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Foresters are increasingly interested in remote sensing data because they provide an overview of
landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging
(LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data
have limited their application beyond the research community. Another obstacle to operational use of
LiDAR data has been the high cost of data collection. Our objectives in this study were to summarize,
at the stand level, both LiDAR- and Landsat (satellite)-based predictions of some common structural and
volume attributes and to compare the cost of obtaining such summaries with those obtained through
traditional stand exams. We found that the accuracy and cost of a LiDAR-based inventory summarized
at the stand level was comparable to traditional stand exams for structural attributes. However, the
LiDAR data were able to provide information across a much larger area than the stand exams alone.
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R emotely sensed data are helping
people understand the dimensions
and distribution of trees in forested

areas that are too large or rugged to survey
on foot alone. This is a global trend that is
helping document the status of forests
worldwide. Because remotely sensed data are
typically collected above the canopy, one
persistent question is how well such data can
be used to inform operational decisions in
forestry. It is an important question because
digital remote sensing data are now sup-
planting the aerial photo surveys that forest-

ers used for decades. Landsat satellite imag-
ery is inexpensive and has been useful at a
regional scale, but lacks the higher spatial
resolution preferred for local project deci-
sions. Light Detection and Ranging (Li-
DAR) data are receiving more attention be-
cause of their detailed structural information
and established accuracy in research studies
(Eid et al. 2004, Næsset 2002, 2009). Prog-
ress in addressing the question about opera-
tional uses of LiDAR is being made for some
local forest attributes (e.g., Hudak et al.
2008b, Hollaus et al. 2009, Falkowski et al.

2010). Information is still lacking, however,
on how the different sources of remotely
sensed data and the methods to process them
into useable information compare with one
another in terms of a gain in knowledge
about forest conditions relative to their over-
all cost. To address this need, we evaluated
how information derived from both Landsat
satellite and LiDAR data compared, in terms
of accuracy and cost, with data collected by
using traditional field exams. We also con-
sidered how the physical size of a manage-
ment area might impact the relationship.

Background
A historical focus on increasing timber

yield via forest management contributed to
early field methods for estimating tree
growth at different levels of competition
(Hummel and O’Hara 2008); measure-
ments or observations of forest structure
were typically made within small, homoge-
neous units, or stands. Today, however,
wood fiber is just one of many resources con-
sidered by forest managers, who may be re-
sponsible for decisions impacting multiple
resources over large, heterogeneous land-
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scapes comprising many forested and non-
forested units. In such instances, the geo-
graphic scale and detail of the information
required for management can differ across
the various disciplines involved in forest
planning. For example, silviculturists typi-
cally focus on stand structural attributes
(e.g., volume per diameter class), whereas
wildlife biologists might consider landscape
patterns arising from among-stand forest
structures such as snag density. There is a
need for forest inventory tools that are scale
appropriate by discipline but remain com-
patible when combined in forestwide plan-
ning efforts (e.g., National Environmental
Policy Act). For this reason remotely sensed
data are being coupled with prediction algo-
rithms to extend plot-level forest inventory
data across large areas (Hudak et al. 2008a,
2009a and b, Pierce et al. 2009).

Imputation is one method being used
to extend forest plot data to landscapes. It is
a procedure for filling in missing values with
measured values (Eskelson et al. 2009). In
the context of forest management, imputa-
tion is used to assign stand exam data from
stands that were sampled on the ground to
similar stands that were not. This is useful
because forest managers can not afford to
inventory all stands across the large land-
scapes they manage.

In Oregon, for example, personnel on the
Malheur National Forest (Malheur NF) use an
imputation program (Most Similar Neighbor)
to assign forest structure and volume attributes
measured in sample stands to unsampled, but
similar stands (Moeur and Stage 1995), and
then use the results for landscape-level plan-
ning. Their interest in understanding the
strengths and limitations of traditional forest
inventory versus LiDAR-derived forest inven-
tory made this study possible.

