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Abstract Reliable estimates of population parameters are
necessary for effective management and conservation
actions. The use of genetic data for capture–recapture
(CR) analyses has become an important tool to estimate
population parameters for elusive species. Strong emphasis
has been placed on the genetic analysis of non-invasive
samples, or on the CR analysis; however, little attention has
been paid to the simultaneous overview of the full non-
invasive genetic CR analysis, and the important insights
gained by understanding the interactions between the
different parts of the technique. Here, we review the three
main steps of the approach: designing the appropriate
sampling scheme, conducting the genetic lab analysis, and

applying the CR analysis to the genetic results; and present
a synthesis of this topic with the aim of discussing the
primary limitations and sources of error. We discuss the
importance of the integration between these steps, the
unique situations which occur with non-invasive studies,
the role of ecologists and geneticists throughout the
process, the problem of error propagation, and the sources
of biases which can be present in the final estimates. We
highlight the importance of team collaboration and offer a
series of recommendations to wildlife ecologists who are
not familiar with this topic yet but may want to use this tool
to monitor populations through time.
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Introduction

Wildlife conservation and research has benefited from the field
of molecular genetics (DeYoung and Brennan 2005). Our
ability to delineate populations, understand dispersal patterns,
detect hybridization, and count and monitor wildlife has
improved through the synergy of traditional wildlife biology
with molecular ecology (Schwartz et al. 2007). One area of
wildlife research, in particular, that has benefited from
molecular genetics is the estimation of animal abundance
and other demographic parameters (e.g., Boulanger et al.
2004; Kendall et al. 2009; Prugh et al. 2005).

Historically, estimation of demographic parameters on
species that are rare, elusive, difficult or expensive to
capture has been limited due to small sample sizes.
Advances in molecular genetics allows individual identifi-
cation from the collection of non-invasive samples (mainly
hairs and faeces), often eliminating the need to capture or
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handle an animal to uniquely mark it (Kohn et al. 1999;
Lucchini et al. 2002). Thus, “molecular tags” can now be
used to track individuals throughout their lives and capture–
recapture (CR) analyses can be applied to genetic data if
individuals are sampled sufficiently to estimate recapture
probabilities (Nichols 1992).

As these molecular genetic techniques become more
common for estimating demographic parameters, it
becomes even more important for both ecologists and
geneticists to recognize the unique attributes and subtleties
which may not be readily apparent to those unfamiliar with
genetic-based CR. For instance, consider the following
issues that must be deliberated when using a genetic-based
CR:

& What is the optimal sampling design for collecting
faeces or hairs to reduce biases and increase precision in
the population estimates?

& Given the potential for over-sampling (sampling an
individual many times in one sampling session) and the
cost per sample, how does a biologist prioritise which
samples to analyse to minimise individual capture
heterogeneity?

& To increase precision of estimates, is it better to
reanalyze existing samples to decrease genotyping

errors or to analyse additional samples already collected
during previous sessions?

& How does one resolve disparate results between the
laboratory and the field?

The overall process of using non-invasive genetic techni-
ques to estimate population size involves the following steps:
designing the sampling scheme, executing the study in the
field, conducting the laboratory analysis, ensuring quality
control of the genetic data, and ultimately using these
genotypes in a CR analyses to estimate population parameters.
In this review we concentrate on: (1) designing the appropri-
ate sampling scheme; (2) quality control; (3) and choice of
appropriate population models (Fig. 1) and the interaction
among these elements. Errors can occur at each step in the
process and novel situations unfamiliar to those knowledge-
able of one stage of the process, but not others, can arise. If
these situations are not handled and errors are not detected,
they can be propagated, causing biases in the final
demographic parameter estimates (Creel et al. 2003; Waits
and Leberg 2000). Much attention has been paid to the
limitations and pitfalls of non-invasive genetic analysis in
the last 10 years (Bonin et al. 2004; Mills et al. 2000; Waits
et al. 2001) and special efforts have been dedicated to
improve lab protocol to minimize genotyping errors (Paetkau

Fig. 1 A diagram showing the interactions between the three main
steps of the non-invasive genetic CR analysis, and the improvements
that each action can make in increasing (up arrows) precision (P),

decreasing (down arrows) bias (B) while increasing/decreasing effort
(E), in the estimation of population parameters
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2003; Taberlet et al. 1996). Recently, some attention has
shifted to the CR analyses of this non-invasive approach to
improve its application and interpretation (Petit and Valiere
2006), and a complete review of this part of the analysis has
been conducted by Lukacs and Burnham (2005). However,
an exhaustive overview of the overall process has not been
done yet, especially highlighting the critical links present
between steps.

In this paper, we examine the three main steps of a
genetic CR analysis to estimate demographic parameters,
with the aim of discussing the primary limitations and
sources of error. We provide a guide to effective
integration of these steps to highlight issues that may
be unfamiliar to either geneticists or ecologists. Our
purpose is to address issues which commonly arise when
wildlife biologists are initiating a molecular tagging
study for the first time, focusing both on conventional
issues (e.g., population closure and individual heteroge-
neity), and new issues, when genetic data are used in a
CR analysis. At the end of each section we offer a series
of recommendations to wildlife ecologists who are
relatively unpractised with this topic and may want to
use this tool to monitor populations through time. We
discuss the role of ecologists throughout the process, the
importance of the study design, the need for interpreta-
tion of the genetic results from an ecological prospective,
the problem of error propagation, and future research
needs in genetic CR analysis.

