Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

Russell A. Parsons a,*, William E. Mell b, Peter McCauley c

Abstract

Crown fires endanger firefighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (CFD) and can be used to model fire in heterogeneous crown fuels. However, the potential impacts of variability in crown fuels on fire behavior have not yet been explored. In this study we describe a new model, FUEL3D, which incorporates the pipe model theory (PMT) and a simple 3D recursive branching approach to model the distribution of fuel within individual tree crowns. FUEL3D uses forest inventory data as inputs, and stochastically retains geometric variability observed in field data. We investigate the effects of crown fuel heterogeneity on fire behavior with a CFD fire model by simulating fire under a homogeneous tree crown and a heterogeneous tree crown modeled with FUEL3D, using two different levels of surface fire intensity. Model output is used to estimate the probability of tree mortality, linking fire behavior and fire effects at the scale of an individual tree. We discovered that variability within a tree crown altered the timing, magnitude and dynamics of how fire burned through the crown; effects varied with surface fire intensity. In the lower surface fire intensity case, the heterogeneous tree crown barely ignited and would likely survive, while the homogeneous tree had nearly 80% fuel consumption and an order of magnitude difference in total net radiative heat transfer. In the higher surface fire intensity case, both cases burned readily. Differences for the homogeneous tree between the two surface fire intensity cases were minimal but were dramatic for the heterogeneous tree. These results suggest that heterogeneity within the crown causes more conditional, threshold-like interactions with fire. We conclude with discussion of implications for fire behavior modeling and fire ecology.

1. Introduction

Crown fires, fires which burn through vegetation canopies, pose significant challenges to fire managers (Albini and Stocks, 1986) often spreading rapidly via lofted firebrands (Wade and Ward, 1973) and burning with greater intensity and faster spread than surface fires (Rothermel, 1983). Prediction of the conditions under which crown fires initiate and propagate are thus of primary concern in fire management.

A number of models and decision support tools which predict fire spread in vegetation canopies have been developed. The systems used in Canada (Hirsch, 1996; Alexander et al., 2006) and Australia (Nobel et al., 1980) are empirical in nature, developed from correlative relationships observed in field studies, and predict fire spread as a function of weather and fuel conditions and the slope of the terrain; variability in fuels is not addressed as crown fuels are considered as a homogeneous single layer. This simplifying assumption is common to other systems used in Canada as well (Cruz et al., 2006). The systems used operationally in the United States (Finney, 1998; Scott, 1999; Reinhardt and Crookston, 2003; Andrews et al., 2005) are based primarily on a semi-empirical surface fire spread model (Rothermel, 1972) and have been extended to crown fire spread through links to Rothermel's empirical crown fire rate of spread model (Rothermel, 1991) via Van Wagner's crown fire initiation and propagation models (Van Wagner, 1977; Van Wagner, 1993). In this modeling system, surface fuels are assumed to be homogeneous, continuous and contiguous to the ground and crown fuels are considered as a homogeneous layer of uniform height above the ground, depth and bulk density; different mechanisms of heat transfer (i.e., radiative, convective or conductive) are not explicitly modeled, nor are transitory fire behaviors. Fuel models used as inputs to this modeling system consist of sets of
parameters (e.g. surface area to volume, heat content and fuel load) describing homogeneous fuel beds (Anderson, 1982; Scott and Burgan, 2005).

The assumption of a homogeneous crown layer is thus a central component in current models used to predict crown fire behavior. In reality, vegetation is never homogeneous nor continuous but this assumption may be reasonable at coarse scales for dense forests of trees very similar size and age, typified by the stands used in Van Wagner’s analysis (Van Wagner, 1964). It is increasingly tenuous, however, when applied to stands characterized by variability in size and numbers of trees, where between-tree heterogeneity could be expected to be significant. Implicit in this assumption is that fuel variability at finer scales, such as within a tree crown, is unimportant to fire behavior. However, evidence suggests that fire behavior is sensitive to fine scale spatial variability, including size, shape and orientation of particles, and distance between them (Fons, 1946; Vogel and Williams, 1970; Weber, 1990; Bradstock and Gill, 1993; Burrows, 2001; Pimont et al., 2009). Recent critiques argue that the assumptions and empirical basis of the modeling framework used for crown fire in the United States are inconsistent with active spreading crown fire conditions and characteristics (Cohen et al., 2006) and often result in inaccurate predictions (Cruz and Alexander, 2010).

Fundamentally, crown fire occurs at the intersection of fire and vegetation canopies, both of which are sufficiently complex that modeling is needed to understand and explain the key processes involved. Advances in computing capabilities and simulation modeling techniques over the last two decades have opened up new possibilities for modeling fire behavior and fuels with greater detail. Mechanistic physics-based fire behavior models have been recently developed which can address fuel heterogeneity (Mell et al., 1996, 2007, 2009; Linn, 1997; Morvan and Dupuy, 2001; Linn et al., 2002; Dupuy and Morvan, 2005; Linn et al., 2005). These computational fluid dynamics (CFD) models simulate fire behavior dynamically over time within a three-dimensional spatial domain, describing the dynamics according to equations for the conservation of mass, momentum, energy and species. Unlike operational models, which assume steady state rates of fire spread (Rothermel, 1972), CFD models are self-determining and are thus capable of addressing fire-fuel interactions arising from spatial variability within the fuel bed, and fire-atmosphere interactions. CFD models have been used to model fire at the scale of individual trees (Mell et al., 2009), but to date have not been used to explore the potential impacts of heterogeneity within the crown of an individual tree. One potential limitation is that these complex fire models require detailed 3D fuels inputs which are difficult to directly measure. Standard forestry inventory data only provide lists of trees and basic attributes, such as height and diameter, and lack the more fundamental fuel characteristics such as bulk density. While methods have been developed to estimate bulk density at the stand scale through indirect measurements (Keane et al., 2005), more sophisticated approaches, typically involving modeling, are required to address this need at finer spatial scales.