We sought to determine if remotely
sensed data—in combination with field
plots—could be used to obtain information
of similar quality and cost to traditional
stand exams, but over an entire project area.
Our test of this was whether LiDAR and
satellite data made it possible to create a
wall-to-wall forest inventory that was of
equal or better quality than one generated by
using traditional stand exam plot data for
the same landscape. We defined quality not
in terms of map resolution, but in terms of
predicting forest structure and volume attri-
butes with the same or better accuracy at the
stand level. We also calculated how the per
acre cost of inventory information generated
from the remotely sensed data compared

with the per acre cost of stand exam data at
the same level of accuracy for specific forest
inventory attributes.

As long as forests are managed stand by
stand, evidence is needed to show that in-
ventories based on remote sensing data are as
accurate as exam-based inventories at this
same scale. Hence, stands are the units sam-
pled and evaluated in our study. We evalu-
ated satellite remote sensing data in addition
to LiDAR data and we compared the suit-
ability of both parametric and nonparamet-
ric statistical tests for assessing the accuracy
of remote sensing versus traditional inven-
tory. In this article we focus on results from
the LiDAR analysis.

Methods

Study Area
This study occurred on the Blue Moun-

tain Ranger District of the Malheur NF in
Oregon (Figure 1). Planning staff of the
Malheur NF routinely evaluate conditions
for all land located in priority subwater-
sheds. We focused on two of them, the
Shirttail and Van Aspen subwatersheds,
which together cover 40,957 ac. Of this total
area, roughly one-half (19,781 ac) lies
within the Malheur NF boundary and in-
cludes both federal (18,423 ac) and private
(359 ac) land. Nonforest land is also present
(Figure 1).

Two subunits of an existing planning
project (nicknamed “Damon”) within the
selected subwatersheds were flown with Li-
DAR to delimit our study area. Both units
are south of John Day, Oregon, and lie on
opposite sides of the town of Seneca (lati-
tude 44.14°, and longitude �118.97°). The
northern unit of the Damon project covers
9,598 ac and the southern unit covers 22,016
ac (Figure 1). Using regional protocols, Mal-
heur NF staff delineated the Damon project
area into 1,029 stands in a geographic infor-
mation system database. The average stand size
was 19.2 ac (SD 27.47) for federal land and 9.9
(SD 9.9) for private land. The stands were not
edge matched to the subwatershed boundaries;
consequently, some tiny sliver cells (�1 ac) af-
fect the minimum size and summary statistics.

Data Collection
Field Data. Forest inventory plot data

were collected in the study area during Au-
gust and September of 2007. Eighty-eight
stands were selected for sampling. The fol-
lowing criteria were applied to select the 88
inventory stands: (1) 100% sample of mi-

nority stand conditions, including one juni-
per woodland and one ponderosa pine inva-
sion (into sagebrush) stand, and (2) stratified
sample allocated proportionally in three
canopy closure categories (low �20%; me-
dium 20–40%; and high �40%). Most for-
est types in this area are dry ponderosa pine
or dry mixed-conifer. Canopy closure is
rarely above 60%. Previous experience by
Malheur NF within the lowest category (in-
cluding difficulty distinguishing between
plantations and seed tree cuts in aerial pho-
tos) suggested more intensive sampling in it
compared with the medium and high cate-
gories. Samples were distributed across a
range of aspect and elevation. The 88 sample
stands covered about 5,280 ac and averaged
59 ac (SD 49.6). Field measurements were
made as follows:

1. In each of the 88 sample stands, variable-
radius plots were measured by following
established US Forest Service protocols
for stand exams (see US Forest Service
2009). The total number of plots (641)
was determined by accepting a 20% error
for basal area (BA) estimates at a 66%
confidence level. A BA factor was selected
so four to eight trees were measured per
plot. Plots were spaced to have roughly 1
plot/8 ac, although they could be closer
together in stands with smaller overall
area to accommodate a minimum of 3
plots/stand and a maximum of 15 plots/
stand. Once the tree data were tallied,
stand summaries were generated by using
the Forest Vegetation Simulator (Dixon
2002) Blue Mountain variant. In this
study, the variable-radius stand exams are
used as validation data to test the accu-
racy of the imputation algorithm.

2. In each of the 88 sample stands, a fixed-
radius plot (1⁄10 ac) was installed at one ran-
domly selected variable-radius plot loca-
tion. All trees of �5-in. dbh within the
fixed area plot were measured. A Trimble
GeoXT global positioning systems (GPS)
unit was used to record the center point of
every inventory plot (both variable- and
fixed-radius plots). In this study, the fixed-
radius plots are used as training data in the
imputation algorithm.