Sampling design for genetic “captures”: how to improve
accuracy starting with DNA sample collection

Strong inference with genetic CR estimates, like any other
study, can be achieved through proper sampling design,
reducing bias and increasing precision. In non-invasive
approaches, sampling designs will differ depending on
whether DNA samples are collected using a sampling
device which attracts the animal (“active sampling”, usually
adopted for hair collections) or simply discovered in the
field (“passive sampling”, usually adopted for faeces,
feather, regurgitates or urine collections). In this paper, we
will focus mainly on hairs and faeces collections, as
examples of an active and passive sampling, as they are
the techniques most cited in literature (e.g., Boulanger et al.
2006; Gleeson et al. 2010; Prugh et al. 2005), although we
recognize that other non-invasive samples are being used
for estimating abundance (e.g., Jacob et al. 2010). During
these collections, bias can be caused by violation of CR
assumptions (i.e., closure violation, individual capture
heterogeneity) whereas precision can be poor if the sample
size (i.e., number of genotyped individuals identified with
scats/hairs and recapture rates) is too small.

Reducing biases: population closure and individual capture
heterogeneity

In the past, study designs for genetic CR estimates have
rarely been defined a priori, and often a sampling
occasion was poorly identified (Lukacs and Burnham
2005). With important exceptions (e.g., Boulanger et al.
2006; Mulders et al. 2007), the number of sessions were
typically defined a posteriori, either because samples
were collected continuously with no formal sampling
schemes, or because non-invasive samples are hard to
accurately date, introducing uncertainty as to when the
animal left the sample (e.g., Kohn et al. 1999; Wilson et al.
2003). This can cause biases in applying CR models
because model assumptions can be violated (Boulanger
and McLellan 2001). We strongly suggest that the first step,
before initiation of non-invasive sample collection for a CR
analysis, should be to define the sampling occasions taking
into account the type of DNA collection and the behaviour
of the species. The decision of conducting an active or
passive DNA collection is dependent on the species of
study. More often active hairs collections have been
implemented in bear (e.g., Boulanger et al. 2004; Mowat
and Strobeck 2000) or weasels (e.g., Mowat and Paetkau
2002) studies while passive faeces collections in canids
(e.g., Marucco 2009; Prugh et al. 2005), marsupials
(Ruibal et al. 2009) or bats studies (e.g., Puechmaille
and Petit 2007). For both approaches, it is fundamental to
define sampling strategies which meet the population
closure assumption, if required by the CR model used in
the analysis, and minimize the problem of unexplained
individual capture heterogeneity. Here, we discuss how to
limit these two sources of bias from non-invasive
sampling design.

Population closure

Violation of population closure (immigration or emmi-
gration, deaths and births) (Pollock et al. 1990) is likely
if a lengthy sampling period, relative to the lifespan of the
species, is needed to obtain an adequate sample size. Long
sampling periods often causes positively biased estimates
when applying closed CR models or a robust design,
which require closure (Boulanger and McLellan 2001). A
robust design is one of the most useful design in CR
studies (Lukacs and Burnham 2005) and should be
considered among the first choices of sampling if the
objectives of the study are to obtain both accurate
abundance estimates and estimates of survival, emigration
rates, and trend over time (Pollock et al. 1990); however,
robust design is more difficult to apply, especially in
passive faecal sampling, where faecal deposition is
continuous.
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Several species are best captured by faeces collections due
to their behaviour (e.g., wolves, foxes, badgers, and ele-
phants). The sampling design for passive faeces collection is
usually organised on transects used to locate faeces on trails,
latrines, etc. that can be travelled multiple times. Each of the
temporally independent transects is often considered a
sampling occasion (Marucco 2009; Matejusová et al. 2008;
Ruibal et al. 2009). Closure assumptions are harder to meet
in this case, because it is often not logistically feasible to
sample transects often enough to collect large numbers of
faeces in short timeframes. Moreover, the actual time of
deposition is usually undefined, extending the actual time-
frame of sampling (Mulders et al. 2007). For instance, a scat
sampling period of several consecutive days was too short to
obtain a meaningful estimate of population abundance for
the spotted-tailed quoll (Dasyurus maculatus), and it took 7
to 8 weeks of scat sampling to achieve re-sampling rates
sufficient to obtain population estimates (Ruibal et al. 2009).
However, Ruibal et al. (2009) adopted a closed CR model
by focusing the sampling in May to June, when the
behaviour of the species justified closure assumptions
despite the long sampling period. Because well-defined
sampling occasions with short time intervals are harder to
conduct for passive faeces sampling, open CR models that
do not have a closure assumption may be better suited for
these situations (e.g., Cubaynes et al. 2010; Marucco 2009;
Prugh et al. 2005). The use of faecal detection dogs may
improve the efficacy of the collections for some species
(MacKay et al. 2008; Smith et al. 2005; Wasser et al. 2004).
Regardless, if a closed CR model is used, and short sampling
periods are not feasible, it is critical to conduct other field
tests (e.g., radiocollared animals, videos and observations) to
check for violation of closure assumptions (e.g., Powell et al.
2000) (Fig. 1).

Active collections of hair samples are more suited for
meeting the closure assumption: they are usually conducted
with hair traps, allowing the researcher to clearly identify
the number of occasions (i.e., the hair snags are checked at
certain time intervals), the kind of sampling (e.g., random,
systematic and adaptive), and the number of grids (i.e.,
power), with the ultimate goals of the sampling design
being robust to capture heterogeneity and maximising
geographic closure (Boulanger et al. 2004).