Developments in models of plant structure and function, referred to as functional structural plant models (FSPMs) (Godin and Sinoquet, 2005), also offer new opportunities for improving our understanding of crown fire behavior, particularly with respect to the nature of vegetative canopies. FSPMs generally model plants as spatially explicit 3D structures, often with extremely realistic detail (Godin et al., 2004; Kang et al., 2008; Pradal et al., 2009). Plant architecture can be represented in a number of ways (Godin, 2000) which facilitate analyses of numerous aspects of plant growth, physiology and interaction with the environment (Balandier et al., 2000; Mathieu et al., 2009).

Unlike the fuel models used to provide inputs to operational fire behavior models, which assume homogeneous fuel characteristics, FSPMs are capable of modeling vegetation with substantial detail, characterizing not only the structure and composition of plants (Prusinkiewicz, 2004) but also dynamic processes such as carbon allocation, growth, hydraulic function (Balandier et al., 2000; Allen et al., 2005) and biomechanical properties (Jirasek et al., 2000). Of particular relevance to the problem of crown fire are models that address interactions between plants and the environment (Sinoquet and Le Roux, 2000; Sinoquet et al., 2001). For example, Pimont et al. (2009) recently employed an FSPM to explore the effect of heterogeneity in canopy fuel on radiant heat transfer. Although the use of FSPMs to describe fuels is a relatively new concept (Caraglio et al., 2007), the potential value that advanced plant models can contribute to consideration of fuel and fire interactions is considerable.

In this investigation we use modeling to explore the effect of heterogeneity in bulk density within a tree crown on fire behavior. Using a simple FSPM, FUEL3D, we simulate the spatial distribution of biomass in an individual ponderosa pine. Then, using a CFD fire behavior model, WFDS (Mell et al., 2009), we conduct a numerical experiment in which we compare fire behavior between the spatially variable tree modeled with FUEL3D and a homogeneous crown that has the same gross dimensions and amount of fuel. We then explicitly link fire behavior and fire effects at the scale of an individual tree by using a statistical model to predict the probability of fire induced mortality for these trees. We conclude with discussion of the ecological and management implications of our simulation study.

2. Model description

2.1. Overview

FUEL3D is a static, stochastic, functional structural plant model (FSPM) designed to characterize the spatial distribution of biomass within a tree crown for the purpose of facilitating detailed simulations of fire behavior. FUEL3D provides a means by which typical stand inventory data, such as tree heights, diameters and other basic measurements, can be used to develop detailed inputs to advanced fire behavior models. Fig. 1 presents a conceptual diagram of the FUEL3D model, and a list of symbols for the FUEL3D model is presented in Table 1. Biomass quantities, determined with empirical equations, are distributed in space as a collection of simple solid shapes (e.g. cylinders and frustums) using a pipe model based approach (Shinozaki et al., 1964) and a recursive branching algorithm. These structures are stored in a spatially explicit database which tracks their coordinates, surface area, volume and mass, as well as additional attributes relating to combustion characteristics, such as silica content, material density and heat of combustion, determined from the literature. Attributes which may be more dynamic in nature, such as fuel moisture content, are assigned. Other descriptors link each object in the database to others with which it shares a common identity (e.g., all pieces of the same branch, all parts of the same tree). These descriptors provide the capability of extracting subsets of a tree on the basis of a simple query (e.g. a particular branch identity number) and also facilitate analysis and post-processing of model outputs for visualization and summarization.

To provide inputs for CFD fire behavior models, or other 3D models, the spatially explicit database is summarized to volumetric cells (voxels). In this way the model represents vegetation both as explicit objects in space and as summarized quantities within specified volumes. An important aspect of this approach is that the same set of detailed 3D objects, with explicit coordinates and dimensions, can be summarized to voxels at different resolutions, effectively spanning a range of spatial scales. Although FUEL3D can be used to model a broader range of plants, such as shrubs, grasses
and deciduous trees, these developments are still in preliminary stages. In this study we utilize FUEL3D to model a Ponderosa pine tree.

FUEL3D relies theoretically on the pipe model theory (PMT) (Shinozaki et al., 1964), which envisions trees as a collection of “unit pipes”, where a unit pipe transports water to a unit of foliage. This balance between water supply and demand provides a straightforward and generally accurate estimation of biomass amounts and allometric scaling relationships. For this reason, despite criticism of its simplistic portrayal of plant function such as hydrodynamics (Tyree and Ewers, 1991) the pipe model plays a key role in many contemporary forest models (Robichaud and Methven, 1992; Chiba, 1998; Perttunen et al., 1998; MacFarlane et al., 2000; Alexandrov, 2008) and is widely cited in the literature (Grace, 1997).

Spatially explicit models of trees and shrubs have been developed with different levels of detail. The most common applications of such models are light dynamics and plant growth models (see Brunner, 1998; Busing and Mailly, 2004 for reviews of several such models, respectively). A common approach is to represent trees and shrubs crowns as simple geometric forms, such as cylinders, cones or ellipsoids (e.g. Canham et al., 1999; Kuuluvainen and Pukkala, 1989; Pukkala et al., 1993). Such representations are limited to particular scales because detail within the tree crown is not modeled. Tree crowns are fractal-like objects, having properties and geometry that combine aspects of both two dimensional and three dimensional bodies and which exhibit self-similarity across a range of scales (Mandelbrot, 1983; Godin, 2000; Godin et al., 2004). A number of FSPMs have been developed which employ fractal methods to simulate plant architecture for tree crowns (Bereczesykayta et al., 1997; Chen et al., 1994) or for root systems (Ozier-Lafontaine et al., 1999; Richardson and zu Dohna, 2003). Such approaches are useful in representing canopy fuels because they more accurately capture the natural pattern of clumps of fuel separated by gaps, such as those between needles and between branches. FUEL3D shares some similarities with these approaches, largely through its use of recursive branching, described later in this paper, to construct a tree crown as a series of modular components. However, while it produces simulated plant architectures that are fractal-like, FUEL3D robust theoretical analysis of fractal behaviors (e.g. West et al., 1997) is not a primary objective of the model.

