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Abstract: Modeling of aquatic microhabitat in streams has been typically done over short channel 
reaches using one-dimensional simulations, partly because of a lack of high resolution. subaqueous 
topographic data to better define model boundary conditions. The Experimental Advanced Airborne 
Research Lidar (EAARL) is an airborne aquatic-terrestrial sensor that allows simultaneous high 
resolution surveying in both environments over spatial domains of up to several hundred kilometers of 
stream length. Here we use the USGS two-dimensional finite difference fluid dynamics model, 
FaSTMECH, run under the graphical user interface MD-SWMS and supported by EAARL bathymetric 
data, to investigate spawning habitat of threatened fish species in central Idaho, USA. We run the 
model at several discharges to quantify the effects of flow regime on habitat quality of sa/monid 
spawning and rearing sites under present and future climate scenarios which generated two distinct 
mean water year hydrographs. Results indicate that predicted climate-change induced variations in the 
annual hydrograph will lead to overall improved steelhead trout habitat relative to that of chinook 
salmon. 
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1. INTRODUCTION 

Riverine systems represent some of the most critical landscapes on earth due to their social, 
economic and ecological importance. However, the demand of human societies to harvest fresh 
waters has been decreasing their ecosystems quality (Johnson eta/., 2001). Large dams (41,000 
globally), diversions, flood control projects, land use, and dewatering because of the needs of a 
growing human population contribute to the decline of aquatic habitat and species (Johnson et a/., 
2001; Nilsson eta/., 2003; Nilsson eta/., 2005; Ward, 1998). In addition to the variety of anthropogenic 
factors that have influenced declines of aquatic habitats over many decades, the effects of 
temperature and precipitation variability due to climate change also need to be included as influencing 
species persistence. For instance, observational studies have shown increasing trends in both 
temperature and precipitation over the western United States over the past century (Hamlet et a/., 
2005), a decrease in the April 1 peak snow water equivalent levels, and a trend toward earlier spring 
snowmelt. 

Beginning in the late 1970s aquatic habitat modeling employed the in-stream flow incremental 
methodologies (IFIM), a 1 dimensional hydraulic model inside a physical habitat simulation model 
such as PHABSIM (Bovee, 1982) to determine minimum recommended flows based upon weighted 
usable area (WUA) (Leclerc et a/., 1995; Mouton et a/., 2007). These 1 D hydraulic models rely upon 
cross-section measurements to derive reach average depth and velocity at the hydromorphological 
unit ("homogenous" area between cross sections) (Tickner eta/., 2000) or cross-sectional velocity and 
depth profiles based on cross-section topography (Beven & Kirkby, 1978). This habitat modeling has 
several limitations: 1. low spatial and temporal resolutions; 2. mean depth and velocity values that are 
only reliable as long as the calibration of the roughness coefficient is applicable; 3. predictions outside 
of the measured discharge interval or for an area of less than 10 m2 are not reliable; 4. areas subject 
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to wetting and drying due to discharge variations are not easily calibrated; 5. field campaigns are time 
and cost intensive (Leclerc et al., 1995). 

Recently two-dimensional hydraulic models have been developed to overcome these deficiencies 
especially the prediction of aquatic habitat at a scale relevant to fish (Crowder & Diplas, 2002; 
Ghanem et a/., 1996; Hardy, 1998). Two-dimensional models are advantageous over their 1 D 
counterparts in that spatial resolution can accurately describe spatial gradients of hydraulic 
parameters within cross sections, wetting and drying at different discharges, and flow resistance 
variables (Leclerc et a/., 1995). The high resolution of hydraulic conditions made available by two
dimensional models allows for flow field parameters that are difficult to measure, such as the total 
hydraulic strain describing turbulence (Nestler eta/., 2008), to be incorporated. into the calculation of 
WUA. However, a limitation of two-dimensional models is the need of accurate and detailed 
topography of streams and surrounding floodplains. The advent of robotic total stations, differential 
global position systems (DGPS) and remote sensing, such as the Experimental Advanced Airborne 
Research LIDAR (EAARL), is ameliorating this problem (McKean eta/., 2009a, 2009b; McKean eta/., 
2009c). EAARL uses a low-power, narrow-beam green laser with short pulse length to gather and 
record reflected energy from terrestrial and submerged morphological features (McKean eta/., 2009c). 
Pulse data are gee-located using GPS and inertial navigation trajectories. Data processing is done 
with the Airborne Laser Processing Software (ALPS) developed by the US Geological Survey (USGS) 
and the National Aeronautics and Space Administration (Bonisteel et a/., 2009; Nayegandhi et a/., 
2006). The results include measurements of basic channel bathymetry with errors often in the range 
of ±8-13 em, and support one and two-dimensional fluid dynamic models. The resulting topographical 
errors have negligible effects on hydraulic model predictions (McKean eta/., in review). 