Individual capture heterogeneity

Individual capture heterogeneity is one of the most frequent
issue in non-invasive CR studies as it biases the estimates
(Lukacs and Burnham 2005; Prugh et al. 2005). Whenever
possible, it is very important to minimize differences in
capture probabilities between individuals (i.e., collecting
scats or hairs in equal numbers among individuals, avoiding
differences in sampling intensity between sex, age, social

status, etc.) (Fig. 1). This should be first attempted via the
sampling design in a species and study-specific manner.
Here, we first discuss issues of individual capture hetero-
geneity with faeces and then with hair collections.

For minimising individual capture heterogeneity passive
faeces sampling might have some advantages compared
with traditional CR studies. Faeces sampling may be less
affected by the “trap-shy” or ‘trap-happy’ behavioural
response, typical of animal’s responses to bait posts used
to collect hairs (e.g., Boulanger et al. 2006) or capture
individuals (Lebreton et al. 1992). However, it is critical to
know deposition patterns and home ranges of individuals to
calibrate a faeces sampling scheme for minimising capture
heterogeneity while at the same time controlling for a “trap-
happy artefact”. From a biological perspective, it is unclear
if there is a behavioural response to having scats removed
for collection, which may induce a trap-happy or trap-shy
response. Therefore, problems of individual capture hetero-
geneity in passive sampling can be related to differing
behaviour of individuals with respect to the probability of
finding their faeces. For instance, Marucco (2009) found
that dominant wolves (Canis lupus) strong marking
behaviour can increase their capture probabilities, especial-
ly if their faecal signs are deposited at marking sites, which
are easier to see and collect. To minimize this problem, the
authors found that the best sampling design was along wolf
snow tracks because they increased the probability of
sampling each individual in the pack, thus minimising the
effects of differences in individual marking behaviour.
Similarly, Eggert et al. (2003) followed elephant trails to
collect fresh dung, but this sampling design likely over-
represented larger elephants group, whose trails are more
obvious to the human eye, thus possibly causing capture
heterogeneity. Ruibal et al. (2009) showed that seasonal
differences in scent-marking behaviour of the spotted-tailed
quoll can produce sex- and age-sampling biases. They
showed the higher likelihood that subadult individuals
dispersed by May and the peak in scat deposition during
May and June suggested that scat sampling at this time of
year was optimal for this species.

For active hair sampling, Boulanger et al. (2006) found
that one of the main causes of heterogeneity in recaptures
of grizzly bears (Ursus arctos) was low capture probabil-
ities for bear females with cubs. A field solution, moving
baited sites within each sampling grid, was used to reduce
this capture heterogeneity-induced bias. Boulanger et al.
(2004) found that calibrating the distance between traps to
the grid edge could also minimize heterogeneity in
recaptures. Settlage et al. (2008) showed that using a
grizzly bear study hair sampling design for black bears in
the Southern Appalachians (USA) was not suitable to yield
accurate abundance estimates due to the small home ranges
of black bears causing individual capture heterogeneity.
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The same outcome (i.e., heterogeneity in p) has been
documented for wild boar (Sus scrofa) non-invasive
sampling (Ebert et al. 2009). Ebert et al. (2009) used
videos to test if hair traps could sample wild boar randomly
for the purpose of non-invasive population estimation.
Video analysis revealed differences in the behaviour of
adult and subadult wild boars with respect to the baited hair
traps, which produced heterogeneous individual sampling
probabilities. They suggested that for social species, such as
wildboar which can occur in groups of up to 30 individuals,
collections through baited hair traps might create non-
representative genetic samples causing increased bias due
to heterogeneity in detection probability.

Therefore, before initiating either a passive or an active
non-invasive study, it is fundamental to analyse all possible
sources of capture heterogeneity related to the type of DNA
samples collected and the behaviour of the species, and to
design a sampling scheme to minimize them. If this is not
accomplished, it is of critical importance to collect a large
sample, representative of a large proportion of the popula-
tion, to allow high recapture rates (Fig. 1). High recapture
rates will allow detection and correction of individual
capture heterogeneity. Subsequently, it is important to
collect data in the field (e.g., with videos, tracks, etc.) on
possible sources of variation which cause differences in
capture rates (e.g., indications on the social status, age of
the individual, behaviour, location within the home ranges,
circumstances of sample collection, etc.). Greater effort in
identifying potential sources of heterogeneity is recommen-
ded in non-invasive CR studies than in traditional CR
studies, because visual covariates (such as body condition,
age, size, etc.) are not collected with non-invasive samples,
as they would be with captured animals.

Increasing precision: sample size, lab success rates,
and money

In traditional CR analysis, researchers often aim to increase
sample size to produce higher capture probabilities and
subsequently increase the precision of population parameter
estimates. In addition, it is common to formally estimate
robustness to capture heterogeneity (Boulanger et al. 2004).
White et al. (1982) show that accurate population estimates
require average capture probabilities of >0.30 when N<
100. Small sample sizes coupled with low capture proba-
bilities tend to negatively bias population estimates (White
et al. 1982). In genetic CR studies, the strategy is the same;
however, it is important to recognize that an increase in
sample size can simultaneously increase the number of
genotyping errors, which, in turn, can increase unexplained
“apparent individual heterogeneity” in recaptures and
introduce biases into the estimates. Therefore, the tradi-
tional methods of increasing sample size to increase the

ability to detect and model capture heterogeneity should be
carefully considered because, unless the genotyping error is
zero, this solution could be ineffective and costly. Further-
more, it is unlikely that the genotyping error is ever zero
(Bonin et al. 2004). This is one of the greatest dilemmas in
genetic CR sampling.

