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Abstract.

Wildfire is a major forest disturbance in interior Alaska that can both directly and indirectly alter ecological

processes. We used a combination of pre- and post-fire forest floor depths and post-fire ground cover assessments
measured in the field, and high-resolution airborne hyperspectral imagery, to map forest floor conditions after the 2004
Taylor Complex in Alaska’s boreal forest. We applied a linear spectral unmixing model with five endmembers
representing green moss, non-photosynthetic moss, charred moss, ash and soil to reflectance data to produce fractional
cover maps. Our study sites spanned low to moderately high burn severity, and both black and white spruce forest types;
high cover of green or non-photosynthetic moss in the remotely sensed imagery indicated low consumption, whereas high
cover of charred moss, ash or soil indicated higher consumption. Strong relationships (R* = 0.5 to 0.6) between green moss
estimated from the imagery and both post-fire depth and percentage consumption suggest that potential burn severity may
be predicted by a map of green (live) moss. Given that the depth of the post-fire forest floor is ecologically significant, the
method of mapping the condition of the organic forest floor with hyperspectral imagery presented here may be a useful tool

to assess the effect of future fires in the boreal region.

Additional keywords: burn severity, carbon, duff, hyperspectral remote sensing, moss.

Introduction
Alaska boreal forest fires and fuels

Large, high severity wildfires have significantly altered the
landscape in Alaska’s boreal forest in recent years. In 2004,
2.7x 10°ha burned, and in 2005, 1.9 x 10°ha burned; the
combined area burned during these 2 years accounts for nearly
10% of Alaska’s boreal forest. Global climate change models
predict warmer, longer and drier summers (Soja et al. 2007)
leading to greater fire occurrence and severity (Flannigan et al.
2000, 2005; Gillett et al. 2004; Kasischke and Turetsky 2006)
and a significant change in carbon storage and emissions
(Kasischke et al. 1995a; Tan et al. 2007). Historically, wildland
fires in the boreal forest tended to burn infrequently, as condi-
tions were commonly too wet to burn. Typically, these fires
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burned slowly, over long periods of time, and created a large
patchy mosaic of fire effects that were generally stand-replacing
in black spruce (Picea mariana) forests (Foote 1983; Murphy
et al. 2000). Recent large, severe fires have burned extensive
areas and, in some cases, consumed future seed sources and
exposed permafrost (Johnstone and Kasischke 2005; Johnstone
and Chapin 2006). Extreme fire years have drawn attention to
the role climate change may play in increasing the size, fre-
quency and severity of future wildfires (Flannigan et al. 2000).

Wildfire is a major disturbance in interior Alaska, and
ecological processes such as post-fire succession, carbon
cycling and permafrost degradation can be dramatically chan-
ged directly and indirectly by fire (Johnstone and Chapin 2006;
Kane et al. 2007; Johnstone et al. 2008; O’Donnell et al. 2009).
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Fig. 1.

Photos illustrating the mosaic of fire patterns in the boreal forest. Photo (a) is low burn-severity site Wall Street Fire 2; and (b) is moderate burn-

severity site Porcupine 7. In (a), islands of green are surrounded by a surface burn; in (5), much of the forest floor is removed and soil and ash are visible at tree

bases, interspersed with islands of lightly burned or unburned moss and duff.

The boreal forest biome contains a significant percentage
(~12%) of the world’s terrestrial carbon stored in the highly
organic soil layers (Kasischke et al. 1995a; Harden et al. 2000;
French et al. 2008; de Groot et al. 2009). Carbon emissions from
organic material combustion have the greatest short-term direct
effect on the carbon balance (French ef al. 1996). Sandberg et al.
(2002) reported that on average, fires in Alaska contribute
~41% of the USA carbon emissions from wildland fires, and
in years with large fires (e.g. 1990), 89% of USA emissions were
from Alaskan fires. However, indirect effects of fire, such as
changes in vegetation succession or thermal and hydrologic
conditions of the soil surface may influence carbon storage for
decades (O’ Neill et al. 2003; Soja et al. 2007). The reduction of
canopy shade and the loss of insulating organic layers may result
in increased soil temperatures for months or years following a
fire (Dyrness 1982; Dyrness and Norum 1983; Swanson 1996;
O’Neill et al. 2002; Kasischke and Johnstone 2005). Extensive
thawing of permafrost has caused increased erosion, landslides
and ground subsidence and is projected to accelerate under
future warming, resulting in discontinuous thawing, particularly
of the top 10 m by 2100 (Schuur ef al. 2008). Thus, the spatial
and temporal variability of fires in boreal forests is significant on
both regional and global scales (French et al. 1996; Dufty et al.
2007; Tan et al. 2007).

Heterogeneity in the boreal forest, not unlike other forests
(see Hudak et al. 2007; Lentile et al. 2007a; Gould et al. 2008),
is strongly correlated with the high spatial variability of burn
severity (Miyanishi and Johnson 2002; Epting et al. 2005,
Kasischke and Johnstone 2005; Duffy et al. 2007). The boreal
forest floor can be characterised by a three- or a four-layer model
of moss and duff in varying states of decomposition and
compaction (Dyrness and Norum 1983; Kasischke et al.
1995a). The upper layer is composed of loosely compacted
living moss and lichen. The moisture content of this layer can
change rapidly with the ambient conditions, much like a dead
fine fuel (Dyrness and Norum 1983; Kasischke et al. 1995a).
The lower layers of decomposed moss, or duff, are increasingly

compact, cooler and wetter — both upper and lower layers of
moss provide insulation to the frozen soils below (permafrost)
(Swanson 1996). The moss and duff layer is generally consumed
by smouldering combustion (Miyanishi and Johnson 2002;
Shetler et al. 2008), whereas canopy fuels are consumed under
more moderate or severe burning conditions. When fire
smoulders and creeps through the moss and duff layers, the
degree of consumption is highly dependent on the pre-fire depth,
moisture level and forest floor fuel moisture-holding capacity,
which is dependent on bulk density and moss species (Dyrness
1982; Dyrness and Norum 1983; Miyanishi and Johnson 2002;
Kasischke and Johnstone 2005; Greene ef al. 2007; Shetler et al.
2008). Following high severity fires, the post-fire landscape is a
complex, fine-scale mosaic of large burned patches where much
of the forest floor is removed, interspersed with islands of lightly
burned or unburned moss and duff (Dyrness and Norum 1983;
Lentile et al. 2007a; Shetler et al. 2008) (Fig. 1).