Costs of Field Data Acquisition. The
price per plot to acquire the variable-radius
stand exam data in the Damon study was
$17.34. This price, which ranges from $17
to 23 on similar sites depending on slope,
road access, and species mixtures, could be as
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high as $32–42/plot if measurements of tree
age, growth, or down wood are made.

The price per plot to acquire the fixed-
radius plot data was $57; however, this cost
is considered low because of contract effi-
ciencies gained by coupling the measure-
ment of the fixed-radius plots with the same
field visit as the variable-radius plots. If, as is
more likely, the two types of field measure-
ments are not done concurrently, but inde-
pendently, we estimate the price for fixed-
radius plots based on productivity and wage
assumptions on similar sites as follows: 1.5–
2.5 plots installed/day (all trees measured)
by a forester working at a daily rate of $270
would cost $104–180/plot.

In addition to the contract price to ac-
quire the data, the Malheur NF incurred
costs to prepare and administer the contract,
adding approximately $1/plot to the total.
The current federal salary schedule (2010)
was used to estimate the costs of all tasks not
paid directly under contract by assigning a

grade level (midpoint, or step 5) consistent
with the skill level required (Table 1) and
multiplying by the number of hours. For ex-
ample, processing the variable-radius plot
data used the skills of a GS-12 working for 3
days. The cost of this processing was an ad-
ditional $792. When added to the acquisi-
tion costs of the variable-radius plot data
($12,210), the total price of the stand exams
was $13,002. Unless otherwise stated, we
used an average price of $18.50/variable-ra-
dius plot and $58/fixed-radius plot in our
analysis of the Damon study data.

Remotely Sensed Data. LiDAR data
were collected on September 15 and 16,
2007, by Watershed Sciences, Inc. (Corval-
lis, OR). The data were collected using a
phase II laser (Leica ALS50) mounted in a
Caravan 208B (Cessna). During the LiDAR
survey, a static ground survey was conducted
over monuments with known coordinates.
One thousand seven real-time kinematic
ground points were collected and compared

with LiDAR data for accuracy assessment.
The vendor achieved an absolute vertical ac-
curacy of 0.024 m, a mean pulse density of
6.31 points/m2, and a mean density of
ground returns of 1.44 points/m2.

The total area flown with LiDAR was
31,614 ac, which included a buffer area
added first by the Malheur NF and then
again by the vendor. The cost of acquiring
LiDAR for the Damon project was $1.35/
ac. The time needed to acquire, process, and
analyze these data is shown in Figure 2. A
skilled GS-9 technician needed 1 week to
process the LIDAR data and generate de-
rived 20-m raster layers suitable as inputs for
predictive mapping by imputation. The cost
of this processing was an additional
$33,424. When added to the acquisition
cost of the fixed-radius plot data ($5,104)
and the imagery ($40,500), the total cost for
LiDAR data in the Damon study was
$79,028.

Figure 1. Damon project area, Malheur NF in Oregon.
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Imputation of Forest Inventory Data
To impute our reference data to un-

sampled stands in the Damon study land-
scape, we used a model based on the random
forest (RF) algorithm (see Breiman 2001,
Lawrence et al. 2006, Prasad et al. 2006 for a
detailed review of the RF algorithm). The
RF algorithm is a robust, nonparametric
classification and regression tree algorithm
that can be used to quantify the proximity
(multivariate distance) between reference
and target observations (Crookston and Fin-
ley 2008). Falkowski et al. (2010) present a
succinct overview of the RF imputation al-

gorithm and its functionality. The RF algo-
rithm calculates the proximity of each obser-
vation (reference and target) by developing
classification tree ensembles (�100–
�2,000). Observations that repeatedly oc-
cur in the same terminal node have a higher
proximity than observations that do not oc-
cur in the same terminal node.

Overall proximity between each obser-
vation was calculated by dividing the num-
ber of times observations occur in the same
terminal node by the number of classifica-
tion trees in the ensemble. We selected the
RF imputation algorithm because it has pro-

duced accurate predictions of stand-level BA
and tree density (Hudak et al. 2008a) as well
as tree-level forest inventory data (Falkowski
et al. 2010) in similar study areas.