Sample size can be increased with increased sampling
effort as in typical CR sampling. Sample size can also be
increased by increasing lab success rates (the percentage of
the samples analysed in the lab that give positive multilocus
genotyping results) and recapture rates can be increased
decreasing genotyping errors (Fig. 1). Solberg et al. (2006)
recommended that studies using non-invasive genetic
methods based on faecal samples should aim at collecting
2.5–3 times the number of faecal samples as the “assumed”
number of animals (considering that in their lab analysis
approximately 20–30% of the samples could not be
genotyped). Lab success rates for faecal samples can be
lower than that, and in such cases a more faecal samples are
necessary to sample the population (Marucco 2009).
Therefore, if laboratory success rates are not known, we
recommend a pilot study, a critical step that is often
overlooked in non-invasive CR analyses (Schwartz and
Monfort 2008; Valiere et al. 2007), which should give
average lab success rates and an indication on the best types
of samples (i.e., storage method, or timing of sampling
collection) (Fig. 1). Alternatively, it has been helpful to
target for collection faeces or hairs with higher probabilities
of amplification (e.g., fresh faeces collected in the winter on
snow give a higher lab performance—Lucchini et al. 2002).
For example, McKelvey et al. (2006) found that scat and
hair sampling for Canada lynx (Lynx canadensis) was more
efficient during winter snow-tracking than using hair-
snaring techniques in summer. This was due to samples
being better preserved in the winter where they were likely
frozen upon deposition. In addition, sampling along snow-
tracks served as an effective screening mechanism for
eliminating non-target species, optimising the use of funds
for laboratory analysis.

Investigators should plan an annual budget based on a
desired level of precision and number of recaptures. This
should be done taking into account the average lab success
rate for a given species in a given area, and considering that
over-sampling (sampling an individual many times in the
same sampling session) should be minimised (Fig. 1). This
procedure will decrease costs and potential biases in genetic
CR estimates, because each sample has a risk of creating a
new individual if genotyping error occurs, which can inflate
the population size estimate (Creel et al. 2003; McKelvey
and Schwartz 2004). If the species of interests is charac-
terised by high recapture probabilities during the same
sampling session (as typical for clusters of faeces sampled
at latrines, feeding sites, resting sites, etc., which is data
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that is typically not used in ordinary CR analyses), it is
possible to randomly reduce the number of samples
collected per session to reduce costs..

Adams et al. (2003) have recommended using the spatial
pattern of faecal deposition as an initial criterion for
prioritizing samples to analyse. At the same time it is
suggested to keep the samples collected and not analysed for
future analysis, in case the primary samples fail to amplify.
In fact, we still suggest collecting a large number of high
quality samples during the sampling occasions whenever it is
possible, more than initially needed for analysis in the lab.
One of the important differences between genetic CR,
compared with traditional CR, is that it is always possible
to increase the number of recaptures later if the samples have
already been collected. This is accomplished by analysing
additional samples in the lab from the sampling occasion of
interest. However, subselections of samples have to be
random as to not introduce bias in the analysis. In fact, in
some cases it could be more important to invest new funding
in additional lab analyses to increase recapture rates and
decrease standard errors of a sampling occasion, rather than
perform new analyses on a new sampling occasion. If there
are no biological reasons to suspect heterogeneity problems
in the sampling design, the presence of unexplained
recapture heterogeneity in the data can be evidence for the
presence of genotyping errors. If this is the case, more effort
should be invested in additional replicates of current samples
rather than analysing new samples.

Synthesis of recommendations

1. Based on the biology of the species, determine if
greater precision, less bias and effort is possible using
an active non-invasive genetic sample collection or a
passive one.

2. Clearly define the study design and sampling occasions
prior to collecting non-invasive genetics samples. This
includes taking into account the biology of the species,
its faecal deposition patterns, the assumptions of the
CR models to be used, and the number of samples
expected to be analysed in the genetic lab to reach the
desired level of recaptures while avoiding over-
sampling and individual heterogeneity in recaptures.

3. Investigate the possible violations of CR model assump-
tions inherent in the non-invasive method of choice, and
control them through the sampling design first.

4. If closure assumptions are required, but long periods of
sampling are needed, other field tests (e.g., radio-
tracking) need to be conducted to check for closure
violations.

5. If capture heterogeneity is hard to avoid, plan to collect
data on important covariates to explain individual
heterogeneity in the model framework.

6. Plan your funding for a desired level of precision,
considering the field effort to collect samples, the lab
success rate, and the issue of minimising genotyping
errors.