2.2. Model formulation

2.2.1. Biomass estimation

FUEL3D begins with estimation of biomass quantities. Once these quantities are determined, the model then distributes them in space until they are used up. The FUEL3D model iterates through a tree list, simulating one tree at a time. For each tree, foliage biomass, Mf, and crown branchwood, Mb, are estimated with biomass equations developed with different levels of detail. The most common applications of such models are light dynamics and plant growth models (see Brunner, 1998; Busing and Mailly, 2004 for reviews of several such models, respectively). A common approach is to represent trees and shrubs crowns as simple geometric forms, such as cylinders, cones or ellipsoids (e.g. Canham et al., 1999; Kuuluvainen and Pukkala, 1989; Pukkala et al., 1993). Such representations are limited to particular scales because detail within the tree crown is not modeled. Tree crowns are fractal-like objects, having properties and geometry that combine aspects of both two dimensional and three dimensional bodies and which exhibit self-similarity across a range of scales (Mandelbrot, 1983; Godin, 2000; Godin et al., 2004). A number of FSPMs have been developed which employ fractal methods to simulate plant architecture for tree crowns (Bereczesykayta et al., 1997; Chen et al., 1994) or for root systems (Ozier-Lafontaine et al., 1999; Richardson and zu Dohna, 2003). Such approaches are useful in representing canopy fuels because they more accurately capture the natural pattern of clumps of fuel separated by gaps, such as those between needles and between branches. FUEL3D shares some similarities with these approaches, largely through its use of recursive branching, described later in this paper, to construct a tree crown as a series of modular components. However, while it produces simulated plant architectures that are fractal-like, FUEL3D robust theoretical analysis of fractal behaviors (e.g. West et al., 1997) is not a primary objective of the model.

2.2. Model formulation

2.2.1. Biomass estimation

FUEL3D begins with estimation of biomass quantities. Once these quantities are determined, the model then distributes them in space until they are used up. The FUEL3D model iterates through a tree list, simulating one tree at a time. For each tree, foliage biomass, Mf, and crown branchwood, Mb, are estimated with biomass equa-

![Diagram](image-url)
tions. Multiple biomass equations are included for various species in a database and selection of which biomass equation to use is a user input. The default biomass equation is of a form that incorporates the crown ratio, $R$ (proportion of total tree height occupied by continuous live crown) as inclusion of this variable has been demonstrated to significantly improve the accuracy of biomass estimates (Brown, 1978; Valentine et al., 1994a,b; Hoffmann and Usoltsev, 2002). The advantage of using an empirical biomass equation is that biomass estimates will be more accurate for specific locations. In the event that a more specific biomass equation is not to be found, the model defaults to a more general equation (Jenkins et al., 2003).

For Ponderosa pine ($Pinus ponderosa$), crown biomass is estimated using the equation provided by Brown (1978). Brown’s equation calculates a total crown biomass (foliage + crown branchwood) as

$$M_C = e^{2.2812 \ln(d) + 1.5098(\ln(h) - 3.0957)} $$

Foliage biomass, $M_F$, is then calculated as a proportion of that total as

$$P_{fol} = 0.558e^{-0.0457d}$$

where $M_C$ is the total biomass within the crown, $R$ is the crown ratio, calculated (for the purposes of Brown’s equation) as $10/\text{crown height}$, $d$ is tree diameter at breast height in inches, and output biomass is measured in pounds. The crown branchwood biomass, $M_B$ is calculated by subtraction, as $M_C - M_F$.

2.2.2. Distributing biomass in space

With the crown branchwood biomass, $M_B$, and foliar biomass, $M_F$, determined, FUEL3D proceeds to distribute those quantities in space. For monopodial species (having a single dominant stem) such as most conifer trees, FUEL3D begins with the tree bole. The tree bole is modeled as a quadratic polynomial tapering column (Goulding and Murray, 1975) of the form

$$r_2 = p_1z^2 + p_2z + p_3$$

where $r_2$ is the radius of the tree bole at height $z$ and $p_1$, $p_2$, and $p_3$ are coefficients of the second order polynomial. The polynomial coefficients are determined through a nonlinear fitting procedure for each tree using four points: the radius at the base of the bole, $r_0$, predicted from species specific bole taper equations (for Ponderosa pine, Alemdag and Honer, 1977) and $r_1$, the radius at breast height (measured), radius at the base of the live crown, $r_2$, described below, and a minimum radius, $r_3$, estimated from field measurements at the ends of branches, and assumed to be the radius at the top of the tree (Fig. 2). In fitting the polynomial to predict bole radius as a function of height, the coordinate at the top of the tree is weighted to constrain the polynomial to positive bole radius values.

The radius at the base of the live crown, $r_2$, is estimated as

$$r_2 = \sqrt{A_{\text{crown base}}}$$

and

$$A_{\text{crown base}} = \frac{R_{\text{breast height}} A_{\text{base}}}$$

where $R_{\text{breast height}}$ is the cross-sectional area at breast height, and $R$ is the crown ratio (proportion of total height occupied by contiguous crown) (Valentine et al., 1994a). Following the pipe model theory, biomass is proportional to the cross-sectional area at the base of the live crown, $A_{\text{crown base}}$. Non-conducting heartwood is assumed to be present in the bole below the crown base, resulting in a tapered form and is accounted for in the quadratic tapering.