Reference Data. The 88 fixed-area
plots were used as “reference” data or “train-
ing” data in the imputation process, which
was executed at the 20 � 20-m pixel level
(approximately the same size as a 1⁄10 ac
fixed-radius plot). Every pixel within the
study area as defined by the LiDAR survey
was attributed with data from a single refer-
ence plot. Stand-level inventory data quan-
tifying forest structure and volume were
then generated by summarizing all imputed
pixels within a stand; in this way, conditions
in each of the 88 stands where validation
data were collected were described. For con-
tinuous data, the arithmetic mean of a forest
metric was used for all imputed pixels within
each stand. The metrics derived from the
reference plots included the following:

1. Structure.
a. BA (ft2/ac).
b. Crown competition factor, relative

measure of stand density.
c. Quadratic mean diameter (QMD)

(in.).
d. Top height (TH) (Ft).
e. Trees per acre (TPA), number of

stems �5 in./ac.

2. Volume.
a. Bd ft (number/ac).
b. Biomass (dry tn/ac).
c. Merchantable cubic feet (ft3/ac).
d. Total cubic feet (ft3/ac).

Predictor Variables. The imputation
models relied on both LiDAR and Landsat
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Obtain Remote 
Sensing Data

(15 days)

Field Training 
Data

(2 days)

Valida on Data
(2 days)

Geospa al 
Data Join
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Feature Space
(75 days)
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(5 days)

Spa al 
Predic ons

(1 day)

Valida on
(10 days)

Inputs

Analysis Methods

Product Deliverables
(10 days)

Outputs

Flow Chart Depic ng Simple Process for Mapping 

Figure 2. Flow chart for data processing and mapping.

Table 1. Cost for data collection and processing (LiDAR).

Processing task
No. of
days

No. of
hours

Worker
grade
level

Average
rate

($/hr)

Average
cost
($)

Minimum
rate

($/hr)

Maximum
rate

($/hr)

Minimum
cost
($)

Maximum
cost
($)

Data preprocessing 5 40 9 23 920 20 26 800 1,040
Project management 20 160 12 33 5,280 28 37.5 4,480 6,000
Remote sensing data 15 120 9 23 2,760 20 26 2,400 3,120
Field training data 2 16 9 23 368 20 26 320 416
Validation data 2 16 9 23 368 20 26 320 416
Geospatial join 1 8 9 23 184 20 26 160 208
Feature space 75 400 12 33 13,200 28 37.5 11,200 15,000

200 9 23 4,600 20 26 4,000 5,200
Modeling 5 40 11 27 1,080 25 31 1,000 1,240
Spatial predictions 1 8 12 33 264 28 37.5 224 300
Validation 10 80 11 27 2,160 25 31 2,000 2,480
Product deliverables 10 40 9 23 920 20 26 800 1,040

40 12 33 1,320 28 37.5 1,120 1,500
Total 33,424 28,824 37,960
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predictor variables available across the entire
Damon study area. The LiDAR predictors
included a suite of variables that have proven
useful for the characterization of forest struc-
ture. Hudak et al. (2008a,b) and Falkowski
et al. (2010) provide detailed description of
the LiDAR-derived predictor variables plus
the general methodology used to process the
LiDAR data. The Landsat predictor vari-
ables included principal and independent
components derived from all Landsat bands
(sensor 5, scene location path 43, row 29,
June–September 2008). All predictor vari-
ables had a spatial resolution of 20 m, which
closely approximates the area of a 1⁄10-ac
fixed-radius inventory plot.

A variable selection procedure was used to
identify the optimal predictor variables for im-
puting forest structure and volume (see
Falkowski et al. 2009, 2010). The procedure
automatically selects the most important pre-
dictor variables by iteratively running the RF
algorithm and subsetting classification vari-
ables based on a mean square error ratio
threshold. The final variables were selected
based on the criteria of smallest total and with-
in-class errors and fewest numbers of variables.
To stabilize individual class error, each RF
model was run with 3,000 bootstrap replicates.
These response variables were then imputed
from 1 of the 88 training plots to each 20-m
pixel, ultimately producing a map of all attri-
butes of interest across the entire Damon study
area.