Here, we used the Multi-Dimensional Surface Water Modeling System (MD-SWMS)(McDonald eta/., 
2005), a two-dimensional computational fluid dynamic model to evaluate the effect of climate change 
on salmonid habitat through hydrograph simulations of an important salmonid stream. We focused on 
two life stages (spawning and rearing) of threatened species of steelhead trout (Oncorhynchus 
mykiss) and Pacific Chinook Salmon (Oncorhynchus tshawytshca) . 

Elk Creek-... 

0; 
cff 

._ 
~ 

i' 
0<:;-

~\odle Forks~~· 

(\wSO'N *N l.!::J W - E 

IH?OO'W S 

0 20 Miles 
[ ............................................... ...1 

Figure 1 Bear Valley Creek located in the Middle Fork of the Salmon River headwaters, Idaho, 
USA. 

2. STUDY AREA 

The study concentrates on a 1.6-kilometer meandering reach of Bear Valley Creek, a headwater 
tributary of the Middle Fork of the Salmon River located within the Boise National Forest (Figure 1). 
The mean watershed elevation is 2152 m a.s.l. with 70% forest cover largely composed of lodgepole 
pine and subalpine fir forest with extensive meadow systems (USFS, 1990). The study site has a 
mean bankfull width of 15 m, mean streambed slope of about 0.003 m·m-1 and median bed surface 
diameter (d50) of 0.052 m. Wet winters and dry summers characterize the local climate. As with most 
of the western United States, annual precipitation for the drainage falls as snow from November 
through March (Thurow, 2000). Precipitation stored in the snow pack and groundwater is· the primary 
source of base flows during the dry summer months. Depending on elevation and topography 
average annual precipitation in the area ranges from 370 to 820 mm and average annual 
temperatures range from 1.4 to 6.8°C. Stream hydrographs are characteristic of a snowmelt-driven 
system, in which peak stream flows correspond with spring and early summer snowmelt, which begins 

3138 



around April and can extend into early June. The remainder of the year is dominated by low flows 
(Figure 2a). Global climate change predictions for the Pacific Northwest indicate negligible change in 
the total amount of precipitation but considerable variation in timing and type of precipitation. They 
predict higher amounts of early spring rains, reduced snowpack and more summertime precipitation. 
These alterations in precipitation· pattern will force an earlier lower hydrograph peak with possible rain
on-snow winter floods (Figure 2b). 
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Figure 2 a) Comparison between modeled and observed 1931-1960 averaged water year and b) 
present (1931-1960) and predicted (2010-2050) averaged water year for Bear Valley Creek. 

3. METHOD 

3.1. Hydrologic model 

The averaged water year for Bear Valley Creek was estimated from the USGS gauge Station Bear 
Valley Creek NR Cape Horn, ID (Nr. 13309000). The averaged water year measured at the USGS 
gauging station was scaled to the expected low discharges in Bear Valley (Figure 2). The Variable 
Infiltration Capacity (VIC) land surface hydrology model (Liang et a/., 1994) was utilized to simulate 
streamflows in a 1/16° spatial resolution for the future period of 2011 to 2090. The VIC model is a 
macro-scale grid-based-water and energy balance model, which has been successfully applied over 
many large river basins with reasonable results (Abdulla et a/., 1996; Maurer et a/., 2002; Tang & 
Piechota, 2009). The future meteorological forcing (preGipitation and temperature) data for the VIC 
model was statistically downscaled from the IPCC the Fourth Assessment Report AR4 
(Intergovernmental Panel on Climate Change (IPCC), 2007) (Figure 2). 
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Table 1 Grain size distribution 

Percent 
Shear 

of Finer Stress Erosion [m] 
[Pa] 

0.01 2.1 0.001 

0.03 3.4 0.002 

0.07 4.2 0.003 

0.11 5.9 0.005 

0.13 8.3 0.008 

0.16 11.7 0.012 

0.21 16.7 0.020 

0.31 23.6 0.036 

0.42 33.3 0.069 

0.61 47.1 0.180 

0.80 66.6 0.562 

0.91 94.3 1.878 

0.96 133.3 No armor layer 

0.99 188.5 No armor layer 

1.00 266.6 No armor layer 
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3.2. Hydraulic modeling 

The EAARL sensor provided the channel and terrestrial topographic information used as input to MD-
SWMS. The model solves the vertically averaged shallow water equations on a curvilinear coordinate 
system grid with isotropic turbulence (D. J. Smith & Mclean, 1986). We developed a 1m-by-1m 
numerical grid for the 1.6 km long reach. Tonina & McKean (201 0) calibrated the model at low flows 
(1 m3·s-1

) for the same stream reach and provided the calibration values of z0 (depth at which velocity 
is equal to zero in the law-of-the-wall model (McDonald et a/., 2005)) equal to 0.006 m and of the 
lateral eddy viscosity to 0.05 m2·s-\ which we kept both constant at all flows. A quasi-three 
dimensional flow model associated with MD-SWMS was used to predict water depth, flow velocity and 
bottom shear stress based on hydraulics over a range of discharges from 1 (base flow) to 6 (bankfull) 
m3·s-1

. Convergence of the numerical simulations was reached when mass balance was between 
±3% at each cross section. 