Laboratory analysis and interpretation of genetic results

The presence of genotyping errors, a phenomenon that can
occur when working with low quality DNA samples such
as faeces and hairs, causes important biases in genetic CR
estimates. In recent years this topic has been heavily
reviewed (e.g., Pompanon et al. 2005; Broquet et al.
2007), thus we will only briefly discuss it here. Two main
types of genotyping errors occur: allelic dropout which
occurs when only one allele of a heterozygous individual is
detected creating an erroneous homozygote, and false
alleles that can make a homozygote appear to be a
heterozygote (Pompanon et al. 2005). Partial null alleles,
which occur when there is a mutation at the priming site’s
sequence causing primers to irregularly attach to the
sequence of certain individuals, are another less common
source of genotyping error (O'Connell and Wright 1997),
but have been often overlooked (Wagner et al. 2007). In
addition to these errors, there are human errors such as
scoring and transcription errors. Most commonly, genotyp-
ing errors create the appearance of additional “false”
individuals in the population that will never be recaptured
unless the error is exactly repeated (Waits and Leberg
2000). Partial null alleles also create false individuals, but
at least these can be recaptured, because the error is
systematic (Marucco 2009).

Genotyping errors cause biases in the estimates leading
to overestimation of abundance, because they increase the
minimum population size detected and lower the probabil-
ity of recapture (Lukacs and Burnham 2005; McKelvey and
Schwartz 2004). For example, Creel et al. (2003) compared
non-invasive faecal DNA results to a known population,
and found that genotyping errors caused wolf population
estimates to be biased upward by 5.5 times the real
population size. Moreover, the presence of genotyping
errors can appear as an unexplained “apparent individual
heterogeneity” in recaptures and introduce biases into the
estimates as the appropriate “true” model will not be
supported. This apparent individual heterogeneity, which
is generated by the presence of “false” individuals created
by random genotyping errors, is hard to handle in a model
framework, because there are no covariates related to
individuals or sampling design that can be considered to
explain this variance.

In addition to genotyping errors, researchers have
identified a shadow effect, which can occur when individ-
uals share the same molecular tag due to using an
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insufficient number of variable molecular markers (Mills et
al. 2000). When the shadow effect is present, individuals
cannot be distinguished from each other (Mills et al. 2000),
leading to underestimation in population size. Fortunately,
underestimation of abundance caused by the shadow effect
can be identified using population level statistics such as
probability of identity (PI) and probability of identity of
siblings (PISIB), and eliminated by increasing the number of
variable molecular markers used to produce a molecular tag
(Mills et al. 2000). One problem with using the probability
of identity statistics is that they are population level
statistics which assume no inbreeding, or population
structure, and most populations have some undetected level
of subdivision or structured composition, whether created
by landscapes, social behaviour or territorial dynamics
(Ayres and Overall 2004). Ayres and Overall (2004)
developed a new and more robust probability of identity
test (PIAVE) which take into account these factors, as well as
the relatedness structure of the population. However, these
statistics are seldom used in the literature and have not been
thoroughly evaluated in natural populations. In general,
considering the proliferation of molecular markers for many
taxa available, the shadow effect is a less serious concern
than genotyping error.

Lab protocols and techniques are constantly improving
and this includes developing systems which minimize
errors (Kalinowski et al. 2006; Miller et al. 2002; Paetkau
2003; Valiere et al. 2002). Several approaches to minimize
errors in the lab have been proposed: the multiple-tube
approach (Taberlet et al. 1996), simulations to identify
errors and to quantify them (Kalinowski et al. 2006;
McKelvey and Schwartz 2004; Miller et al. 2002; Valiere
et al. 2002), intensive error checking which involves
scrutiny of pairs of genotypes which differ by only one or
two alleles (1MM and 2MM pairs) and subsequent
discarding of poorly performing samples (McKelvey and
Schwartz 2005; Paetkau 2003), quantifying species-specific
DNA prior to use (Morin et al. 2001), and several other
approaches (reviewed in Bonin et al. 2004; Pompanon et al.
2005). The more approaches used, the more error that will
be detected (Fig. 1). Population size estimation will be
continually advanced by new DNA genotyping technolo-
gies, which will allow minimization of errors (Perkel 2008).

An additional way to check laboratory errors is through
the use of independent field data and the foresight to
preserve some of the laboratory budget to re-examine any
samples which produce results incongruous with field
information. This is an important and critical step before
initiating the CR analysis. For example, wildlife biologists
could compare genotyping data to Geographic Information
System (GIS) data (Smith et al. 2006), radio tracking
information, and the behaviour and ecology of the study
species to find incongruities in the data. The genotypes that

cause these incongruities should be reanalyzed in the
laboratory. Smith et al. (2006) established a series of GIS
based rules that examined distances between collected scats
and territory sizes on California kit fox (Vulpes macrotis
mutica) to check their genetic results. Marucco (2009) used
a similar technique for wolves in the Alps.

While all of these error detection techniques are rapidly
improving, we can still expect a small percentage of
residual errors in the final dataset, and a clear and universal
way of estimating the error is not yet available. Generally,
the level of dropout errors or false alleles reported in a
genetic CR study is estimated from the ongoing lab analysis
(Broquet and Petit 2004) and refers to the documented error
already removed in the lab. Virtually every final data set
obtained by genotyping likely contains some residual errors
(Bonin et al. 2004); these errors should not be ignored
because they may bias the final results.