Woody biomass within the stem, $M_B$, is determined by integrating the polynomial, Eq. (3), and multiplying that volume by the density, $\rho$; for this study a standard wood density for ponderosa pine, of 400 kg m$^{-3}$, was used (Alden et al., 2000). Woody branch biomass, $M_B$ is provided by the biomass equation. The total woody biomass, $M_T$, is the sum of these two quantities. The corresponding woody biomass volume, $V_T$, is the sum of the volume of the bole and the volume of the branch wood, $V_B$, calculated as $\rho \cdot M_B$. Consistent with the pipe model, this volume is considered as a cylinder for which the base is $A_{\text{crown base}}$. The separation of the volume contributed by the stem and the volume contributed by branch wood gives FUEL3D ample flexibility for representing the distribution of biomass; inventory data provide tree height, height to crown base, and diameter at breast height, while biomass equations set the quantity of crown foliage and branch wood to distribute in space.

Starting at the base of the live crown and continuing upward, the stem is divided into a series of polynomial sections, $1, \ldots, n$, which represent whorls of branches on the stem and the spaces between them. Inter-whorl section lengths are stochastically generated from probability distribution functions parameterized from field data, and described in the next section.

At each whorl, a portion of the cross-sectional area is diverted laterally to branches, while the remainder continues farther up in the main stem of the tree. The proportion of $A_{\text{crown base}}$ cross-sectional area used by the tree stem at any whorl $i$, $A_{i2}$, at a given height $z$, is calculated from the polynomial as

$$A_{i2} = A_2 = \pi r_2^2$$

where the radius, $r_2$, at any height $z$ is provided in Eq. (3). The cross-sectional area that is available to be diverted laterally to branches...
at that whorl, $A_{Bi}$, is then

$$A_{Bi} = A_{crown base} - A_{Sj} - \sum_{i=1}^{\infty} A_{Bi}$$

(7)

Foliar biomass, $M_{Fi}$, and crown branchwood, $M_{Bi}$, are allocated to the branches which comprise whorl $i$, based on the cross-sectional area.

$$M_{Fi} = M_{F} \frac{A_{Bi}}{A_{crown base}}$$

(8)

and

$$M_{Bi} = M_{B} \frac{A_{Bi}}{A_{crown base}}$$

(9)

In other words, as cross-sectional area (and corresponding biomass quantities) is diverted laterally to branches, the cross-sectional area available for branches above that point is reduced accordingly. In this manner, cross-sectional area at the base of the live crown, and corresponding biomass quantities, are conserved, in strict accordance with the pipe model.

### 2.2.3. Stochasticity in branching architecture

Variability in branching architecture is readily observed in real plants and thus has been applied in numerous FSPMs (Ford, 1987; Kurth, 1994; Kang et al., 2008). Durand et al. (2005) developed a statistical approach for identifying areas within a 3D digitized plant where morphological characteristics are similar, and where they change.

FUEL3D employs a more simplistic stochastic process to address variability in branching architecture, where field data are used to characterize branching architecture by branch order and variability is described with probability distribution functions. These probability distribution functions are then accessed during the simulation of a tree. Each whorl on the main stem, as well as on subsequent smaller branches, is modeled as a branching node, consisting of a parent segment which splits into two or more child segments. Characteristics of each node are modeled stochastically, drawn from the distributions parameterized from field data; in this manner, variability observed in the field is retained in the model. Different types of characteristics are modeled with different forms. Discrete quantities, such as the number of branches, $m$, at a given whorl, $i$, are drawn from histograms, while continuous variables, such as orientation angles, are drawn from Beta probability distribution functions, described below. The Beta distribution was selected because it is flexible and bounded at both ends, which constrains variability functions, described below. The Beta distribution is parameterized from field data, and defined by the ratio of the length from the branch base to the first live second order branch to the total branch length.

FUEL3D produces a list of branching nodes, for all whorls on the main stem. Each branch is specified by an initial segment, orientation, branch basal diameter, and associated total biomass quantities. This process of building the branching nodes along the stem simply enables modeling of branches one at a time, which greatly reduces the computational resources required by the model. As each branching node is produced it is added to the spatially explicit database describing the tree.

Each branch is modeled with a recursive (self-referencing) algorithm, similar to other fractal tree models (Niklas, 1986; Berezovskaya et al., 1997; van Noordwijk and Mulia, 2002). The algorithm extends itself, splits into smaller branches, which themselves split into smaller branches, and so on until the biomass quantities allocated to the branches are exhausted. As in the branching nodes on the stem, cross-sectional area is preserved, and is used to allocate biomass; each branching node is stochastically generated, producing branching structures that mimic the variability observed in real trees.

Using field data for parameterization, FUEL3D sets the proportion of cross-sectional area, and corresponding biomass, in the dominant child segment. This enables FUEL3D to account in a simple manner for apical control, in which the main, usually central portion, of the branch is larger and longer than the smaller branches which extend off of it (Fig. 3), similar to the approach used in other static fractal models in which child segments can be of unequal size (Ozier-LaFontaine et al., 1999; Richardson and zu Dohna, 2003).

A particular branching node is created with orientations between component segments but generative dimensions. Its position is also generic, with the base at the origin $(x = 0, y = 0, z = 0)$, with the main segment (which would typically serve as the continuing extension of the parent branch segment) oriented along the z-axis. After a particular branching node is generated, its dimensions are scaled such that biomass is accounted for, and it is rotated and translated in space, following standard rotation matrices, such that its orientation is consistent with the parent segment and that it extends from the distal end of the parent segment. Similar to the approach used by Richardson and zu Dohna (2003), segment lengths are scaled as

$$\gamma = p^{1/3}$$

(13)

where $p$ is the proportion of the sum cross-sectional area for a particular child segment and $\gamma$ is the ratio of the child length to the parent segment length. Each segment continues to branch, producing a new branching node consisting of some number of child segments, until it reaches a minimum diameter, measured from field data. When this occurs the algorithm stops branching and constructs a terminal structure. For conifers, terminal structures consist of a short branch segment in which foliar biomass is divided into individual needles, arranged in fascicles (clumps); fascicles are distributed on the branch segment with gaps between them based on field measurements. Measurements of needle dimensions and

$$f(x; a, b, v, w) = \frac{(x - a)^{v-1}(b - x)^{w-1}}{B(v, w)(b - a)^{v+w-1}}$$

(10)