Satellite multispectral remote sensing of burn severity
in Alaska

The large geographic extent and the high spatial variability of
wildfires in Alaska make these fires well suited for remotely
sensed studies (French et al. 1996; Michalek et al. 2000;
Kushida et al. 2007). Duffy et al. (2007) used Landsat satellite
imagery to examine fire—vegetation interactions in Alaska and
found that burn severity is affected by the topography of the
landscape through interactions between fire and vegetation
types, and burn severity generally increases with the size of the
wildfire. Several recent articles found that Landsat-derived
indices, specifically the Normalised Burn Ratio (NBR), differ-
enced NBR (dNBR) and the field component, the Composite
Burn Index (CBI) (Key and Benson 2005), were not ideally
suited for mapping burn severity in Alaska’s boreal forest
(Epting et al. 2005; French et al. 2008). There is typically a
greater proportion of high burn severity in a boreal forest fire and
the INBR—CBI approach is not considered as accurate when the



Remote sensing of post-fire boreal forest floor consumption

full range of severities is not present (French et al. 2008). The
dNBR also has limited ability to discern fine-scale differences
between moderate and high severity fires that can have sig-
nificant ecological implications (Murphy et al. 2008). Subtle
differences in depth of organic material remaining on moderate
and high burn-severity sites are highly significant for tree
seedling establishment and survival (Johnstone and Chapin
2006; Greene et al. 2007). Hoy et al. (2008) attempted to use
dNBR (and other Landsat-derived indices and ratios) with CBI
to estimate canopy and surface fuel consumption and found
very low correlations between the remotely sensed and ground
data.

One of the most ecologically significant reasons for mapping
burn severity in Alaska is the high carbon content of the forest
floor and soils and the significant emission of carbon into the
atmosphere due to burning (de Groot et al. 2009). French et al.
(1996) used various remotely sensed satellite images (AVHRR,
Advanced Very High Resolution Radiometer; SPOT, Satellite
Pour I’Observation de la Terre; and ERS-1 SAR, European
Remote Sensing satellite Synthetic Aperture Radar) to map
burn-area extent of a 1990 wildfire near Tok, Alaska. These
data were combined with forest-floor biomass measurements
to calculate carbon flux, which was estimated to be 33.2t ha ',
Results in Kasischke et al. (1995bh) concurred, reporting
28.8t ha' high severity fires. Michalek e al. (2000) used
Landsat data to estimate carbon emissions from black spruce
stands (nearly 40tha ') and concluded that the finer scale of
Landsat compared with AVHRR imagery allowed for more
spatially accurate estimates, which were also significantly
higher than most previously reported values. Much lower
estimates of carbon release after fire in the boreal region have
been made in the range of 10 to 12 tha™' by Conard ez al. (2002),
Stocks (1991) and Cahoon et al. (1994). The fire type (canopy,
surface or ground), type of vegetation burning and time of year
all influence the degree of combustion and subsequent carbon
release. These studies all indicate the need for further research to
more accurately map high severity fires in the boreal region.

Airborne hyperspectral remote sensing of burn severity
in Alaska

The utility of high-resolution hyperspectral imagery for map-
ping burn severity has not been evaluated in Alaskan boreal
forest, but has been successfully used in temperate ecosystems
to map burn severity (van Wagtendonk ez al. 2004; Kokaly et al.
2007; Lewis et al. 2007, Robichaud et al. 2007). Airborne
hyperspectral imagery facilitates mapping of discrete post-fire
ground-cover components (green and scorched vegetation, ash
and soil) (Kokaly et al. 2007; Lewis et al. 2007; Robichaud et al.
2007) at a finer scale than is possible using satellite-based data.
The pixel size of an airborne hyperspectral image is as small as
1-5m? and acquisitions can cover many square kilometres.
Airborne hyperspectral sensors record data in narrow bands
of reflectance spectra arranged contiguously from the visible
through the short-wave infrared (SWIR) range of the electro-
magnetic (EM) spectrum. The spectral bandwidth and sampling
interval typically range from 10 to 20 nm, resulting in more than
100 spectral bands. The spectral data volume of a hyperspectral
image makes the application of high-level image processing
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techniques, such as spectral mixture analysis (SMA) more
tractable.

For modelling purposes, a single image pixel is assumed to
be a mixture of the individual reflectance spectra (endmem-
bers) of the reflective surface materials (Adams et al. 1986;
Roberts et al. 1993). In reality, a significant percentage of the
reflectance from a pixel often comes from adjacent pixels or
may be altered by instrument or atmospheric effects (Cracknell
1998; Townshend et al. 2000; Huang et al. 2002). The assump-
tion of linear mixing has been shown to be appropriate and
reasonably accurate when considering fire-affected surfaces
(Rogan and Franklin 2001; Smith et al. 2005, 2007; Lewis et al.
2007; Robichaud et al. 2007). Once endmember spectra are
identified, spectral unmixing algorithms can be used to esti-
mate the fractional component spectra of individual pixels
and, in turn, the physical fractional component of the materials
within the pixels (Adams et al. 1986; Roberts et al. 1993;
Theseira et al. 2003). To satisfy the need for accurate maps
of post-fire ground cover in the boreal region, hyperspectral
imagery may be used to derive fine-scale maps of remaining
charred and uncharred forest-floor organic material as well as
exposed mineral soil. We hypothesise that a high spectral
fraction of remaining uncharred surface organics will indicate
low consumption, whereas spectral fractions of exposed mineral
soil or ash cover will indicate complete consumption of the
forest-floor organic layer.

To investigate the utility of hyperspectral imagery for esti-
mating post-wildfire forest-floor ground cover and consump-
tion, we collected airborne hyperspectral imagery across
60550ha of the 2004 Taylor Complex wildfire in Alaska.
The specific objectives of this study were: (1) to compare the
post-fire forest floor condition (remaining ground cover and
percentage char) with forest floor consumption measurements
(pre- and post-fire depth measurements); (2) to use airborne
hyperspectral imagery to estimate the remaining ground cover
(i.e. percentage green, brown and charred forest floor vegeta-
tion, ash and soil); (3) to validate the remotely sensed ground
cover estimates with post-fire field data; and (4) to explore the
utility of remotely sensed ground cover estimates to predict the
depth and percentage consumption of the post-fire forest floor.

Methods
Study area description

Field sites were located on the Porcupine, Chicken and Wall
Street Fires that burned in Alaska’s interior boreal forest (Fig. 2).
The Porcupine Fire began on 21 June 2004 and burned
115 170 ha. The Chicken and Wall Street Fires began on 15 June
2004 and burned together with a combined area of 220 150 ha.
These wildfires eventually merged with other large wildfires
to form the Taylor Complex (528218ha; 63°43'28"N,
142°50'36"W, centroid; elevation 424 to 1529 m). Because
these wildfires burned simultaneously and merged within the
same boreal forest ecosystem, we have treated all of our data for
analysis purposes as samples from a single wildfire event, the
Taylor Complex. The fires burned in forests of Picea mariana
(black spruce) or P. glauca (white spruce) mixed with Populus
tremuloides (quaking aspen), Betula neoalaskana (Alaska paper
birch), Salix (willow) spp. and A/nus (alder) spp. All sites had
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Fig. 2.
image collection areas are shown in the larger image.

deep mats of Hylocomium splendens (feather moss) and other
mosses (Lentile ef al. 2007a) covering the forest floor.

For analysis, study sites were divided by dominant canopy
vegetation, either black spruce or white spruce—hardwood mix
because of the distinct differences in the composition of the
surface organic layers (O’Neill et a/. 2002; Harden ef al. 2006).
Black spruce sites tend to have deeper, wetter and colder organic
layers that insulate and protect the underlying permafrost
(Swanson 1996; Harden et al. 2006) and the highest fraction
of carbon is generally in these organic layers (O’Neill ef al.
2002; Kane et al. 2005). White spruce and hardwood sites have
shallower aboveground organic layers that are often dryer
because of the warmer, well-drained soils below (Swanson
1996). Thus, the organic layers rapidly transfer heat and moist-
ure and are likely to be more combustible (Dyrness and Norum
1983; O’Neill et al. 2002). The soils in white spruce and
hardwood sites contain a greater percentage of carbon than the
aboveground organic layers and are often exposed after fire
owing to the combustibility of the organic layers.

