y flow occurring in winter (w1.5), the number of
winter days with flows among the top 5% for the year (w95), and the
number of winter days with flows among the top 1% (w99). Winter was
defined as December 1st through February 28th. Two candidate mean flow
metrics were mean annual flow (mflow) and mean summer flow (sflow),
with summer defined as the period between the decline of the spring flood
and September 30th (38). All flow metrics were derived from the Variable
Infiltration Capacity (VIC) model (39) coupled with simple routing (38) to
produce daily hydrographs for stream segments in the 1:100 K National
Hydrography Database (NHD) Plus dataset (http://www.horizon-systems.
com/nhdplus/). Metrics were selected based on performance in a validation
study (38). Candidate metrics for UVBs included a binary measure of whether
a site was within a UVB (vbpres) and a continuous measure of the distance in
kilometers to the nearest UVB (vbdist). Slope was from the NHD Plus dataset.
We used the occurrence of roads within 1 km of the stream segment on
which the site was located (road) as a binary land use variable. Roads were
from the 2000 TIGER/Line road database (www.census.gov/geo/www/tiger).

The presence/absence data for nonnative species were tested as biotic pre-
dictor variables affecting presence/absence of other species. Cutthroat trout,
which is not known to displace other trout species in the region, was not
considered as a candidate biotic predictor. These biotic predictors were calcu-
lated at two scales: (i) the site and (ii) the subwatershed (12-digit US Geological
Survey hydrologic unit code). The latter indicated whether there was one or
more records of a species occurrence within the drainage. We also tested the
hypothesis that westslope cutthroat trout was less affected by nonnative trout
than the other cutthroat trout lineages by including an interaction term.

Model Building. We used multilevel logistic regression to fit species distri-
bution models for the four trout species. This method allowed us to specify
potential relationships between candidate variables and species occurrences
based on a priori hypotheses (SI Text; ref. 34), and to address spatial auto-
correlation. Multilevel modeling reduces parameter bias associated with
autocorrelation by modeling errors at multiple levels (40) and is well suited
to the hierarchical structure of stream networks (41). We specified a multi-
level model with groups at the subbasin level.

Our first step was to identify the best-supported metric from each group
of correlated metrics of the same type (for example, ptemp and dtemp for
temperature)foreachspecies.Forselectvariables (ptemp,dtemp,mflow,sflow,
and vbdist), we tested both a linear and a quadratic effect; for example,mflow
was tested by itself and as mflow plus mflow2. The highly skewed mflow and
sflow variables were natural-log-transformed to improve model fit; pre-
liminary tests showed no improvements from transforming other variables.
Continuous predictor variables were standardized by subtracting the mean
and dividing by 2 SD. Each competingmodelwasfit using theglmer function in
the lme4 package (42) using R 2.11 software (43). We used Akaike’s In-
formation Criterion (AIC) to identify the best metric from each group.

We used these predictors to construct a global model for each species. We
fit theglobalmodel and all possible subsets usingmultilevel logistic regression.
We ranked the resulting models for each species by AIC and retained all
models within 6 points of the best overall model (i.e., AICmin) as a confidence
set of parsimonious models (21), excluding those that were the same as
a better-ranked model except for the addition of an uninformative param-
eter (i.e., one that improved the AIC score < 2; refs. 21 and 44). We con-
structed a composite model for each species using model averaging of this
confidence set (21). We calculated the within-sample predictive performance
of each composite model, using the area under the curve of the receiver-
operator characteristic plot (AUC) and classification accuracy as performance

metrics. Then we divided the data into five regions based on latitudinal bands
and conducted fivefold cross-validation by withholding data from one region
at a time, fitting the model with data from the other regions, and predicting
occurrence probabilities for sites in the withheld region. By making projec-
tions for distinct geographical regions, each with different combinations of
climatic and physical conditions, we hoped to gain insight into each model’s
performance under future, unobserved combinations of climatic and physical
conditions. This was an estimate of model transferability (45, 46).