$\beta(v, w)$ is the Beta function, defined as

$$\beta(v, w) = \int_0^1 u^{v-1}(1 - u)^{w-1} du$$

(11)
Fig. 3. Example of two branches modeled with FUEL3D, shown as line figures. A change in the allocation of biomass to the dominant branch segment has resulted in a longer branch and a different geometry. Branches shown in this figure were developed without variability in angles or lengths, such that effect of biomass allocation to the central segment in a branching node would be clearer.

angles are part of the detailed data collection used to parameterize a species. FUEL3D can model the position of each individual needle. However, for many purposes, such as summarization to voxels (described below), this has a high cost in computation time. For this reason, terminal structures are generally represented with simple cylindrical bounding volumes which account for biomass quantities within them. Bounding containers are also useful in characterizing whole crown volumes, facilitating analyses of fuel properties at coarser (less resolved) spatial scales.

2.3. Summarization to discrete volumes

In order for the collection of branch segments and foliage which compose the simulated tree to be used in a numerical fire model it is necessary to convert the output data to values associated with three-dimensional grid cells, or voxels. This is done via a Monte Carlo integration approach, in which the volume of each segment or other component of the modeled biomass is populated with random points; these random points are then juxtaposed on the boundary lines of the mesh which define the three dimensional array. Biomass is apportioned among the grid cells which contain points on the basis of the proportion of points found in each grid cell. A similar procedure is followed for surface area, where random points are constrained to be located on the surface of the modeled biomass component. In this manner the total quantities are preserved across whatever spatial scale is desired. Fig. 4 illustrates the spatial pattern of fuels within a small tree modeled with FUEL3D, and then summarized to voxels at three different cell resolutions (0.5 m, 0.25 m and 0.1 m). This summarization approach enables the FUEL3D model to characterize wildland fuels across a spectrum of spatial scales. Summarization to voxels can be carried out for different fuel components, such as within a particular range of diameters, by querying the spatial database prior to summarization.

2.4. Field data collection

Field measurements used to parameterize FUEL3D for ponderosa pine in this study came primarily from two sources. Relationships predicting branch biomass quantities and gross dimensions (total length and width) from branch basal diameter were provided by an intensive, destructive sampling field study, known as the Crown Fuels Study (CROWNFUELS) (Keane et al., 2005; Reinhardt et al., 2007); these data were used extensively in preliminary development of the FUEL3D model (Parsons, 2006). For this study, additional destructive sampling, referred to as the

Fig. 4. Demonstration of the spatial pattern of fuels within a small tree modeled with FUEL3D and then summarized to voxels at three different spatial resolutions: (a) 0.5 m; (b) 0.25 m; (c) 0.1 m.
Brandon Collins, Faith Critchley, and Paul Healey

Determination of tree species composition and forest structure


determination of tree species composition and forest structure

Table 2

Parameters used in FUEL3D model determined for Ponderosa pine from field data. Source 1 is data collected at Ninemile, Montana in 2007, Source 2 is data collected as part of CROWNFUELS study at Ninemile, MT 2000–2002.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Description</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Shape parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum branch radius</td>
<td>1</td>
<td>Minimum branch radius (mm)</td>
<td>2.5</td>
<td>10.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Predicted total branch length</td>
<td>2</td>
<td>Predicted total branch length L_1 = 0.63Q_0mm, R^2 = 0.968</td>
<td>1.2</td>
<td>10.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Continuous variables modeled with Beta distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Description</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Shape parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>1</td>
<td>Inter-whorl length, along main stem, for a whorl, (cm)</td>
<td>5</td>
<td>95</td>
<td>4.8</td>
</tr>
<tr>
<td>C_1</td>
<td>1</td>
<td>Starter segment length proportion of total length</td>
<td>0.1</td>
<td>0.3</td>
<td>27.4</td>
</tr>
<tr>
<td>C_2</td>
<td>1</td>
<td>Proportion of biomass allocated to dominant child at node</td>
<td>0.4</td>
<td>0.9</td>
<td>5.1</td>
</tr>
<tr>
<td>Angle, 1</td>
<td>1</td>
<td>Angle between axes of parent segment and child segment</td>
<td>42</td>
<td>91</td>
<td>14.9</td>
</tr>
<tr>
<td>Angle, 2</td>
<td>1</td>
<td>Angular variability, perpendicular to Angle, 1</td>
<td>1</td>
<td>17</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Discrete variables, sampled from empirical histograms

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Source</th>
<th>Description</th>
<th>Lower bound</th>
<th>Upper bound</th>
<th>Shape parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_first order</td>
<td>1</td>
<td>Number of observations, by bin (388 total)</td>
<td>198</td>
<td>281</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Number of branches at a whorl, incl. continuing parent</td>
<td>3</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td>m_higher order</td>
<td>1</td>
<td>Number of observations, by bin (687 total)</td>
<td>281</td>
<td>445</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Number of branches at a whorl, incl. continuing parent</td>
<td>3</td>
<td>4</td>
<td>121</td>
</tr>
</tbody>
</table>