Field data
Sampling overview

Three collaborating but independent rapid-response research
teams (Lentile ez al. 2007b) collected pre- and post-fire data on
the Taylor Complex wildfires in July 2004. These teams were
led by coauthors Ottmar, Hood and Hudak (Table 1). Impor-
tantly, in the present paper, the term ‘site’ is used to describe
widely separated (>300 m) sample locations chosen by the three
different rapid-response teams across the landscape, whereas the
terms ‘plot’ and ‘subplot’ describe spatially nested sample units
within a site. All sites were randomly located within areas that
were considered safe to access before they burned. The Ottmar
team collected a suite of pre- and post-fire fuels, ground cover
and consumption data at 13 sites on the Taylor Complex, nine of
which burned. These sites were ‘large’ in that they consisted of

Porcupine Fire
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Inset map of Alaska showing location and extent of the Taylor Complex. The locations of the field sites and

nine (by design) plots randomly selected and systematically
arranged, separated by a 20.12-m (66-foot) chain length. The
Hood team characterised pre-fire fuels and vegetation at com-
paratively ‘small’ sites, in that they consisted of a single plot.
The Hudak team collected the post-fire forest floor depth and
consumption measures on six of the nine small sites established
by the Hood team that burned. The Hudak team mainly collected
a suite of post-fire effects measures at 16 sites, 10 large and 6
small, described as follows: nine large sites overlapped with the
Ottmar team’s nine large sites that burned; six small sites co-
located with the Hood team’s six sites that burned (the two small
sites that burned at low severity were expanded into large sites to
include more low severity sample plots); a final large site co-
located with neither the Hood nor the Ottmar team’s sites (i.e. no
pre-fire data) that was added to incorporate a low severity white
spruce site (Table 1).

Forest floor consumption data

By design, the Ottmar team measured pre- and post-fire
forest floor depths at nine plots per site; depth measurements
were made at 16 predetermined locations per 2-m-radius circu-
lar plot. A duff pin was inserted until the top of the duff pin was
flush with the top surface of the duff or an obstruction was met. If
the latter was the case, the top of the duff pin was clipped to be
level with the surface of the duff. At two locations in each plot, a
duff sample (~150 mm square by 250 mm deep) was removed
and the depth of each duff layer was measured (i.e. live moss
layer, dead moss layer, upper duff and lower duff). These plug
samples were also used to determine fuel moisture by weight (by
drying at 105°C and reweighing) for each stratum. Following the
fire, the height of the pin above the top-most remaining duff
surface was measured with a ruler (1 mm) to gauge forest floor
consumption. The depth of the remaining forest floor layers
was also measured down to permafrost or mineral soil (which-
ever was encountered first) and compared with pre-fire forest
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Table 1.
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Sites sampled on the Taylor Complex Fires (n = 16)

Sites are sorted by major vegetation type: black spruce (BS) and white spruce (WS) or white spruce—hardwood mix (WS-H) and then by least to greatest

percentage forest floor consumption. The plot numbers indicate the number of plots with data at each site; the numbers in parenthesis under the Ottmar team

indicate the number of plots that were geolocated and used in the spatial autoregressive models. The site names were assigned by the Hudak team and do not
include Hood or Ottmar pre-fire team sites that did not burn

Site characteristics Plot numbers

Forest floor depth Ground cover Consumption
Site name Vegetation Pre-fire (mm) Post-fire (mm)  Consumption | Hudak (post-fire) | Hood (pre-fire) — Ottmar (pre- Hudak (post-fire)

(mm) (%) and post-fire)

Wall Street 1 BS 208 150 58 28 9 9(2)
Chicken 2 BS 214 136 78 36 9 9(5)
Porcupine 8  BS 185 102 83 45 9 9(3)
Porcupine 5 BS 197 102 95 48 9 1 1
Porcupine 7 BS 204 97 107 53 9 9 (4)
Chicken 1 BS 188 85 103 55 9 18 (12)
Porcupine 9  BS 225 78 147 65 9 8(2)
Porcupine 10 BS 198 65 133 67 9 8(3)
Porcupine I~ BS 155 43 112 72 9 18 (11)
Porcupine3 ~ WS-H 127 51 76 60 1 1 1
Porcupine 12 WS 108 31 77 71 1 1 1
Porcupine 11~ WS 83 15 68 82 1 1 1
Porcupine 4 WS 108 12 96 89 1 1 1
Porcupine 6~ WS-H 216 23 193 89 9 1 1
Porcupine2 WS 105 7 98 93 9 16 (9)
Wall Street2 WS - - - - 9

floor data to determine the fraction of each of the four layers
consumed.

The Hood team measured pre-fire forest floor depths at a
single 10 x 10-m-square plot at each site. Total depth to perma-
frost or mineral soil and the proportion of the total depth
composed of litter and moss were measured with a ruler
(£l mm) at four locations in each plot, and duff pins were
placed at the four plot corners. The Hudak team measured
exposed duff pin heights following the fire to determine
consumption.

Ground cover data

The Hudak team collected post-fire soil and vegetation data
between 23 and 31 July 2004 at 16 sites (Table 1). Site selection
by the Hudak team was guided by two considerations. The first
consideration was to attempt to cover the full range of burn
severity observed across the post-fire landscape. A Burned Area
Reflectance Classification (BARC) map (RSAC 2005) was used
only for guidance to locate sites that were predominantly green
(low burn severity), brown (moderate) or black (high) in terms
of vegetation effects, as the BARC has been shown to be less
than ideal for mapping fires in the boreal region. The second
consideration was to match pre- and post-fire data by capitalis-
ing on the opportunity to remeasure pre-fire sites established by
the Ottmar and Hood teams. On the Porcupine Fire, two sites
were originally classified as low burn severity, four as moderate
and six as high. On the Chicken and Wall Street Fires, two sites
were originally classified as low burn severity, one as moderate
and one as high.

The spatial extent and sampling intensity of the Hudak team
measuring post-fire effects matched the spatial extent and

sampling intensity of the Ottmar or Hood teams that had
established the sites beforehand. Sites were centred in a random
location 80-140m from the nearest access road, within a
consistent vegetation type and burn severity condition. At 10
sites including the nine Ottmar team sites, the Hudak team
installed nine 9-m? plots spaced 20-40 m apart, with each plot
composed of fifteen 1-m? subplots, for a total of 135 subplots per
site, following a systematic, spatially nested design detailed in
Hudak et al. (2007). At the six sites overlaying a Hood team site,
a single plot composed of 15 subplots (as just described)
was installed. The Hudak team geolocated the centre subplot
of each their plots using a Trimble Geo-XT (Trimble Navigation
Limited, Westminster, CO) GPS with differential correction
capability (submetre accuracy), logging a minimum of 150
positions per plot with a threshold PDOP (position dilution of
precision) of 6. Locations of the other subplots and plots were
calculated based on their systematic distance and angular offsets
from plot centre. The accuracy of the georeferenced imagery
was checked by logging GPS coordinates at highly visible road
intersections; the differentially corrected, averaged positions
overlaid as close to the centre of these intersections as could
be visibly discerned (within 1-2 pixels). Thus the plot locations
were considered accurately located within the imagery. The
Hudak team’s heavy emphasis on subplot-level geolocation
facilitated aggregation of the subplot-level ground-cover mea-
sures to the plot level for the purpose of hyperspectral image
validation.