Projections. We used the composite models to predict occurrence of each
species throughout the NHD Plus stream network, excluding lakes and rivers
larger than ∼2500 km2 drainage area (ref. 38; SI Text), under current con-
ditions and climate scenarios for the 2040s and 2080s associated with the
A1B greenhouse gas emissions trajectory (22). The A1B is a middle-of-the
road scenario in terms of assumptions for accumulation of greenhouse gases
(22). For each of the future time periods, we used projections from three
models: (i) MIROC 3.2, which projects greater warming and less summer
precipitation in the study region than other GCMs; (ii) PCM1, which projects
less warming and more summer precipitation; and (iii) a mean of the 10 IPCC
models with the lowest bias in simulating observed climate across the region
(23). This resulted in six future scenarios, three for the 2040s and three for
the 2080s. The MIROC3.2 and PCM1 models bracketed the range of possible
future temperatures; the former projected a mean increase of 5.51 °C in
mean summer temperature by the 2080s, whereas the latter projected
a mean increase of 2.49 °C for the same period. The GCM model simulations
were downscaled using a spatially explicit delta method (23). For each of the
scenarios, we used the VIC model to generate hydrographs, from which we
extracted the flow metrics described previously. We derived temperature
metrics from the downscaled GCM projections. Because biotic predictors
were only supported for cutthroat trout, we incorporated biotic data into
projections by first modeling other species, and then using the projected
biotic data in the forecasts for cutthroat trout (29). For each species, we set
the predicted probability threshold to define presence equal to species
prevalence in the fitting dataset (47). We mapped the predicted dis-
tributions, which we interpreted as suitable habitat, and calculated the total
suitable stream length for each species under each scenario.

We conducted a sensitivity analysis to determine which variables contrib-
uted the most to species distribution changes under future conditions. We
reran the projections using the composite scenario for the 2080s, iteratively
holding the hydroclimatic variables (temperature, winter highflow frequency,
temperature plus winter high flow frequency, and mean flow) unchanged
from current conditions, and recorded the resulting change in total stream
length of predicted suitable habitat for each species. To assess the role of biotic
interactions, we calculated the total length of predicted suitable habitat for
cutthroat trout if therewere no other species present (i.e., all biotic interaction
parameters set to 0), for the current and 2080s composite scenarios.
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Best Supported Models for Each Species. There were 2–7 plausible
models in the confidence set for each species (Table S2) that were
averaged to create a composite model (Table S3), from which we
drew inferences. As noted in Results, we found that species hy-
droclimatic relationships were generally consistent with hypoth-
eses. We also found that brook trout was more common in and
near UVBs, whereas cutthroat trout was most common at an
intermediate distance from UVBs and brown trout was most
common far from UVBs (Table S3 and Fig. S1). The negative
relationship of brown trout to UVBs was inconsistent with our
hypothesis. Rainbow trout showed essentially no response to
UVBs in the composite model. All species were most common at
low slopes, but brown trout had the strongest slope response
(Table S3 and Fig. S1). Brook trout tended to be found in the
smallest streams, consistent with predictions. Brown trout and
rainbow trout were more common in larger streams, and cut-
throat trout showed little relationship with stream size except that
they were less common in the smallest streams (Table S3 and Fig.
S1). All nonnative species showed a modest positive relationship
with road presence, consistent with our hypothesis; however,
cutthroat trout showed no relationship with road presence, in-
stead of the hypothesized negative response (Table S3).

Model Performance Results. In-sample model performance ranged
from fair for brook trout (AUC ∼ 0.7) to good for brown trout
(AUC > 0.8), with cutthroat and rainbow trout intermediate
(Table S4). Classification accuracy (i.e., the proportion of true
presences and absences that were correctly predicted) ranged
from 64% to 76%. The cross-validated (transferability) perfor-
mance was lower for all models, as expected, but the difference
was small (≤5% absolute difference in classification accuracy).
Much of themodel error was at broader scales and reflected the

fact that nonnative trout were patchily introduced across the study
area and native cutthroat trout had been extirpated from some
regions due to past anthropogenic activities. In an effort to im-
prove error rates, we tested alternative model analysis method-
ologies (neural networks, Random Forests) but found that
although they had superior in-sample classification accuracy they
suffered from inferior transferability, and therefore might not
yield reliable forecasts. Thus, we concluded that our modeling
approach best captured the general relationships between pre-
dictor variables and species presence/absence. It is also worth
noting that as conditions become more extreme (e.g., as tem-
peratures increase well beyond a species’ optimum) predictions
become more certain. For example, despite the fact that brook
trout model performance is only fair under current conditions,
the confidence interval for suitable habitat in the 2080s is rela-
tively narrow because so few locations are even potentially
suitable. This is because many streams shift from predicted
30–40% occupancy (interpretable as a prediction of absence with
an error rate of 30–40%) to predicted 10–20% occupancy (still
a prediction of absence, but with an error rate of 10–20%).