Branch geometry study, was carried out at Ninemile on the Lolo National Forest near Missoula, Montana in July 2007. The purpose of the BRANCHGEOM study was to characterize branching nodes for ponderosa pine. Ten Ponderosa pine trees were selected from the same stand and were felled using a restraining system so the tree crowns would not be damaged by felling. Measurements were taken at three levels: for the whole tree, whorl (on main stem) and on and within individual branches. For each tree, total height, diameter at breast height, and height to the base of the live crown were measured. Whorl measurements included height above the ground, stem diameter above and below the whorl and number of first order branches. For each first order branch, basal diameters, angles relative to the main stem, and lengths to next branching node were measured. Branch diameters were taken with metric digital calipers and angles were measured with transparent plastic angle gauges. These measurements described branching nodes along the main stem. Similar measurements were made within branches to capture geometry at higher branching orders, based on a subsample of every third branch. Geometry of foliage clumps, which represent a special case of branching node, was characterized with additional sub sampling. Finally, digital images were taken of each sub-sampled branch, with and without foliage, with a metric ruler for scale, to capture whole branch geometry. Basic measurements of angles, lengths and diameters made post-field upon these images provided additional data describing branching geometry. Additional measurements, such as branch curvature, were made upon these images post field using image processing software but ultimately were not explicitly used in the model formulation. Altogether 388 first order branching nodes and 687 higher order branching nodes were described. Geometric variability within this population of branching nodes was characterized statistically by branching order. Parameter estimates for the Beta distribution characterizing geometric branching variability were made with Maximum Likelihood Estimation (MLE) using the statistical software, R. Data were pooled if analysis revealed insignificant differences between branch orders.

2.5. Fire behavior simulation

We tested the effect of variability in the spatial distribution of biomass within the crown of an individual tree on fire behavior with the Wildland-Urban Interface Fire Dynamics Simulator (WFDS) model (Mell et al., 2009). WFDS is a recent extension of the Fire Dynamics Simulator (FDS version 5.2), a CFD fire model designed for structural fire applications. FDS was extended to accommodate vegetative fuels, such as foliage, as well as complex terrain and ambient wind flows. WFDS is a physical numerical fire behavior model in which CFD methods are used to solve the three-dimensional, time-dependent equations governing fluid motion, combustion, and heat transfer. A low-Mach number approximation (Rehm and Baum, 1978) of the governing equations for mass, momentum, and energy is used: a large-eddy simulation (LES) approach for turbulence modeling (Smagorinsky, 1963) provides a time-dependent, coarse-grained numerical solution to these equations. A direct solver for the pressure Poisson equation significantly speeds up calculations compared to iterative methods. WFDS has been used in domains of 1500 m × 1500 m for the simulation of Australian grassland fires (Mell et al., 2007).

Our simulation experiment compared two different tree crowns: a spatially variable crown (V), modeled with FUEL3D, and a homogeneous crown (H), with the same total fuel quantity and gross dimensions as the spatially variable tree crown. We simulated fires under these two tree cases with two levels of surface fire intensity: Low (L), and High (H), for a total of four simulations: (HL, VH, VL, HH)

Table 3

Summary of fire behavior simulation outputs. In right most column, P_mort refers to the probability of mortality calculated for each tree.

<table>
<thead>
<tr>
<th>Label</th>
<th>Fuel</th>
<th>Consumed</th>
<th>% loss</th>
<th>Duration</th>
<th>Peak</th>
<th>Mean</th>
<th>Stdv</th>
<th>P_mort</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>44.9060</td>
<td>35.7987</td>
<td>79.72</td>
<td>56.49</td>
<td>2677.90</td>
<td>343.63</td>
<td>651.69</td>
<td>0.9160</td>
</tr>
<tr>
<td>VL</td>
<td>44.9060</td>
<td>0.4184</td>
<td>00.93</td>
<td>54.80</td>
<td>229.35</td>
<td>74.51</td>
<td>77.34</td>
<td>0.2668</td>
</tr>
<tr>
<td>HH</td>
<td>44.9060</td>
<td>44.7963</td>
<td>99.76</td>
<td>52.70</td>
<td>2520.60</td>
<td>361.77</td>
<td>669.36</td>
<td>0.9868</td>
</tr>
<tr>
<td>VH</td>
<td>44.9060</td>
<td>38.0156</td>
<td>84.66</td>
<td>63.49</td>
<td>3015.62</td>
<td>462.87</td>
<td>801.82</td>
<td>0.9439</td>
</tr>
</tbody>
</table>
Our numerical experiment is described in more detail below.

2.6. Example spatially variable tree crown, modeled with FUEL3D

We used the FUEL3D model to simulate the distribution of biomass within the crown of an individual ponderosa pine tree, with standard forest inventory measurements of stem diameter at breast height of 25.4 cm, an overall height of 10.0 m, height to live crown base of 1.5 m and an average crown radius of 2.5 m. The resulting spatially explicit database of woody components and foliage was then queried to extract all material ≤6 mm in diameter. Material of this diameter is considered to be “thermally thin” and dominates fire behavior due to its high surface area to volume ratio, and rapid interaction with incident heat fluxes.

The set of thermally thin fuel elements within the database was then summarized to cells 0.25 m on a side for input into the WFDS fire behavior model.

2.7. Homogeneous tree crown

The homogeneous case tree was modeled as a right frustum (truncated cone), with the same gross dimensions as the spatially variable tree crown described above; diameter at the base of the frustum was 5 m and diameter at the top was 1 m. The frustum was located the same height above the ground (1.5 m) and extended to the same height (10 m) as the tree modeled above.

The spatial domain used in these simulations measured 24 m by 24 m by 20 m. Resolution was 0.25 m in all directions, for a numerical grid of 96 cells by 96 cells by 80 cells. This domain was partitioned into 9 equally sized sub-domains measuring 32 × 32 by 80 cells and run on 9, 64 bit processors. Total simulation time was 180 s, with the nine processors, real time duration of each simulation averaged 2 h and 20 min.