At the subplot scale (1m?), the fractional cover of green
vegetation, litter, coarse woody debris and other non-photosyn-
thetic vegetation (NPV), ash, exposed mineral soil and rock
were visually estimated. The percentage char of each non-green
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Fig. 3. Spectral reflectance of the endmembers used in the spectral mixture analysis (NPV, non-photosynthetic vegetation).

ground-cover component was also recorded. Minor ground-
cover fractions were estimated first, and a value of 1% was
recorded if there was a trace of the component within the
subplot. The more abundant fractional ground-cover components
were then estimated with the largest cover component (often
charred or uncharred NPV) estimated last. The ocular fractional
cover estimates were constrained to sum to unity (100%).

Field spectra

Multiple spectra of green, NPV, charred NPV, ash and soil
materials (Fig. 3) were collected during the field campaign
in 2004, and again in July 2005 using an ASD Pro-FR field
spectroradiometer (Analytical Spectral Devices, Boulder, CO).
Spectra were collected with the bare-tip foreoptic (field of view,
FOV, 22°) pointed at the target material from a height of ~1 m.
The ASD Pro-FR sampling interval is 1.4 nm over the 350- to
1050-nm wavelength range and 2 nm over the 1000- to 2500-nm
range, spanning nearly the same portion of the EM spectrum
as the HyMap sensor used for airborne imaging (HyVista
Corporation, Sydney, Australia). These measurements are
interpolated at every 1-nm wavelength and reported in 2151
contiguous channels. The field spectrometer was calibrated
against a Spectralon (Labsphere, North Sutton, NH) 100%
reflective panel immediately before and at frequent intervals
during field spectra collection to account for changing light and
atmospheric conditions. Absolute reflectance was calculated
at the time of data collection for all spectra by dividing field
reflectance by the bright target reflectance.

Bright and dark target reference calibration spectra were also
collected for use in an Empirical Line Calibration (ELC), which
forces spectral data from the image to match selected field
reflectance spectra (Richards and Jia 1999). The bright target
was a 250-m? sheet of highly reflective white Tyvek (DuPont
Corporation, Wilmington, DW) material and the dark target was
a similarly sized sheet of non-reflective (matte) black landscape
fabric. Calibration reflectance spectra of these two materials

were collected on the same day as the airborne image acquisi-
tion, which was cloud-free. Two paired spectra (bright and dark—
image and field) were used in the ELC. A linear regression was
calculated by fitting the regression line through both pairs of
spectra for each band to equate the digital number and reflec-
tance. The ELC minimises atmospheric and illumination effects
by standardising them across all bands in the image.

Image pre-processing

Airborne HyMap hyperspectral data were collected on 3 August
2004. The sensor was mounted to a fixed-wing aircraft flown at
an average altitude of 2300 m, and data were collected between
1930 and 2230 hours UTC (Universal Coordinated Time) (solar
noon 2135 hours UTC). The HyMap sensor collects data in
128 spectral channels across the range of 450 to 2500 nm. The
instantaneous field of view (IFOV) is 2.5m along-track and
2.0 m across-track and the FOV is 61° (512 pixels). The mean
spatial resolution of the images was 3 m. Image geolocation
was achieved with an onboard GPS (3—-10-m accuracy) and
integrated inertial monitoring unit. Imagery was collected for
26 000 and 34 550 ha over the field sites on the Chicken—Wall
Street and Porcupine Fires respectively. All field sites on both
fires were within the area of image collection (Fig. 2).

Raw radiance data were corrected to apparent surface reflec-
tance using the HyCorr software package (HyVista Corpora-
tion, Sydney, Australia). This is essentially a two-step process,
first correcting for atmospheric absorption and scattering with
ATREM (Atmospheric Removal) (Gao et al. 1993), followed
by EFFORT (Empirical Flat Field Optimal Reflectance Trans-
formation) polishing to remove systematic ATREM errors
(Boardman 1998). These corrected reflectance data were used
in the ELC, as explained above. Bands 1, 31 and 126 (450, 863
and 2493 nm) were removed owing to noise and bands 63—-65
(1390-1420 nm) and 94-97 (1790-1989 nm) were removed
owing to atmospheric water absorption before further image
processing.
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Fig. 4. Box and whisker plots illustrating the variability in subplot-level ground cover measurements at 16 sites
characterised by the Hudak team. Measures are separated into ‘black’ (n = 1215) and ‘white’ (n = 465) spruce forest types.
The dark line shows the median, the box indicates the interquartile range and the whiskers extend to the most extreme data
point that is no more than the range times the interquartile range from the box (NPV, non-photosynthetic vegetation).

Image analysis

A linear spectral unmixing algorithm was applied to the fully
preprocessed hyperspectral data to determine pixel fractions of
green, NPV and charred vegetation, ash and soil cover:

Ppixel = Z{pece} +e= {pgreencgreen + pNPVCNPV
+ pcharcchar + pashcash + psoilcsoil} +é& Z Ce =10

where p and C are the reflectance and cover fraction of each
endmember respectively and ¢ is an error term. The individual
cover fractions are forced to sum to unity. The spectra used in the
SMA are shown in Fig. 3. The products of SMA are fractional
cover images for each of the input materials. In addition to the
fractional cover images, a root mean square error (RMSE) image
is also produced, which indicates the residual error for partition-
ing the mixed image pixel spectrum into the component end-
member spectra. The average RMSE was 0.05 or less and
randomly distributed across both fire images, indicating that

these endmembers matched the ground cover types in the image.
The fractional cover estimates were extracted from the unmixed
hyperspectral images at all subplot locations. Fractional cover
estimates ideally are scaled from 0 to 1, but in practice the SMA
output images deviate to a slightly broader range. Therefore,
negative cover fractions were truncated to 0, and then the values
in each cover fraction were rescaled slightly to range from 0
(minimum value) to 1 (maximum value) to reflect the real range
of variability on the ground. Zero indicates that none of the
target material is present in the pixel, whereas 1 indicates
complete cover. Finally, the fractional cover values were
rescaled to sum to unity at each subplot location, which was
the same constraint applied to the field fractional cover estima-
tion on the ground.