Additional Fish Collection Dataset Notes. Because detection by
snorkeling can be less efficient than electrofishing (1), snorkeling
sites with fewer than four repeat visits were excluded from the
dataset. We also excluded sites with drainage area larger than
∼2,500 km2 because (i) our method for estimating flows (2) was
not intended for larger basins and (ii) detection probabilities for
individual species tend to be lower in sites on larger rivers (3).
Data from collections on the same stream within 50 m of one

another were considered to be from the same location and
treated as a single site. Cutthroat trout were detected at 5,055 of
the 9,890 sites, brook trout were detected at 2,820 sites, rainbow
trout were detected at 1,031 sites, and brown trout were detected
at 655 sites; 1,437 sites had none of these species. Historically,
cutthroat trout could have been present at any or all of the sites.
Within their respective ranges, all species were considered to be

truly absent at sites where they were not detected, even though it
is possible that they could have been present but not detected.
Although methods exist to incorporate imperfect detection in
occupancy modeling (4), doing so in a multilevel modeling
framework is complex (5), and we judged it to be of limited
benefit for the reasons we explain here. Our dataset consisted of
samples collected using multipass electrofishing (one or more
surveys) and snorkeling (four or more surveys). Past studies have
shown that multipass electrofishing capture efficiency (i.e.,
chance of detecting a single individual) of the species considered
here is ∼40–60% (6). This translates to a detection probability of
92–98% if as few as five individual fish are actually present at
a site (detection probabilities for four snorkeling visits are com-
parable). Therefore, in our dataset only sites with very low
abundances of fish were likely to be incorrectly labeled as ab-
sences, which we contend is reasonable because sites with very few
individuals are not likely to represent optimal habitat or persistent
populations for that species. A more significant concern is that
covariates of interest (e.g., temperature) could be biased because
capture efficiencies and occurrence probability respond to the
same variables. Using published relationships between capture
efficiency and temperature, slope and stream size (3, 6, 7), we
calculated that the potential for bias was extremely small, as de-
tection probability would not drop below 90% unless fish abun-
dances were <5 (a possible exception was detection in large rivers,
which was why we excluded such locations). Otherwise, the
principal consequence of ignoring incomplete detection is to
underestimate the magnitude of covariates (8), which implies only
that our hypothesis tests are somewhat conservative.

Explanatory Variables: Methods of Calculation and Hypotheses
Underlying Variable Selection. We selected 12 abiotic variables
including measures of temperature (2 metrics), winter high flow
(4 metrics), proximity to unconfined valley bottoms (2 metrics),
mean flow (2 metrics), stream slope, and the presence/absence of
roads (Table S5).
In-stream temperature data were not broadly available, so we

used air temperature as a surrogate (9–11). For consistency, we
used the same air temperature dataset as was used in the VIC
modeling (described below); these were gridded data in-
terpolated from National Climatic Data Center Cooperative
Observer stations (12). We developed site-specific temperatures
based on the site’s difference in elevation from the mean eleva-
tion for the cell, using a lapse rate of −6.0 C × km−1 (10). We
calculated the mean summer temperature for July 15th to August
31st, averaged across the 20 y from October 1977 through Sep-
tember 1997 (i.e., slightly preceding or contemporaneous with
fish collection data), abbreviated ptemp; we also calculated the
mean temperature in the drainage above the point (dtemp). We
hypothesized that all trout species would have a unimodal re-
sponse to temperature; that is, they would not be found in sites
that were too hot or too cold. Based on previous studies, we
hypothesized that brook trout and cutthroat trout would tend to
be found at colder temperatures than rainbow trout and brown
trout (13–15).
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We derived estimates of winter high flow frequency from the
VIC simulations run for the Great Basin and the Columbia,
Colorado, and Upper Missouri river basins (12). Simulations on
a daily time step from 1915 through 2006 were performed at
1/16th-degree spatial resolution (∼5 km), except in the Great
Basin where simulations were performed at 1/8th-degree spatial
resolution. We routed simulated runoff and base flow using a
simple approach (2) to produce daily hydrographs for stream
segments in the 1:100K National Hydrography Database (NHD)
Plus dataset (http://www.horizon-systems.com/nhdplus/). From
these hydrographs, we calculated four metrics: w2, w1.5, w99,
and w95. The first two measured the probability of a 2-y or 1.5-y
recurrence interval flow event (respectively) during the winter.
Flows of this magnitude are sufficiently large to mobilize bed
material, potentially damaging redds and crushing embryos or
alevins (16, 17). The latter two metrics, w99 and w95, were the
number of days during winter that were among the highest 1%
and 5% (respectively) of flows for the year. These were assumed
to be flows with velocity sufficient to displace and kill newly
emerged fry (18), but not necessarily destroy embryos in redds.
Winter was considered to be December 1st through February
28th, and metrics were averaged across the same 20-y period as
temperature metrics. Although winter weather can extend well
beyond February for much of the region, we used an early cutoff
to ensure we excluded the beginning of the spring flood in all
areas. We hypothesized that fall spawning trout species (brook
trout and brown trout) would display a negative response to
winter high flows, but spring spawning species (rainbow trout and
cutthroat trout) would not (18–21).
Unconfined valley bottoms (UVBs) are locations where the