The surface fire was simulated as user-prescribed advancing flaming front with a constant forward spread rate (0.1 m s⁻¹) and residence time (20 s). The intensity (heat release rate) was set at 300 kW for the low intensity cases (HL and VL) and 400 kW for the high intensity cases (HH and VH). This approach is not entirely realistic for real surface fuels because it eliminated some potential feedback interactions, such as impacts to the velocity field, between fire in the crown and the surface fire. The intent of this approach was to facilitate comparison between simulations by ensuring that the timing and geometry of the surface fire front was consistent across all simulations. For each simulation we tracked the solid fuel mass loss (dry mass and moisture mass) and total net radiative heat transfer \(Q_{\text{radnet}}\) over time to facilitate comparison of fuel consumption and energy release. Simulation outputs were summarized in graphs and tables. Total net radiative heat transfer was calculated as

\[
Q_{\text{radnet}} = \sum_j \int \nabla \cdot q_{\text{rad}} \, dV_j
\]

where the sum is over all \(j\) cells comprising the tree crown, and \(V_j\) is the volume of cell \(j\).

To simplify the experiment, all fuel cells had the same fundamental combustion properties, with heat of combustion, defined as the heat released per kg of gaseous fuel, set at 17,700 kg⁻¹ (Susott, 1982), surface area to volume ratio constant at 4000 m⁻¹ and the drag coefficient was set at 0.375. A maximum burning rate was set as 0.4 as was the maximum dehydration rate, based on experiments of burning Douglas fir trees (Mell et al., 2009). Char fraction was set to 0.25, and foliar material density, \(\rho_f\), was 514 kg m⁻³ (Mell et al., 2009). Fuel moisture content was constant at 90% on a dry weight basis. The only form of variability considered in our

Fig. 5. Simulated tree views—example visualizations of a Ponderosa pine tree (Pinus ponderosa) simulated with the FUEL3D model; geometry is parameterized from field data. The top figure (a) shows an individual needle clump, middle figure (b) shows a tree modeled with explicit spatial detail to the level of individual needles. For most purposes, this representation is unwieldy; for this reason, groups of detailed smaller structures can be represented with larger simple bounding volumes, such as cylinders, as shown in bottom figure (c). Visualization is done using a ray tracing program.
Numerical experiment was thus variability in bulk density. Following the process of summarization to grid cells, each grid cell had a different quantity of fuel; this however exceeded the current capabilities of the WFDS model in terms of the number of fuel descriptions that could be handled. Fuels were therefore converted to categorical values with 100 different classes using a histogram approach.

2.8. Linking fire behavior and fire effects

For each of the four simulations (HL, VL, HH, and VH), we used an empirical tree mortality equation to assess the probability that the tree would be killed by the fire ($P_{mort}$), using the equation:

$$P_{mort} = \frac{1}{e^{(-1.941 + (6.315(1 - e^{-w})) - 0.000535s^2)}}$$

(15)

where $P_{mort}$ is the probability of mortality, $s$ is the percent crown volume scorched, and $w$ is the bark thickness in inches (Reinhardt and Ryan, 1988). Bark thickness was set at 0.63 in. (16 mm) based on observed bark thickness relationships for Ponderosa pine (Reinhardt and Keane, 1998).

3. Results

3.1. Field data collection

Branching architecture data collected from the BRANCHGEOM field study were analyzed independently by branch order. With the exception of the inter-whorl length, $L_i$, which is used only on the main stem, analysis found differences in parameter estimates for Beta distributions characterizing variability in branching were not sufficiently different to warrant modeling separately by branch order so data were pooled. Histograms characterizing numbers of child branches at a branching node were different enough between first order and other branch orders for separate histograms to be described. A summary of the parameters characterizing variability in branching architecture for Ponderosa pine is presented in Table 2.

3.2. Fire behavior simulation

3.2.1. Heterogeneous tree simulated with FUEL3D

Using the standard tree measurements as inputs to Eqs. (1) and (2), total crown biomass amounted to 99.233 kg of fuel of which

![Fig. 6. Distribution of fuel bulk density within a tree crown simulated with FUEL3D, summarized to voxels 0.25 m on a side: (a) horizontal slice at $z=2.625$ m; (b) horizontal slice at $z=2.375$; (c) vertical slice at $x=-0.125$; (d) vertical slice at $x=0.125$.](image)
3.2.2. Homogeneous tree

The homogeneous tree was assigned the same total amount of thermally thin fuel, 44.9060 kg, and the same combustion properties as used in the spatially variable tree crown. The principal difference between the homogeneous crown and the spatially variable crown was that the entire volume of the homogeneous crown had the same bulk density (0.626 kg/m³) while the spatially variable crown had a range of bulk densities.

3.2.3. Simulation results

Differences in the spatial configuration of fuels within the tree crown resulted in substantial differences in fire behavior (Table 3, Fig. 7); the nature and magnitude of these differences, however, varied with the intensity of the surface fire below the tree crowns (Fig. 8). In the lower surface fire intensity simulations, nearly 80% of the solid fuel was consumed in the homogeneous tree crown (HL), while only 0.4% of the solid fuel was consumed in the spatially variable crown, constituting a difference of nearly two orders in magnitude (Fig. 8). Similarly, total net radiative heat transfer, \( Q_{\text{radnet}} \), reached a maximum of 2677.9 kW for the HL simulation but only rose to 229.4 kW for the spatially variable, low intensity simulation (VL) – a difference of more than an order of magnitude (Table 3, Fig. 8). Differences were less pronounced in the high intensity simulations (HH and VH); both tree crowns ignited, with nearly 100% fuel consumption in the homogeneous case and nearly 85% consumed in the spatially variable case. Spatial variability in fuels within the crown also resulted in changes in the timing, magnitude and dynamics of total net radiative heat transfer. The spatially variable tree crown started burning later, reached a higher peak flux (3015 kW versus 2520 kW), burned over a longer time period, and had more complex burn history, with two different peak fluxes separated by about 15 s. Predicted tree mortality was consistent with observed trends in fuel consumption, where the only tree predicted to survive was the VL case, with a 27% probability of mortality; all other cases had over 90% probability of mortality (Table 3).

4. Discussion

4.1. Linking detailed fuel models with detailed fire models

In this study we used a relatively simple FSPM, FUEL3D, to develop inputs to an advanced fire behavior model, WFDS, and used simulation output from WFDS to predict an important fire effect, tree mortality. By linking a detailed, spatially explicit fuel model with a mechanistic fire behavior model we provide a framework that has significant potential to inform scientists and managers about a complex area, crown fire, which has so far only been modeled with fairly rudimentary approaches.