Statistical analysis

The three rapid-response teams contributing to this analysis
used different plot sampling designs per site. Therefore, any
comparisons of data collected by different teams required that
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Fig. 5. Box and whisker plots illustrating the variability in forest floor (FF) depth or consumption pin measurements
at 15 sites characterised by the three rapid-response research teams. Measures are separated into ‘black’ and ‘white’ spruce
forest types, with the number of measures reported at the bottom. The dark line shows the median, the box indicates
the interquartile range and the whiskers extend to the most extreme data point that is no more than the range times the

interquartile range from the box.

the data be aggregated to the site level. Site means of the field-
measured ground-cover data and the forest floor depth and
consumption data were compared across the 15 sites where both
sets of measurements were taken by the combined efforts of the
three rapid-response teams. Box plot figures were created to
illustrate the range and distributional shape of ground cover
(Fig. 4), forest floor depth and consumption (Fig. 5) measure-
ments on the field sites. Correlations were assessed for each
ground-cover type compared with the forest floor depth and
consumption measures (Table 2) with the non-parametric
Spearman rank-sum correlation statistic. Statistics were calcu-
lated in both R (R Development Core Team 2004) and SAS
(SAS Institute Inc. 2002). The same correlation statistics were
used to compare field-measured fractional ground cover with
remotely sensed spectral fractions (Table 3) to evaluate how
well the image captured the conditions on the ground at 16 sites
where these variables were measured by the Hudak team. Based
on statistically significant relationships (P <0.05) between the
image and field data, the remotely sensed spectral fractions were
also compared with the forest floor depth and consumption
measurements at the 15 coincident sites where pre-fire measures

were available. Multiple linear regression models were devel-
oped using the SMA fractional cover estimates as predictor
variables at 51 geolocated field plots where pre- and post-fire
forest floor depths were measured by the Ottmar team. The
significant models for predicting post-fire forest floor depth and
percentage forest floor consumption showed evidence of spatial
dependence in the residuals, so they were improved into spatial
simultaneous autoregressive models (Haining 1990; Cressie
1993). A spatial simultaneous autoregressive model consists
of a non-spatial trend, a spatial signal and the residual error.
Predicted values are the sum of the non-spatial trend and spatial
signal components. Predictor variables for the trend component
were selected using a stepwise procedure based on the Akaike
Information Criterion (AIC) goodness-of-fit statistic (Table 4).

Results
Observed ground cover and consumption data

Measures of fine-scale ground cover in the 1-m? subplots were
highly variable on both the black spruce and white spruce field
sites (Fig. 4). On both the black and white spruce sites, NPV was
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Table 2. Spearman correlation coefficients (p) between field-measured forest floor depth and consumption measures with ground cover measures
Data were collected by three rapid response teams (n = 15 sites). Correlations with absolute values >0.5 are significant (P <0.05) and are indicated in bold.
NPV, non-photosynthetic vegetation

Post-fire ground cover

Green (%) NPV (%) Char (%) Ash (%) Soil and rock (%)
Pre-fire forest floor depth (mm) 0.77 0.62 —0.68 —0.33 —0.61
Post-fire forest floor depth (mm) 0.62 0.76 —0.53 —0.70 —0.75
Forest floor consumption depth (mm) 0.21 0.16 0.20 0.21 —-0.17
Forest floor consumption (%) —0.52 —0.74 0.49 0.80 0.68

Table 3. Spearman correlation coefficients (p) between remotely sensed image data (spectral mixture analysis (SMA) fraction) and field ground
cover data
Data were collected by the Hudak rapid response team (n = 16 sites). Spearman correlation coefficients with absolute values >0.5 are significant (P <0.05) and

are indicated in bold. NPV, non-photosynthetic vegetation

SMA fraction Post-fire ground cover

Green (%) Uncharred NPV (%) Charred NPV (%) Total char (%) Ash (%) Soil and rock (%)
Green moss 0.89 0.86 —0.04 —0.89 —0.53 —0.52
NPV moss 0.02 —0.03 —0.31 0.01 —0.03 0.07
Charred moss 0.07 —0.13 0.63 0.14 —0.32 —-0.29
Ash 0.05 0.19 —0.36 —0.24 0.28 0.27
Soil and rock —0.28 —0.19 0.20 0.23 0.18 0.15

Table 4. Spatial autoregression models for predicting (a) post-fire forest floor depth, and (b) percentage forest floor consumption
The spectral mixture analysis (SMA) image variables are the predictor variables at 51 field plots established by the Ottmar team; only the significant predictor
variables are included, selected by a stepwise procedure based on the Akaike Information Criterion (AIC). Significance levels are as follows: *** P <0.001;
*¥* P<0.01; * P<0.05; -, P>0.05. NPV, non-photosynthetic vegetation

Predictor variable Coefficients Standard error z value Pr (>|z) Significance
(a) Post-fire forest floor depth (mm)
(Intercept) —61.2 41.2 —1.5 0.14
Green moss 291.5 74.5 3.9 92x107° ok
NPV moss 130.3 41.6 3.1 0.002 o
Charred moss 87.6 59.9 1.5 0.14
(b) Percentage forest floor consumption (%)
(Intercept) 99.1 20.4 4.9 1.1x10° HE
Green moss —146.8 32.9 —4.5 7.9%10°° ok
NPV moss —76.6 18.4 —4.2 3.1x107° Hrx
Charred moss —63.6 26.9 2.4 0.02 *

the dominant ground cover (mean 88 and 68% respectively of
the ground area in subplots) (Fig. 4). Little green vegetation was
measured on either the black or white spruce sites (mean 6 and
8%). The white spruce sites had more inorganic ground cover
(19% soil and rock cover and 5% ash cover) than the black
spruce sites (5% soil and rock cover and 2% ash cover). The
mean percentage ground cover of char (the sum of all charred
components within the plot) was similar on both the black and
white spruce sites, 79 and 70% respectively.

The total depth of the pre-fire organic forest floor was much
deeper on the black spruce sites (mean 193 mm) than on the
white spruce sites (106 mm), and the total organic forest floor
depth remaining after the fire was greater on the black spruce

sites (110 mm) than the white spruce sites (27 mm) (Fig. 5). The
total depth of consumption on both the black spruce and white
spruce sites was similar, 83 and 85 mm respectively. However,
the total percentage consumption of the organic forest floor was
much greater on the white spruce sites (75%) as compared with
the black spruce sites (43%).

Relationship between post-fire ground cover and
forest floor depth and consumption

Both pre- and post-fire forest floor depth were significantly
correlated with nearly all of the post-fire ground cover variables,
with the exception of the correlation between pre-fire forest
floor depth and ash (Table 2). Plots with extensive remaining
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Fig. 6.
line on (@), which is a red—green—blue colour composite of the imagery. Red represents charred moss,
green represents green vegetation and blue represents non-photosynthetic vegetation (NPV). Greyscale
images show individual components: () charred moss; (c) green vegetation; and (d) NPV.

green and NPV ground cover and limited soil exposure (i.e. deep
forest floor layers) were indicative of low burn severity. Forest
floor consumption depth was not significantly correlated with
any of the post-fire ground cover variables, but percentage forest
floor consumption was significantly correlated with green
vegetation, NPV, ash and soil and rock cover fractions, and
almost significantly correlated with char fraction (P =0.066)
(Table 2). The higher severity plots had the greatest percentage
consumption and were characterised by little remaining moss
and duff and more soil and ash cover.