Table 2 Suitability Index 

Chinook Spawning Chinook Rearing 
Depth Sl Velocity Sl Sediment Sl Depth Sl Velocity Sl Sediment Sl 

[m] [m/s] [m] [m] [m/s] [m] 

0 0 0 0 0 0 0 0 0 0.25 0 0 

0.1 0 0.15 0 0.002 0 0.15 0.5 0.008 0.5 0.002 0.2 

0.15 0.3 0.2 0.2 0.011 0.6 0.3 1 0.05 1 0.011 0.4 

0.26 0.6 0.3 0.3 0.013 1 0.8 0.2 0.013 1 

0.3 1 0.45 0.5 0.025 1 0.9 0.4 0.35 0.9 0.052 

0.9 1 0.5 1 0.13 1.2 0.1 0.38 0.75 0.11 0.5 

1.5 0 0.9 1 0.2 0.5 1.5 0 0.7 0.1 0.13 0.3 

1 0.8 0.3 0 0.15 0.2 

1.5 0 0.17 0.1 

0.2 0.1 

Steelhead Spawning Steelhead Rearing 
Depth Sl Velocity Sl Sediment Sl Depth Sl Velocity Sl Sediment Sl 

[m] [m/s] [m] [m] [m/s] [m] 

0 0 0 0 0 0 0 0 0 0.2 0 0 

0.2 0 0.2 0 0.002 0 0.05 1 0.02 0.5 0.002 0.6 

0.25 1 0.3 0.5 0.013 0.3 0.25 0.04 0.75 0.013 

0.6 0.4 0.8 0.025 1 0.4 0.6 0.1 1 0.025 

0.73 0.5 0.5 1 0.052 0.5 0.3 0.25 0.052 

2 0.5 0.75 0.13 0.5 0.6 0.1 0.3 0.75 0.13 

1.05 0.5 0.2 0 3 0.1 0.35 0.5 0.2 

1.4 0 0.4 0.25 0.31 

0.5 0.15 

0.75 0 

3.3. Habitat modeling 

The habitat model is based on literature-derived univariate habitat suitability curves of water depth, 
flow velocity and streambed material for each species and life stage (Bjornn & Reiser, 1991; Groves & 
Chandler, 1999; Hampton, 1988; Hardy & Addley, 2001; Raleigh eta/., 1984; A. K. Smith, 1973). 
Near-bottom shear stresses were analyzed to test whether they were large enough to mobilize 
sediment and scour salmonid eggs. Scour depth was estimated with the Borah model (Borah, 1989), 
which is based on applied shear stress and streambed material. The method estimates the scour 
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depth E subtracting the size of the smallest grain Da composing the armor layer from the size of the 
active-layer thickness T: 

(1) 

where e is the porosity of the bed material and Pa the fraction of the armor sizes present in the bed 
material. Table 1 reports for each particle size the critical shear stress, which mobilizes the particles 
and the corresponding erosion depth. 

Suitability of a physical characteristic is expressed as an index ranging from 0 to 1. The product of the 
suitability indexes for each physical parameter (Siv, Sid, Sl 5 , Sl~, the suitability index for velocity, depth, 
substratum and shear stress, respectively) determines the overall suitability for the cell (CSI). This 
method for defining habitat quality assumes independent physical parameters, i.e. no correlation 
among velocity, depth, substratum, and shear stress in characterizing a habitat, neglects behavioral 
choices or biotic factors such as food availability, predator presence, and considers one species at a 
time without relation with other organisms. The habitat quality at the reach scale is then estimated 
using two parameters the weighted useable area (WUA) and the hydraulic habitat suitability (HHS) 
(Bovee, 1978). 

JiVUA =I CSJi Ai and HHS = WA U 
i=I Aw 

(2) 

where n is the number of cells within the wetted area Aw of the stream and Ai is the area of the i-th cell. 
Both parameters, which are functions of discharge, provide information about the proportion of area 
and suitability of habitat in the stream. 