path of the stream is not laterally constrained by rock (as it is in
canyons), and generally characterized by low slope, wetlands, and
in some cases glacial deposits. We included two metrics of UVBs:
a binary classification of whether a site was within a UVB (vbpres)
and a measure of distance in kilometers to the nearest UVB
(vbdist). Unconfined valley bottoms were delineated according
to an algorithm that identified relatively flat areas adjacent to
streams (22), using 30-m digital elevation models. Because UVBs

appear to be preferred spawning and rearing locations for fall-
spawning trout species, possibly due to groundwater connectivity
or moderated winter high flows (23–26), we hypothesized that
fall-spawning species would be more frequently encountered in
and near UVBs, whereas spring-spawning species would not.
Stream slope values were from the NHDPlus dataset and were

derived for stream segments from 30-m DEMs. We hypothesized
that all trout species would show a negative relationship with
increasing stream slope, possibly because of high frequency of
dispersal barriers or unfavorable physical characteristics such as
high velocities (23, 27, 28).
For mean stream flow we considered two metrics: mean annual

flow (mflow) and mean summer flow (sflow), both derived from
the VIC-modeled flow dataset described previously. Mean annual
flow was the mean daily flow, averaged across the full year, and
then averaged across the same 20-y period used for temperature
metrics. The sflow variable was the same but calculated only for
the summer, which was defined as the period between the decline
of the spring flood peak and September 30th; the calculation of the
spring flood decline was made independently for each year for
each stream segment (2). Mean stream flow primarily served as an
index of stream size. We hypothesized that brook trout would
tend to occupy smaller streams, based on past studies (23, 29, 30).
For other species, we made no specific hypotheses but allowed for
the possibility that responses could be unimodal, with lower oc-
currence probability in streams that were too small and too large.
The road variable was calculated as a value of 1 if the 2000

TIGER/Line road database (www.census.gov/geo/www/tiger) in-
dicated a road within 1 km of the stream segment on which the
site was located, and 0 otherwise. We hypothesized that native
cutthroat trout were less likely to occur in regions with roads
near streams (road; Table 1) because roads may reduce habitat
quality and connectivity and facilitate introductions of nonnative
species (31, 32). In contrast, we hypothesized that nonnative
brook trout would show a positive relationship with roads, due to
greater probability of introductions (legal or illegal) of this species
in locations accessible by road (33).
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Fig. S1. Occurrence probability of trout species as a function of predictor variables (abbreviations defined in Methods and Table S4). Heavy lines indicate
mean values; fine lines indicate 90% confidence intervals.
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Table S1. Model-averaged parameter estimates for biotic predictor variables in composite cutthroat model

Parameter estimate for response of cutthroat to

Cutthroat lineage Brook Brook-w Rainbow Rainbow-w Brown Brown-w

Westslope −0.30 ± 0.11 −0.45 ± 0.07 −0.35 ± 0.11 −0.32 ± 0.15 −1.38 ± 0.34 NS
Lahontan/Yellowstone −1.16 ± 0.09 NS NS −0.49 ± 0.11 −0.36 ± 0.15 NS

Biotic responses were tested at both the subwatershed scale (variables with the “-w” suffix) and the site scale (no suffix). NS = variable not
supported.