Relationship between spectral unmixing results

and post-fire ground cover

The outputs of the SMA were individual greyscale images of
estimated fractional cover for each of the input endmember

S. A. Lewis et al.

M 0% cover in pixel
[ 100% cover in pixel

L= km
025 5 10

Imagery collected from the Chicken and Wall Street Fires. The fire perimeter is a thin white

spectra from Fig. 3 (green and NPV moss, charred moss, ash and
soil). These images can either be viewed separately to analyse
patterns of a single ground-cover type, or they can be combined
in a coloured image that better illustrates the components of
mixed pixels. Fig. 6 shows a mosaic of the four strips of imagery
that were collected over the Chicken—Wall Street Fire field sites.
Fig. 6a is a red—green—blue colour composite of charred moss,
green vegetation and NPV. The perimeter of the fire is an
overlaid thin white line and the field sites are overlaid as yellow
circles. With this colour scheme, the mapped ground-cover
pattern closely matches the fire perimeter (mapped indepen-
dently from Landsat imagery following Hudak and Brockett
2004), with nearly all of the charred vegetation (red) south of
the perimeter and most of the unburned vegetation (green) to the
north. The widespread NPV, which is mostly brown moss, is
visible in blue on both sides of the fire perimeter.
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Fig. 7. Scatterplots of the green moss spectral mixture analysis (SMA)

fraction v. (a) post-fire forest floor depth (mm), and (b) percentage forest
floor consumption (%) from the 15 sites where consumption measurements
were taken. Linear regressions were calculated and coefficients of determi-
nation are reported.

The greyscale images (Fig. 6b, ¢, d) highlight the individual
component materials. The patterns of the fire are fairly clear in
Fig. 6b (charred moss) and 6¢ (green vegetation), with the bright
pixels indicating a significant presence of the material in a pixel
and the dark pixels having little or no presence. In Fig. 6d, NPV
is a little more difficult to interpret because it is found ubiqui-
tously throughout the area, but in smaller concentrations and at
fine scales, i.e. there are fewer bright white pixels and more grey
pixels. Uncharred tree and shrub bark also contribute to this
fractional cover estimate.

To evaluate how well the spectral unmixing results repre-
sented the conditions on the ground, correlations were calcu-
lated between the image SMA and ground fractional cover data
at the 16 field sites characterised by the Hudak team (Table 3).
For this comparison, the uncharred and charred components
of the predominant NPV cover fraction were separated because
their spectral reflectance differs greatly. The green moss SMA
fraction was significantly positively correlated with green
(p =0.89) and uncharred NPV (0.86) ground cover and nega-
tively correlated with total char (—0.89), ash (—0.53) and soil
and rock (—0.52) cover. The charred moss SMA fraction was
significantly positively correlated with the charred NPV ground
cover (p =0.63).
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Relationship between remotely sensed fractional cover
and forest floor consumption

Based on the many significant relationships found between post-
fire ground cover and pre- and post-fire forest floor depths and
percentage consumption (Table 2), and some significant rela-
tionships between the SMA results and post-fire ground cover
(Table 3), linear regressions were calculated between SMA
fractional cover estimates and consumption data (Fig. 7). As
before, the green moss SMA fraction proved the most useful
image variable, producing strong correlations with post-fire
forest floor depth (p =0.83, P=10.0002) and percentage con-
sumption (p = —0.86, P<0.0001). Charred moss SMA fraction
was the second most useful image variable, which was sig-
nificantly correlated with post-fire forest floor depth (p =0.53,
P =10.045) and almost significantly correlated with percentage
consumption (p = —0.50, P =0.06).

Our results (Fig. 7) portended some ability to predict post-
fire forest floor depth and percentage forest floor consumption
using SMA fractional cover estimates as predictor variables.
Fortunately, the Ottmar team geolocated some of their field
plots, allowing the forest floor and SMA variables to be related
at 51 coincident plot locations for the purpose of developing
predictive regression models (Table 4). As suggested by the
correlations in Tables 3 and 4, only the SMA estimates of the
three moss fractions (green, NPV and charred) proved signifi-
cant predictors in the trend component of the spatial simulta-
neous autoregressive models (Table 4). Including a spatial
component in the post-fire depth model (AIC =499.91, log
likelihood, logLik = —243.96) was a significant improvement
(likelihood ratio, L.Ratio=18.7, P<0.0001) over the non-
spatial linear model (AIC=516.62, logLik =—253.31) and
reduced the RMSE from 36.2 to 29.1 mm. Including a spatial
component in the percentage consumption model (AIC=
418.32, logLik = —203.16) was also a significant improvement
(L.Ratio =4.8, P=0.0287) over the non-spatial linear model
(AIC=421.10,logLik = —205.55) and reduced the RMSE from
14.2 to 13.4%. Finally, both spatial simultaneous autoregressive
models lacked significant spatial dependence in the residuals
(post-fire depth, P=0.6; percentage consumption, P =0.5),
unlike the residuals of the non-spatial linear models (P <0.001
in both cases).

The Ottmar team data used to develop the regression models
in Table 4 were based on 606 consumption pin measures at
51 plots geolocated with GPS. There were another 632 con-
sumption pin measures from 53 plots that were not geolocated,
which served as independent validation data for these models.
These data were aggregated at the nine sites also characterised
by the Hudak team, based on their 135 GPS points per site, in
order to associate the Ottmar team field measures with SMA
fractional cover estimates at the site level. Observed v. predicted
measures of post-fire forest floor depth at these nine sites were
significantly correlated (p =0.87, P =0.0045), as was percen-
tage consumption (p =0.73, P=0.03).

Discussion
Observed ground cover and consumption data

When field sites were selected for post-fire sampling by the
Hudak team, a BARC map was used to help guide site selection
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to try and ensure that sites covered the full range of burn seve-
rities: low, moderate and high. However, on initial examination
of the ground-cover data, total remaining organic cover aver-
aged 75% on high severity sites and ash and soil cover was only
24% (not shown). We compared these values with other pub-
lications and found that our ‘high’ severity sites were not as
severely burned as other researchers had found in nearby areas
on the same fires. Kasischke et al. (2008) describe their
‘moderate’ sites as having had a 30-50% reduction in
total surface organic layer and having 100 to 200 mm of
organic material (depth) left after the fire. Their ‘severely’
burned sites experienced an 80—-100% reduction in total surface
organic layer and had between <10 and 40 mm of organic
material left after the fire. In an unrelated study, Epting et al.
(2005) revised the CBI to reflect the combustion of the deep
organic forest floor layers in Alaska boreal forests. A site was
considered moderate severity if up to 50% of the duff layer
was consumed in the fire and high severity if 75-100% was
consumed — these classes are very similar values to those in
Kasischke et al. (2008).

Four of our black spruce sites fit into these previously defined
classes as ‘moderate’ severity, with 28—48% consumption
(Table 1). The remaining five sites experienced 53—72% con-
sumption and had less than 100 mm of organic forest floor
remaining. These values indicate more severe burning than
either Epting et al. (2005) or Kasischke et al. (2008) reported
for ‘moderate’ severity, but significantly less consumption
than either reported for ‘high’ or ‘severe’ burn severity. Thus,
these black spruce sites seem to fit a ‘moderately high’ severity
class, but not the upper-end of the burn severity spectrum
(i.e. ‘severe’). All six of our white spruce sites with consumption
data experienced greater than 60% consumption (at least ‘mod-
erate’ severity) and four sites had greater than 80% consumption
(Table 1), which corresponds to a ‘high’ severity class, and
less than 100 mm of organic material remaining after the fire.
Although our sites did not capture the ‘severe’ end of the burn-
severity spectrum, sorting them by percentage organic forest
floor consumption indicated that they spanned the full range of
low to moderate—high severity range.