In human forensic science error rates in the final dataset
are well discussed. Human forensic labs have extremely
strict rules and developed a series of recommendations for
those data that should or should not be used in an
investigation (e.g., thresholds of peak height, sister peak
high ratios, etc.) (Budowle et al. 2009; Penacino et al.
2003). Saks and Koehler (2005), however, extensively
discussed how forensic scientists often reject error rate
estimates in favour of arguments that theirs is an error-free
science. Since its beginnings, forensic DNA testing was
surrounded by an aura of infallibility; nevertheless, errors
may occur also in forensic DNA typing (Penacino et al.
2003). To combat this preconception, Saks et al. (2003)
suggested that forensic scientists might adopt protocols,
such as blind test samples that minimize the risks that their
success rates will be inflated and their conclusions biased
by extraneous evidence and assumptions. Saks and Koehler
(2005) even suggest conducting these blind external
proficiency tests by an agency unaffiliated with the forensic
scientist's laboratory. Externality is important to the
integrity of proficiency tests because laboratories have
strong incentives to be perceived as error free. They also
argued that the best test would be one where the analyst
believes the test materials are part of their ordinary case
load, thus these samples would be treated as any other
samples entering the laboratory. This approach would be
appropriate for non-invasive studies of wildlife, to improve
the error identification process.

Overall, it is important to acknowledge that genotyping
errors might not be completely eliminated using any lab
protocol, and then working with the lab to assess the quality
of the final multilocus genotypes to have the most reliable
results for subsequent CR analysis. This can be achieved by
using sample quality quantification methods, such as the
one suggested by Miquel et al. (2006) which provides
“quality indexes” for each sample and genotype based on
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the sample’s performance during multiple laboratory anal-
yses of it. Alternatively new species-specific quality indices
can be derived by using a combination of genetic
information and independent field data based on the
biology of the species.

When incongruence between the lab and the field data
occur, or the quality of the final sample is considered
“low”, several solutions exist. The best option may be to
perform more replicates in the lab until results are deemed
reliable. A second option is to remove the sample from the
analysis, but the discarded samples might not be random
with respect to identity, thus introducing biases into the
population estimate (Creel et al. 2003; Lukacs and
Burnham 2005), hence, this issue should be checked. A
third approach is to consider it a low quality or uncertain
sample and use it in the analysis as such (obtaining a range
of genotypes, and thus subsequent CR analysis, with and
without uncertain samples).

Synthesis of recommendations

1. Conduct a pilot study to determine sample success
rates.

2. Select the minimum number of variable molecular
markers needed to produce a molecular tag that
eliminates the problem that individuals share the same
molecular tag while minimising the probability of
having genotyping errors.

3. Conduct blind laboratories tests on ordinary case
samples for the species of interest to quantify the
quality of the final genetic results and further under-
stands problems of genotyping errors.

4. Adopt multiple approaches to detect genotyping errors
in the laboratory.

5. Use the wildlife biologist’s knowledge of the study
species and field data to pinpoint genetic results
incongruous with field information.

6. Remove poor quality samples or treat them in a model
framework as such (see next section), assessing the
quality of the final multilocus genotypes.

CR analysis of a non-invasive genetic dataset

There are many reasons to collect non-invasive genetic
samples for species identification. Sometimes the simple
detection of a rare species is valuable information (Dematteo
et al. 2009; Zielinski et al. 2006) while other times a
collection of these detections are used for occupancy
modelling (MacKenzie 2006). When non-invasive samples
are collected opportunistically or haphazardly they may
prove difficult for estimating abundance in a CR analysis,

because of inadequate recapture rates. Rarefaction curves
might be used in this case, but they will be biased under
nearly all conditions (e.g., Eggert et al. 2003; Frantz and
Roper 2006; Kohn et al. 1999).

Moreover, some unique situations could occur with genetic
recaptures which are opportunities but still difficult to include
in CR analysis: the recapture of an individual (e.g., from
collected faeces) after the individual is found dead, or multiple
detections of a single individual within the same day (e.g.,
cluster of faeces at latrines, or at kill site, or at resting sites are
frequently from the same individual). So far, these kinds of
data have been discarded or lumped together into a single
detection to allow use of standard CR analysis. However,
there are opportunities to take advantage of this rich, genetic
data stream. For example, solutions have been developed for
the situation where there are multiple detections within a
single sampling occasion, something which is not common in
traditional CR analysis. Miller et al. (2005) present ways to
take advantage of these extra data. The ability to estimate
population size from single sampling sessions have been
developed by using maximum likelihood or a Bayesian
estimator (Gazey and Staley 1986; Petit and Valiere 2006;
Puechmaille and Petit 2007). Lukacs (2005) developed
alternative methods for using multiple encounters of an
individual within a sampling occasion to estimate population
size. These models still rely on the assumptions that the
population is stable, closed, and has no capture heterogene-
ity. Furthermore, these sampling methods are limited because
they can only be used to estimate population size, and do not
allow estimation of survival or other demographic parame-
ters that can be readily estimated with a multi-session
approach (Lebreton et al. 1992).

If individuals are sampled often enough to estimate
recapture probabilities over sessions, CR analysis should be
applied. CR analysis strengths are that they can account for
the sampling design, are designed to study the process that
generates the data (Lukacs and Burnham 2005), and can be
more efficient in the data analysis producing robust
estimates of abundance with given levels of precision
(Nichols 1992). CR analysis also can estimate population
parameters other than abundance, which is important for
management and conservation. Unfortunately, CR analysis
are also data intensive.

Lukacs and Burnham (2005) provided an initial overview
of the CR analysis of a non-invasive genetic dataset,
considering the pros and cons of using a closed model,
open model, or a robust design. We particularly concur with
one of their principle assertions that before running analysis
of population size estimates, the dataset should be checked
for capture heterogeneity, and any other assumption viola-
tions. In particular, with genetic datasets, other important
assumptions, such as no animals having lost their marks and
all marked animals are correctly reported (i.e., in genetic
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studies these mean no genotyping errors), should also be
tested. Most CR models (e.g., Cormack–Jolly–Seber (CJS)
model) are tested for assumption violations using goodness
of fit tests (Lebreton et al. 1992, 1993). Once fit is assessed
and a model is chosen (see Lukacs and Burnham 2005) two
main issues unique to genetic CR modelling remain: how to
handle the presence of the remaining genotyping errors in
the dataset, and how to handle the individual heterogeneity
in recaptures, if present.