Table S2. Differences in AIC (AIC − AICmin) and Akaike weights (wi) for the confidence set of models for each species

Model ΔAIC wi

Cutthroat trout
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + brn*west 0 0.42
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn*west 0.7 0.29
ptemp + ptemp2 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + brn*west 3.0 0.09
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw*west + rbt + bm 3.5 0.07
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + brk*west + brkw + rbtw*west + rbt + brn*west 4.2 0.05
ptemp + ptemp2 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn*west 4.3 0.05
ptemp + ptemp2 + w99 + vbdist + vbdist2 + slope + sflow + sflow2+ brk*west + brkw + rbtw + rbt + brn + brnw 5.8 0.02

Brook trout
ptemp + ptemp2 + w2 + vbdist + vbdist2 + slope + mflow + mflow2 + road 0 0.91
ptemp + ptemp2 + w2 + vbdist + slope + mflow + mflow2 + road 0.6 0.09

Rainbow trout
wtemp + wtemp2 + w99 + slope + mflow + mflow2 + road 0 0.63
wtemp + wtemp2 + w99 + mflow + mflow2 + road 2.4 0.19
wtemp + wtemp2 + w99 + vbdist + mflow + mflow2 + road 2.5 0.18

Brown trout
ptemp + ptemp2 + w95 + vbdist+ slope + mflow + mflow2 + road 0 0.61
ptemp + ptemp2 + w95 + vbdist+ slope + mflow + mflow2 1.4 0.31
ptemp + ptemp2 + w95 + vbdist + slope + mflow + road 4.0 0.08

Parameters that differ among models are highlighted in bold. Only candidate models with ΔAIC ≤ 6 are shown.

Table S3. Parameter estimates (means ±1 SE) for all predictor variables in the composite model for each species

Trout Intercept Temperature Winter high flow Valley bottom distance Slope Stream size/flow Road presence

Cutthroat ptemp ptemp2 w99 vbdist vbdist2 Slope sflow sflow2 NS
1.24 ± 0.20 −0.59 ± 0.12 −0.88 ± 0.13 −0.20 ± 0.11 0.74 ± 0.09 −0.50 ± 0.08 −0.34 ± 0.08 0.41 ± 0.11 −0.21 ± 0.09

Brook ptemp ptemp2 w2 vbdist vbdist2 Slope mflow mflow2 road
−0.85 ± 0.14 −0.66 ± 0.12 −1.20 ± 0.12 −0.98 ± 0.14 −0.62 ± 0.09 0.18 ± 0.08 −0.29 ± 0.07 0.34 ± 0.09 −0.85 ± 0.09 0.39 ± 0.07

Rainbow wtemp wtemp2 w99 vbdist NS Slope mflow mflow2 road
−2.14 ± 0.19 −0.32 ± 0.16 −0.89 ± 0.18 0.58 ± 0.11 −0.02 ± 0.14 −0.16 ± 0.16 1.20 ± 0.15 0.33 ± 0.12 0.38 ± 0.11

Brown ptemp ptemp2 w95 vbdist NS Slope mflow mflow2 road
−2.66 ± 0.30 1.90 ± 0.28 −1.44 ± 0.26 −1.15 ± 0.22 0.58 ± 0.14 −1.62 ± 0.21 1.28 ± 0.19 0.20 ± 0.03 0.20 ± 0.18

Variable abbreviations (e.g., “ptemp” and “wtemp”) are defined in Methods and listed in SI Table S4. Variables have been standardized by subtracting
the mean and dividing by 2SD. NS = variable not supported.

Table S4. Performance statistics for the top-ranked models for each species

Trout
In-sample

AUC
In-sample

classification accuracy
Cross-validated

AUC
Cross-validated

classification accuracy

Cutthroat 0.758 69% 0.709 65%
Brook 0.680 64% 0.653 61%
Rainbow 0.746 69% 0.659 64%
Brown 0.822 76% 0.786 74%

AUC is the area under the curve of the receiver operator characteristic plot. Cross-validated values were calculated with sites
assigned to five geographically distinct units.
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Table S5. Metrics used as abiotic predictor variables in multilevel logistic regression models of species occurrences.
Range and mean are from the model-building dataset

Group Metric Abbreviation Units Range Mean

Temperature Mean summer air temp. at site ptemp C 9.8–27.3 17.1
Mean summer air temp. in drainage dtemp C 9.5–26.7 16.4

Winter High Flow Winter high flow (2 y flow) w2 Probability 0–3.6 0.12
Winter high flow (1.5 y flow) w1.5 Probability 0–13.3 0.36
Winter high flow (99% annual flow) w99 Frequency 0–4.5 0.28
Winter high flow (95% annual flow w95 Frequency 0–9.65 0.85

Mean Flow Mean annual flow mflow ft3*s−1 0–2233 25.8
Mean summer flow sflow ft3*s−1 0–923 9.57

UVB UVB (binary) vbpres — 0/1 0.22
UVB distance vbdist km 0–31 5.11

Slope Stream slope slope — 0–0.53 0.05
Road Road presence (binary) road — 0/1 0.71
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