A somewhat alternative concept that equates severity to
depth of consumption instead of percentage consumption is
supported by Alexander (1982) and Nguyen-Xuan et al. (2000).
French et al. (2008) characterised high severity burns as those
with at least 100 to 300 mm of forest floor consumption. All of
our black spruce sites and three of the white spruce sites that we
post-hoc labelled as ‘moderately high’ severity had greater than
100 mm consumption.

Relationship between post-fire ground cover
and forest floor depth and consumption

Pre- and post-fire forest floor depths were significantly corre-
lated with most of the ground cover fractions, as was percentage
consumption, but depth of consumption was not (Table 2). Thus,
depth of consumption seems to be a less reliable metric of burn
severity than percentage consumption, a conclusion supported
by the results in Fig. 7. Sites with deeper pre-fire forest floor
layers experienced low to moderate fire effects. Many other
researchers including de Groot et al. (2009), Harden et al.
(2006), Kasischke and Johnstone (2005) and Ottmar and
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Sandberg (2003) concur, leading us to conclude that pre-fire
forest floor depth is highly influential in terms of predicting
potential consumption, which in turn affects the amount of
mineral soil exposure after the fire. This indicates that pre-fire
forest floor depth or the continuity of a live moss layer may be
used to predict areas that will, or will not, experience severe fire
and significant consumption.

Fire in the boreal forest is generally carried by the forest
floor, and is highly dependent on the moisture content of the
surface material (Frandsen 1997; Kasischke ef al. 2008). In
the present analysis, fuel moisture data were only available
at the nine sites established by the Ottmar team. Post-fire duff
moisture was highly correlated with percentage forest floor
consumption (p = —0.95, P<0.001). Deeper forest floor layers
are generally wetter and cooler, especially closer to the soil or
permafrost (Miyanishi and Johnson 2002), as is more typical of
black spruce than white spruce—hardwood forest. Deep forest
floor layers can take many years to accumulate after a fire or
other disturbance (Fenton et al. 2005); thus the likelihood of a
high severity reburn is low if most of the forest floor was
consumed in the original fire. Fenton et al. (2005) found that
the depth of forest floor accumulation was most dependent on
two variables: time since fire and burn severity. After a low
severity burn, the forest floor remained somewhat constant at
400-600 mm depth for 250 years after the fire, with a spike to
1600 mm 350 years after fire. On high severity burns, the forest
floor increased in depth by 100-200 mm every 100 years, with a
maximum of 1000-mm depth after 350 years. On mature black
spruce stands, Kasischke and Johnstone (2005) also found that
time since burning was a significant predictor of organic layer
depth, and that a maximum depth was reached at ~200 years.
Results presented here along with past studies confirm that
pre-fire total forest floor depth is an important determinant of
post-fire effects.

Relationship between spectral unmixing results
and post-fire ground cover

The green SMA fraction had the strongest correlation with the
cover fractions measured on the ground (Table 3), validating
the same finding by Hudak et al. (2007) using Landsat imagery.
Charred moss, ash and soil and rock SMA cover fractions were
also positively correlated with their counterparts on the ground.
These results justify the use of fractional cover maps to estimate
ground-cover conditions in areas outside of the field data
collection sites (Figs 6, 8). Additional red—green—blue colour
combinations of the ground cover types can be used to illustrate
the high heterogeneity of the forest floor across the entire area.
There were virtually no pure pixels; rather, a combination of
green moss and NPV moss, or NPV moss and charred NPV
moss, or a combination of all three were seen in the images.
When ground-cover types are combined in a colour composite,
the dominant cover type determines the colour of the pixel. It
should be noted that the spatially nested sampling of green, NPV
and charred organic ground cover fractions at each site was not
matched by a comparably intensive assessment of overstorey
green, brown (scorched) and black (charred) cover fractions,
which the Hudak team estimated only once, at the centre of each
site. Thus, we lacked sufficient data to quantify the degree to
which variable tree canopy condition across a field site affects
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Fig. 8. A red-green-blue (RGB) colour composite of the Chicken and Wall Street Fire imagery: red represents charred
moss, green represents green vegetation and blue represents non-photosynthetic vegetation (NPV). Subset images of
the Chicken 1 site show: (a) the fine-scale RGB image; (b) post-fire forest floor depth; and (c) percentage forest floor

consumption. The Taylor Highway runs diagonally across the north-west corner.

the SMA fractional cover estimates. The fact that the green moss
SMA fraction figured so prominently (Tables 3, 4), compared
with the relatively minor green cover fraction estimated on the
ground (Fig. 4), supports earlier research findings that this
overstorey contribution to the mixed pixel reflectance signal is
important (Hudak ez al. 2007).

Besides moss and other surface organic material, there was
little else present in terms of ground cover on these sites when
we sampled them within 6-34 days after burning. Our results
affirm that soil, ash and shallow post-fire forest floor depths
are generally found together in areas that experienced more
severe fire. Even though our black spruce and white spruce sites
experienced different degrees of consumption (Table 1; Fig. 5),
the remaining ground-cover components did not distinguish
between black and white spruce sites after the fire (Fig. 4).
Thus, the SMA results are equally applicable to both the black

and white spruce forest types. On our field sites, the exposure of
mineral soil coupled with the lack of uncharred vegetation and
some presence of ash indicated a considerable degree of com-
bustion. Soil and ash ground-cover fractions that were more than
negligible served as important indicators of higher burn severity
on the ground, yet comprised a minor proportion of the ground
cover on our moderate—high burn-severity sites (Fig. 4). We
expect that if our field sites had included severely burned sites
where most of the organic layer was consumed, we would have
found a greater percentage of exposed soil and ash on the
ground.

This study was part of a larger research project that aimed
to define quantitative indicators of burn severity that were
mappable, scalable from field to remotely sensed imagery
and, most importantly, consistent across vegetation types.
Robichaud et al. (2007) used a partial spectral unmixing
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algorithm with hyperspectral imagery to determine post-fire
green and scorched vegetation, soil and ash on the 2002 Hayman
Fire in Colorado. They found that the combination of exposed
soil and ash were mapped in the areas of highest soil burn
severity and low or moderate conditions were indicated by green
or scorched vegetation respectively. Lewis et al. (2007) used
similar methods on the 2003 Simi and Old wildfires in southern
California and found that exposed mineral soil and lack of
organic ground cover indicated the most severe fire effects on
the soil surface and an increased potential for hydrologic
response. Lentile et al. (2007a) found that in large severe
wildfires (in Montana, California and Alaska), there are gen-
erally extensive areas (and microsites) where significant organic
material remains to protect the soil. In erosion-prone ecosystems
(such as Montana and California), this organic cover protects the
soil and helps vegetation recover. In Alaska, organic cover
hinders tree recruitment, but protects the underlying soil from
warming and potential thaw. Thus, even across the range of
these ecosystems, it is generally exposed soil (inorganic cover)
that indicates higher burn severity and organic cover that
indicates lower burn severity (Tables 3, 4).