Modelling genotyping error

CR analysis can be the last check of the genetic dataset
(Fig. 1). In fact, Paetkau (2003) and Lukacs and Burnham
(2005) reported that datasets which have not been heavily
scrutinized both by geneticists and ecologists often show
either geographical closure violations or presence of
heterogeneity in recaptures without biological explanations
(Lukacs and Burnham 2005). The apparent violations of
assumptions often disappear when the datasets were heavily
scrutinized and errors removed (Paetkau 2003). Marucco
(2009) noticed that the probability of detection (i.e., the
recapture rates) did not decrease with an increase in
population size through time, and the estimates of popula-
tion size did not increase with increases in sample size.
These two indices are a good indirect check that there are
no major genotyping errors in the dataset.

We suggest two possible ways to deal with the presence
of the remaining genotyping error. If it is believed that the
error rate can be considered “negligible” (i.e., it passes the
screens such as implemented in McKelvey and Schwartz
2005), then an initial step would be to conduct the analysis
without including the genotyping error rate. However, it is
advisable to subsequently simulate different levels of error
to evaluate the potential impact of errors on the estimates of
population size. This simulation allows one to determine if
indeed the error rate is negligible on the final population
estimate. Moreover, if the quality of samples has been
evaluated (e.g., Miquel et al. 2006), it is possible to
estimate abundance using different quality levels of
samples to identify possible biases. Genotyping errors lead
to different patterns of misidentification in CR data (see
“Sampling design for genetic “captures”: how to improve
accuracy starting with DNA sample collection”), and their
effects on estimates differ depending on how and which
errors are introduced into the data. Building an appropriate
model for CR data with genotyping errors requires a clear
understanding of the misidentification mechanism; when
different patterns of misidentification occur simultaneously
(which is often the case), it is very difficult to build a
likelihood-based model to analyse CR data. Simulations of
the misidentification patterns are now a good solution to
explore the effects of the simultaneous presence of different

types of errors. Yoshizaki (2007) has developed models for
performing such simulations.

A second option is to use CR models that have been
developed to include a parameter that estimates the
genotyping error rate (Lukacs 2005). In the past, correc-
tions have been developed for errors in identification using
markers other than DNA (Stevick et al. 2001), or for tag-
misreading (Schwarz and Stobo 1999). These methods
account only for false negative errors in identifications,
which only decrease the probability of detection, and have
not been applied to genotyping errors, which also produce
false individuals caught only once, or false individuals
caught multiple times. The models developed by Lukacs
(2005), which incorporate genotyping errors, are for closed
population models and robust designs, and rely on multiple
realistic assumptions, such as that the shadow effect does
not exist, that two genotyping errors are never the same,
and that a genotyping error does not produce the same
genotype as an existing “real” individual (Lukacs and
Burnham 2005). One potential problem with these models
is that they cannot separate the effects of a closure violation
from potential genotyping errors: both can lead to an
overabundance of individuals captured only once. Unfortu-
nately, closure is often violated to some extent; hence, these
models are only useful if a lab-based residual error rate
exists (which is often difficult to estimate). Moreover, the
models have a problem with the model structure and
identifiably of the parameters (Yoshizaki 2007). Recently,
other CR models have been developed which incorporate
genotype errors for estimating abundance using DNA
samples (Knapp et al. 2009; Wright et al. 2009). It will be
interesting to test model performance in several real case
studies and situations where abundance is known.

Dealing with individual heterogeneity

As noted above, it is important to first try to minimize
individual capture heterogeneity issues using an optimal
sampling scheme (Fig. 1). If individual heterogeneity exists
in the dataset (this should be tested with goodness of fit tests),
then the solution is to model it, explaining this variance by
using covariates related to individuals, their behaviour, or
other important biological and environmental variables.
Studies should be designed to ensure that sample sizes (i.e.,
capture probabilities) are high enough so that models are able
to detect heterogeneity if present and be robust to capture
heterogeneity (Williams et al. 2002). A flexible framework of
likelihood-based models which allows for individual hetero-
geneity in survival and capture rates have been developed for
closed and open CJS models (Pledger et al. 2003). A large
literature is available to deal with individual heterogeneity
(Williams et al. 2002); the key to this is ensuring adequate
encounter rates.
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In a simulation study, Roon et al. (2005) found out that
estimators such as Mh-Jackknife or Mh-Chao are highly
sensitive to the probability of recapture and thus may
exacerbate the impact of genotyping errors, suggesting that
heterogeneity estimators in closed population models
should be used with caution in non-invasive genetic studies.
In fact, one of the most difficult problems facing estimation
of animal abundance is the unexplained individual hetero-
geneity, or “apparent” individual heterogeneity (Lukacs and
Burnham 2005; Pledger and Efford 1998; Prugh et al.
2005), which can be caused by genotyping errors, and/or
other issues such as the presence of transient individuals.
Models that take into account cases of “apparent” individ-
ual heterogeneity resulting from the capture of animals just
passing through a population of resident animals (i.e.,
transients) have been developed (Pradel et al. 1997a, b). In
fact, transience, like genotyping errors, can make it appear
that there is more individual heterogeneity than there really
is. Modelling transience explicitly is a way to explain
apparent individual heterogeneity in CR data. Cubaynes et
al. (2010) estimated the size of an open population of
wolves in France with non-invasive genetic data, where
they detected heterogeneity and did not have data on
possible covariates which could explain this heterogeneity.
Therefore, they developed a multi-event CR model where
they considered a two-class mixture model with weakly
and highly detectable individuals to account for individ-
ual detection heterogeneity. They found an underestima-
tion of population size up to 27% when individual
heterogeneity was ignored. This is an interesting solution
for modelling heterogeneity, especially when covariates
related to age or social status are not available for the
captured individuals, which is a typical case if dealing
with genetic datasets. Future studies could include
estimates of individual’s age directly derived from non-
invasive DNA samples (Luikart et al. 2010), very
important for having covariates related to genotypes,
which will improve non-invasive CR population size
estimation.