Fall Chinook salmon typically spawn in Bear Valley Creek between late July and early September and 
Steelhead salmon between middle of March and middle of July. After hatching, both species will rear 
in the reach for 1 to 2 years before migrating downstream. 

4. RESULTS AND DISCUSSION 

4.1. Climate change 

Comparison between the measured and predicted hydrographs for Bear Valley shows a good match 
with a 9% error on the peak discharge (Figure 2a). This result provides support for the application of 
the VIC model in predicted the future averaged flow regime in Bear Valley Creek (Figure 2b). The 
2010-2090 predicted hydrograph shows a lower (26%) and earlier (approximately 30 days) peak than 
the historic hydrograph with longer and smoother tails and higher winter flows (Figure 2b). This pattern 
is probably due to a warmer spring period, which may trigger earlier snowmelts. 

4.2. Aquatic habitat 

Figure 3 reports the current WUA and HHS for Chinook _and steelhead spawning and rearing. Both 
species rear for 1 - 2 full years with WUA ranging from 18000 to 11 000 m2 and from 9500 to 18000 m2 

for Chinook and steelhead, respectively. Chinook and steelhead spawning WUA is important only 
during spawning season, which is shown in Figure 3, and it varies from 8500 to 15000 and from 4000 
to 16000 for Chinook and steelhead. WUA may vary due to changes in wetted area as well as 
fluctuations in habitat quality. To account for the changes in area we also plotted the HHS, which 
shows a wider range of variability of habitat quality for both species and life stages. Spawning WUA 
increases with discharge up to 5 m3·s-1 and then decreases, whereas rearing habitat quality decreases 
with increasing discharge reaching the lowest value at the highest flow. 
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Figure 3 Current weighted useable area (WUA) (a. and b.) and hydraulic habitat suitability 
(HHS) (c. and d.) for spawning and rearing along the study site in Bear Valley Creek for 

Chinook and steelhead salmonids. 

Table 3 Percent change in weighted usable area (WUA) and wetted area due to predicted 
climate change 

Chinook Chinook Steelhead Steelhead Wetted 
Month Hydrograph Spawn Rearing Spawn Rearing area 

WUA HHS WUA HHS WUA HHS WUA HHS 
[mJ·s-1] [m2] [m2] [m2] [m2] [m2] 

Oct -27 0 4 4 9 -4 

Nov 37 -1 -5 -5 -10 5 

Dec 37 0 -5 -5 -9 4 

Jan 50 0 -6 -6 -11 6 

Feb 151 -3 -15 -16 -26 14 

Mar 503 -24 -44 301 198 -39 -54 34 

Apr 185 -26 -39 56 28 -30 -43 22 

May -37 17 30 11 23 11 23 -10 

Jun -70 39 76 -30 -12 47 85 -21 

Jul -54 -38 -30 7 21 20 37 -12 

Aug -46 -34 -29 0 7 8 16 -7 

Sept -38 -27 -23 0 5 6 11 -5 

The predicted 2010-2090 hydrograph has reduced late spring and summer flows and higher winter 
and early spring flows, which provide almost unchanged Chinook rearing fall and winter conditions and 
improved summer conditions (Table 3). In contrast, the forecast larger spring flows cause a decrease 
in Chinook rearing habitat WUA and HHS. However, these values are still larger than in the current 
WUA or HHS because of the predicted lower peak flows (Figure 2b). Steelhead rearing habitat 
deteriorates in the future climate between November and April, but it increases the remaining part of 
the year. The WUA and HHS decrease is within the yearly variability noticed in the current conditions. 
Chinook spawning habitat suffers a considerable reduction of 27% to 38%. Conversely, steelhead 
have a substantial improvement as we simulated almost a 200% increase in HHS in March from the 
present situation. The future climate seems to provide better aquatic habitat conditions for steelhead 
than Chinook. Although rearing conditions improve for Chinook salmon, spawning conditions 
deteriorate due to low flows. However our analysis does not account for temperature variations, which 
may cause additional stress on Chinook populations. 

New emerging techniques such as the EAARL system, which allows mapping large river networks, 
powerful and low-cost computers and faster numerical flow models coupled with biological models are 
allowing us to analyze the impact of anthropogenic activity or climate change at unprecedented spatial 
scales approaching whole rivers. 
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5. CONCLUSION 

Here we showed that new remote sensing techniques coupled with physical and biological numerical 
models may be used to analyze complex processes such as aquatic habitat at a meaningful biological 
scale. Our results suggest that aquatic effects of climate change can be complex and must be locally 
analyzed. Our preliminary predicted changes in flow regime in Bear Valley Creek are expected to 
improve steelhead spawning and rearing habitat, but may reduce the spawning habitat for Chinook 
salmon. 
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