Analysis
We first analyzed how the stand esti-

mates made by using RF imputations com-
pared with the estimates made by using sum-
marized, variable-radius plot data. This
addressed our main question: how data col-
lected by using remote sensors compared
with stand exam data for different volume
and structure variables. Because we expected
that the efficacy of different tests would vary
according to the imputed or measured vari-
able of interest, we used two: the t-test and
the Wilcoxon paired signed-rank test (Wil-
coxon test). To get started, we used the An-
derson-Darling test (AD test) to check if our
structure and volume variables came from a
normal distribution. Then, a paired t-test
examined the similarity between the stand-
level summarized values and the imputed
values. If the condition of normality in the
AD test was met, values of P � 0.05 gener-
ated by the t-test indicate that the imputed
and summarized values did not arise from
the same distribution. If the condition of

normality in the AD test was not met, the
Wilcoxon test provided us with an (non-
parametric) alternative to the paired t-test.
The results of a nonparametric test can be
used when one variable is distributed nor-
mally and the other is not. Like the t-test, the
Wilcoxon test results in a P-value that gives a
probability that the imputed and summa-
rized values arise from the same distribution.
Significant results (P � 0.05) indicate that
the stand-level mean of the two methods
(stand exam versus imputation) is different,
whereas nonsignificance implies that the
mean value is similar (not statistically differ-
ent).

Next, we calculated the per acre costs of
the variable-radius stand exam data and the Li-
DAR data for the Damon study. The costs to
collect and process the stand exam data
($13,002) were distributed across the area
sampled, which was 18% of the study area
(5,280 ac). The total costs to acquire and pro-
cess the LiDAR data ($79,028), including the
fixed-radius field plots (18% of area) and the
LiDAR imagery (100% of area), were distrib-
uted across the entire area (30,000 ac).

We also estimated a range of costs—
from low to high and for areas increasing in
size by 20,000-ac increments—for collect-
ing and processing stand exam and LiDAR
data. To calculate the minimum and maxi-
mum amount for collecting the stand exam
data, we used the midpoint of the low price
estimate ($20) and the high price estimate
($37) per plot, while holding constant the
average stand size (60 ac) and plot density (1
plot/8 ac). For the fixed-area LiDAR “train-
ing” data, we used $104, 142, and 180/field
plot to estimate minimum, average, and
maximum prices, respectively. For acquiring
LiDAR imagery, we assumed prices ranging
from $1/ac (minimum) to $2/ac (maxi-
mum) with the midpoint ($1.5/ac) as aver-
age. For both types of data we assumed the
same field sampling intensity (18% of area).
Costs for processing the stand exam data and
the LiDAR data were calculated by using the
within-grade wage range in the 2010 federal
government salary schedule (step 1 � low
and step 10 � high). We added together the
low estimates for data collection and pro-
cessing (e.g., LiDAR: low plots � $9,152 �
low imagery � $30,000 � low processing �
$28,824) to estimate the total low cost per
acre ($67,976/30,000 � $2.27/ac) stand ex-
am: low plots � $13,200 � low processing �
$672 � $13,872/5280 ac � $2.63/ac) and
then repeated this summation for the high es-
timates (e.g., LiDAR: high plots � $15,840 �

high imagery � $60,000 � high processing �
$37,960 � $113,800/30,000 � $3.79/ac) to
calculate the range, respectively, of low to high
costs per acre.

Results
The data derived from stand exams

were generally distributed normally; the
three exceptions were structure variables
(TH, TPA, and QMD). The structural vari-
ables for LiDAR tended to be nonnormally
distributed with the exception of BA. In
contrast, the volume variables were normally
distributed except for biomass. Given these
results from the AD test, we report only P-
values from the Wilcoxon test.

Structure
Estimates of BA, TH, and TPA im-

puted from LiDAR predictor variables were
not significantly different from the estimates
made by summarizing stand exam data (Ta-
ble 2). For BA and TH, the use of LiDAR as
predictor variables produced mean estimates
similar to the stand exams (Table 2). How-
ever, the mean LiDAR-based estimate of
TPA was lower than the mean estimate from
the stand exams (TPA LiDAR � 506; TPA
stand exam � 624.6 [Table 2]).