Synthesis of recommendations

1. Assess the fit of the CR model and the extent to which
its assumptions are violated.

2. Acknowledge the possible presence of genotyping error
and consider how various levels and types of genotyp-
ing error will impact the final demographic estimate
through simulations.

3. Use newly sophisticated models that incorporate gen-
otyping errors, taking into consideration that some error
patterns have not been considered yet.

4. If individual heterogeneity is present, try to model it
with respect to the sampling design.

Management implications and future needs

Genetic CR analysis is a highly promising tool to
estimate population parameters and monitor populations
through time (Schwartz et al. 2007). However, part of the
studies mentioned in this paper and the discussion
developed above demand attention and follow-up inves-
tigations. We suggest that in general it will be important
that genetic CR analyses increase candour about perfor-
mance and create pressure for improvement. Tests of the
overall technique in controlled settings such as captive
facilities (i.e., genetic CR analysis based on known size
populations) are strongly needed.

It is interesting that most studies which applied genetic
CR analyses produced population size estimates 30–50%
larger than estimates obtained with traditional methods
(e.g., Cubaynes et al. 2010; Guschanski et al. 2009; Kendall
et al. 2009; Marucco 2009; Solberg et al. 2006; Zhan et al.
2006). For instance, Zhan et al. (2006) reported that the
molecular census of the giant panda (Ailuropoda melano-
leuca) in China was doubled than that previously estimated
with traditional methods. This is likely due to the
application of CR analysis which account for undetected
individuals, providing more accurate estimates. However,
we discussed how the presence of residual genotyping
errors in final datasets used for CR analysis is still not well
quantified, which can cause overestimation of abundance. It
will be important in the future to investigate this aspect
further because these genetic CR estimates might be used
for management and conservation decisions.

If ecologists wants to use this technique for the first time,
they need to carefully test for the possible biases cited in
this paper, as well as plan to still use traditional methods to
estimate population size to compare to baseline approaches.
We emphasised the problem of looking at errors indepen-
dently at each of the three steps of the approach, because
errors accumulate and can propagate. Improving the
sampling design to increase accuracy, developing species-
specific protocols for specific objectives, improving genetic
lab protocols, and the ecological interpretation of the
genetic results will additively improve CR estimates
(Fig. 1). This process requires a strong collaboration
between geneticists, wildlife ecologists, and statisticians
knowledgeable in capture–recapture. Ecologists must have
a solid understanding of genetic techniques and understand
that genotyping errors are inherent in the system and cannot
be totally removed while geneticists should fully recognize
the important insights which come from the field data and
not be upset by being asked to conduct specific blind tests.
Overall, close collaboration between ecologists and geneti-
cists is fundamental to correctly amalgamate field data with
genetic data and define species-specific protocols for
assessing quality in genetic CR analysis.
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However, limitations and specific sources of error will
always be present using a non-invasive dataset in a CR
analysis. This can have huge implications for manage-
ment of rare species, especially if biases are present and
standard errors of estimates are large (Begon 1983).
Future efforts should be focused on quantifying in a
standardized way the residual genotyping errors and better
use the ecological knowledge in the error checking
process. Even if the first two parts of the process are
conducted properly, modellers should still try to solve
individual heterogeneity problems and incorporate the
different patterns of residual genotyping errors in models,
topics currently of interests to researchers.

As this field of genetic CR advances, it will be possible
to apply the technique to more complex situations already
well developed in traditional CR studies, such as the
estimation of survival rates, movement or transition rates,
recruitment, and population growth (Williams et al. 2002).
Moreover, it is possible to also apply multistate CR models
(Lebreton and Pradel 2002) which are sophisticated models
for handling heterogeneity of capture and for investigating
spatial aspects of metapopulation dynamics. The great
promise with genetic CR analysis is that this will be
possible for small or endangered populations, where
disturbance to the animal is minimised. The non-invasive
genetic method, besides being suited for large-scale
monitoring (e.g., Flagstad et al. 2004; Kendall et al.
2009), also has several other advantages. The genetic data
obtained from the non-invasive analysis contain informa-
tion that could be used for additional purposes not related to
estimating population size, such as estimating effective
population size (Luikart et al. 2010) and other genetic
parameters (i.e., structure, gene flow, or relatedness),
although the number of markers required for this type of
analysis might be higher than the number required for
individual identification. In this way, with just one
monitoring approach, a population can be demographically
and genetically monitored over time and at a large scale.
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