Relationship between remotely sensed fractional cover
and forest floor consumption

The variables that appeared to best indicate burn severity at
either end of the spectrum were green moss (low) or soil and ash
(high). However, the contribution of the green moss, ash, and
soil and rock fractions to the mixed-pixel signature in this post-
fire boreal forest landscape was minor compared with the NPV
fraction, most of which was charred (Fig. 4). Indeed, only the
three SMA organic fractions were selected as significant pre-
dictor variables in the spatial simultaneous autoregressive linear
models predicting post-fire forest floor depth and percentage
forest floor consumption (Table 4).

The spatial autoregression models were used to predict post-
fire forest floor depth and percentage forest floor consumption;
Fig. 8 portrays the fine-scale pattern in these forest-floor
measures at one moderate—high severity site on the Chicken
Fire (Table 1) and illustrates the potential for mapping remain-
ing forest floor depth and percentage consumption from hyper-
spectral imagery. Fig. 8a—c shows a close-up of the Chicken 1
site to illustrate the fine-scale variation and the Hudak and
Ottmar team sample plot configurations. Fig. 8b illustrates
predicted post-fire forest floor depth and Fig. 8c predicts forest
floor consumption (%). Areas with more charred moss (red,
Fig. 8a) have shallower forest floor depth (dark grey, Fig. 8b)
due to greater percentage consumption (light grey, Fig. 8c).
Within the 100-m-radius area encompassing the Hudak and
Ottmar team plots, post-fire forest floor depth varies from 40
to 130mm (mean=83 mm, s.d. =26 mm) and forest floor
consumption varies from 35 to 70% (mean = 52%, s.d. = 10%).

Considering the depth of forest floor that must be consumed
to produce ash and expose soil (greater than 100 mm on most of
our sites), it is not surprising that little ash was mapped by SMA
or measured on the ground. However, ash can still be regarded
as an important indicator of high severity fire effects. White ash
is a sign of complete surface vegetation combustion and is most
prevalent when burn severity is high (Rogan and Franklin 2001;
Landmann 2003; Smith and Hudak 2005; Smith ef al. 2005;
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Kokaly et al. 2007). Both Landmann (2003) and Smith et al.
(2007) used spectral mixture models with Landsat data to map
ash and combustion completeness and found ash abundance
increased with increasing vegetation combustion. This holds
true in a boreal forest setting, requiring even more vegetative
combustion to result in a measurable amount of ash because of
the depth of forest floor material that must burn to achieve
complete combustion.

Forest fires can have both immediate and long-term implica-
tions for ecological and physical processes in the boreal forest
through the amount of forest floor consumption (Kasischke
et al. 2008). For example, post-fire succession is influenced
by amount of bare soil exposed following fire (Johnstone and
Kasischke 2005; Greene et al. 2007; Johnstone et al. 2008).
Consumption increases the depth of the soil active layer (the
layer of soil between the permafrost and the soil surface that
thaws during the summer) (Dyrness 1982; Swanson 1996;
O’Neill et al. 2002; Harden et al. 2006) as well as types and
quantities of nutrients released following fire and soil moisture,
which all have an effect on plant growth, species composition
and post-fire succession (Kane et al. 2005; Kasischke et al.
2007). Absolute consumption can have an effect on the atmo-
sphere through carbon emissions, on the vegetation community
through seedling recruitment and survival, and on long-term
changes in soil moisture and temperature (Kasischke er al.
2008). Fire also temporarily reverses the role of the boreal forest
as a carbon sink (O’Neill et al. 2003), both from the direct
emissions and from the rate of decay of the forest floor layers
when warming occurs. Further research is warranted to more
accurately predict the effect of fire and organic layer consump-
tion on boreal forest carbon balance.

Achieving fire science objectives within rapid-response
research operational constraints

The primary objective of any rapid-response research team is
safety (Lentile ef al. 2007b). Research objectives are necessarily
subsidiary. We would have preferred to conduct a more statis-
tically powerful analysis if the Hudak and Ottmar teams had
collected field data at coincident plots rather than as we did at
overlapping sites. However, this would have required not only
more time on site but that the Hudak team co-locate their plots
with the Ottmar team’s plots, causing trampling and adversely
affecting their post-fire forest floor depth and consumption
measurements. Moreover, the Ottmar team’s plots were not
as equitably distributed across the full range of burn severity
conditions, or between sites (Table 1). The Ottmar and Hood
teams’ objectives were to establish as many plots as possible,
in advance of the wildfire front, when the fire weather, fuel
conditions, access, safety and other operational constraints of
working in an active wildfire incident made it advantageous
to do so, not knowing whether the plot would burn or how
severely. The Hudak team could more equitably distribute
field sites across the full range of burn severities observed in the
post-fire landscape and could afford to spend more time care-
fully geolocating their plots for the purpose of image validat-
ion. Even though the objectives and sampling designs of
the Ottmar and Hudak teams were not completely compatible,
significant data overlaps occurred and were considered
complimentary.
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Conclusion

This study was a unique collaboration among three rapid-
response research teams that resulted in spatially explicit,
quantified comparisons of the boreal forest floor before and
immediately following wildfire. Forest floor consumption was
measured via assessment of pre- and post-fire forest floor depth
and SMA was used with high-resolution hyperspectral imagery
to predict and map post-fire forest floor depth and consumption.
These predictive models were corroborated by significant cor-
relations between the depth of forest floor and organic and
inorganic post-fire ground-cover fractions and validated with
independent data. As expected, sites with deeper pre-fire forest
floor were less severely burned by fire, resulting in lower con-
sumption and higher residual organic ground cover compared
with more severely burned areas. Areas with low forest floor
consumption were characterised by extensive green and NPV
cover. Areas with substantial consumption (greater than
100 mm) were characterised by charred vegetation, ash and
exposed mineral soil cover. The fractional covers of these
variables can be readily assessed in the field and remotely. As
they are likely correlated with vegetation response to fire and
with other ecosystem effects of fires, and because they are
continuous, mappable and scalable, they jointly can be used
as indicators of burn severity. Of all of the variables that were
mapped with SMA, green moss was the most accurate compared
with field data, and had the strongest correlation with forest floor
depth and percentage forest floor consumption. A map of a
continuous layer of green moss may be used to predict areas that
will likely not experience severe fire effects in future fires.

The ability to spatially predict the depth or degree of
consumption at a fine scale with hyperspectral data is an
important development in the field of boreal fire ecology. These
methods were established on sites that experienced low to
moderately high severity fire effects and should be tested under
more extreme forest floor consumption conditions before they
are confidently applied to future wildfires in the boreal forest.
As a consequence of global climate change, fires in the boreal
region are predicted to be larger, have higher burn severity and
occur more frequently than in the past (Flannigan and Van
Wagner 1991; Overpeck et al. 1991; Kasischke et al. 1995a;
Rupp et al. 2000; Kasischke and Turetsky 2006). Owing to these
changes, mapping fire effects and predicting ecological effects
will likely be the focus of significant research in the coming
years.
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