In comparison to many FSPMs, FUEL3D is quite simplistic, combining a simple pipe model biomass allocation with stochastic recursive branching to simulate structure. As a static model, FUEL3D does not simulate growth over time, nor does it deal with other aspects of plant physiology such as hydraulic relationships, carbon allocation or photosynthesis. This simplicity is by design. More complex, dynamic models of tree structure often require information that is difficult to obtain, such as a characterization of the growth environment over time (Balandier et al., 2000; Mathieu et al., 2009). Most questions relating to fire and fuels are more concerned with the immediate status of the fuel, and how it will burn at a given time, than with how the vegetation grew over time. By incorporating simple and typical measurements of tree height and height to the base of the live crown, and modeling branches one at a time within the crown, rather than building the whole tree mechanically, FUEL3D retains the flexibility to represent individual measured trees. The simplicity of FUEL3D’s design also makes it feasible to model fairly large numbers of trees, such as a tree list from inventory data. This improves its application with existing forestry inventory data and associated models.

More sophisticated FSPM’s have been developed which deal with plant physiology, growth, and how plants respond to, and affect their environment, but have only rarely been applied to questions relating to disturbance such as fire. Our study, and other recent related developments (Pimont et al., 2009; Krivtsov et al., 2009) suggest that use of FSPMs in conjunction with advanced fire models are an emerging frontier. Rather than simply providing nec-

![Image](80x390 to 320x785)

**Fig. 7.** Visualization of two different numerical fire behavior simulations at the same point in time \((t = 72 \text{ s})\). Dots represent tree crowns while smooth areas to their left represent the fire. Two tree crowds are presented: a homogeneous tree (a) and a spatially variable tree simulated with the FUEL3D model (b). Both tree crowds had the same quantity of fuel and gross dimensions but bulk density varied within the crown in (b). Surface fires had identical timing, intensity and geometry in both cases.
Fig. 8. Comparison of outputs from four different numerical fire behavior simulations with the WFD5 model. Solid lines show outputs for the homogeneous tree crown while dash lines show outputs for the spatially variable tree crown produced with the FUEL3D model. The top two figures compare solid fuel consumption between the lower intensity surface fire case (a) and higher surface fire intensity case (b), while the lower two figures compare total net radiative heat transfer between the lower surface fire intensity case (c) and the higher surface fire intensity case (d). Total fuel quantities were identical for all four simulations.

Our work here constitutes an early, but important step in improving linkages between disturbance processes and ecosystem response, strengthening our understanding of fire ecology.

4.3. Implications for fire ecology and fire behavior modeling

In our numerical experiment, we compared fire behavior between a homogeneous tree crown and a spatially variable tree crown produced with the FUEL3D model, for two different levels of surface fire intensity. We found that, despite the two trees having the same total quantity of fuel, variability within the tree crown resulted in very different fire behavior. At low surface fire intensity, the spatially variable tree crown did not burn while the homogeneous crown had nearly 80% fuel consumption. At higher surface fire intensity, the spatially variable tree crown was slower to ignite, but once burning, reached a higher peak total net radiative heat transfer, and exhibited more complex behavior. Thus, within a relatively narrow range of surface fire intensity, the homogeneous tree showed only incremental changes in fire behavior while the variable tree exhibited a much more dramatic response. This suggests a much more non-linear, threshold like response for the spatially variable tree than for the homogeneous tree. This has both implications for ecology and for fire behavior modeling.

Various authors have observed that, as a fire adapted species, Ponderosa pine has evolved to generate a surface fuel bed that is easily ignited and which favors frequent surface fire (Mutch, 1970; Habeck and Mutch, 1973). Similarly, many authors have discussed changes in fire behavior resulting from changes in stand density and structure in Ponderosa pine (Covington and Moore, 1994; Fulé et al., 1997, 2004; Moore et al., 2004), but relatively little work has been done at the scale of individual trees. It seems likely from our results that spatial variability within a tree crown could represent an adaptation tending to reduce the likelihood of sustained crown fire. More fundamental work along this line of inquiry is warranted.

Our numerical experiment has implications for fire behavior modeling, and particularly, for our ability to predict crown fire
behavior. The homogeneous tree crown burned faster and more consistently than the spatially variable crown. Fire behavior modeled with homogeneous fuels may thus tend to overestimate forward spread rates. Although we did not analyze this in this paper, we hypothesize that variability within the tree crown structure, and particularly the gaps within the crown, change the manner in which wind, as well as convective heat transfers, pass through the canopy. The slower burn time, and steeper threshold of response to an increase in surface fire intensity that we observed in the spatially variable tree crown suggests that variability tends to narrow the region of conditions in which propagation of fire can occur. If fire propagation through an individual crown is highly conditional, the predictability of fire spread may be limited. If this is the case, it may be necessary to adopt a probabilistic approach, in which key factors serve to shape probability distribution functions which describe whether individual trees catch fire, and by extension, whether crown fires propagate through whole stands of trees. More work is needed to examine the conditional nature of fire spread through tree crowns that is suggested by these results. Investigations linking more detailed models of fuels with advanced fire behavior models will help us to advance our understanding of what aspects of wildland fires are most pertinent to fire behavior.

Acknowledgements

We wish to acknowledge E. Reinhardt and R. Keane for use of data from their crown fuels field study. We greatly appreciate comments from two anonymous reviewers which were helpful in improving the clarity and organization of this manuscript. This study was supported by the USDA Rocky Mountain Research Station.

References


Rothermel, R.C., 1983. How to Predict the Spread and Intensity of Forest and Range Fires No. INT-115. USDA Forest Service, Intermountain Forest and Range Experimental Station, Ogden, UT.