Landsat-based imputations of BA and
TH were significantly different from the
stand exam estimates; Landsat underesti-
mated both BA and TH. However, there
was no significant difference between Land-
sat-based TPA estimates and those derived
from stand exam data. In fact, the mean
Landsat TPA estimate was closer to the
stand exam mean estimate than was the
LiDAR-based estimate of TPA.

Volume
The predictions of volume attributes

made using LiDAR or a combination of Li-
DAR and Landsat imagery were more often
significantly different from estimates derived
from stand exam data. In fact, only the Land-
sat-imputed estimate of mean biomass was not
significantly different from the mean stand
exam estimate (Table 3). The intercepts (�0)
indicate that the imputations generally overes-
timated at low volumes.

Cost
In the Damon study, the cost per acre

to acquire and process the variable-radius
stand exam data was $2.46 ($13,002/5,280
ac � $2.46/ac) compared with $2.63/ac to
acquire and process the LiDAR data (Table
4). Estimates of the minimum and maxi-
mum cost per acre for an area similar in size
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to our study area (30,000 ac) suggest that
this relationship would reverse, however, if a
landowner were able to pay the lowest aver-
age price per fixed area plot ($104) and price
per acre for LiDAR data ($1). In this event,
the minimum cost per acre to acquire and
process LiDAR data ($2.27; Table 4) would
drop below the minimum cost to acquire
and process stand exam data ($2.63).

As we increased the size of the analysis
area by increments of 20,000 ac, the esti-
mated cost per acre for LiDAR remained be-
low the estimated minimum cost for stand
exam data. When the analysis area reached
70,000 ac, our results suggest a landowner
could pay $1.50/ac for LiDAR imagery and
still incur an average cost per acre ($2.39;
Table 4) to acquire and process inventory
data over 100% of an area that was lower
than the minimum cost per acre for stand
exam data ($2.55) over just 18% of the area.

Discussion
Our results suggest that LiDAR data—in

combination with measured field plots and
imputation modeling—can generate a
stand-level forest inventory of structural at-
tributes such as height and BA that is com-
parable with one produced solely from stand
exams. On the Malheur NF, there was insuf-
ficient evidence that the means of the two
samples were statistically different for these
attributes. Furthermore, we learned that us-
ing parametric statistical tests to assess the
accuracy of imputed, forest structure data at
a stand scale could violate the key assump-
tion of normality.

We can not find other published com-
parisons on the cost of creating a stand-level
forest inventory by using field exams alone
versus combining field data with remotely
sensed data. Hence, there is no established
method for allocating the actual costs of data
collection and processing to a heterogeneous
management unit or landscape study area.
We used information on the cost of the Da-
mon project both to evaluate the study itself
and to develop estimates to inform future
projects. When considering our range of es-
timated costs, it is important to note that the
actual price per stand exam plot in our study
is lower than the estimated mean minimum
price because of local contractor efficiencies.
In addition, we used the actual geographic
area sampled by each method to allocate
costs because it represents the spatial extent
of collected data. Making different assump-
tions about the price per plot, the number of
plots required, the area sampled, or the

method for distributing costs will affect the
range of the estimates.

We had anticipated that the estimates
of structure and volume variables made by
incorporating LiDAR into our imputations
would be more similar to the stand exam
data than they in fact were. This could be
due to the location of sample plots relative to
tree cover, because the over- and underesti-

mation errors in the imputed summaries re-
late to forest heterogeneity. Although in-
creased heterogeneity should add variability
to the estimate derived from stand exams,
the sample plot locations did not always cap-
ture the variability. This might stem from
errors in GPS accuracy, which would lead to
mismatches between the LiDAR and plot
data or it could be from errors in the stand

Table 2. Results of tests comparing structure LiDAR data with stand exam data.

Stand exam mean and
Predictor variables Mean SD Kurtosis Slope Intercept P-value

BA
84.1 (SD 40.7)

LiDAR 83.1 24.5 �0.1 0.5 41 0.9
LiDAR � Landsat 83.3 29.1 �0.7 0.6 32 0.9
Landsat satellite 70.6 26 �0.9 0.5 26 0

TH
57.7 (SD 18.9)

LiDAR 60.4 12.5 0.7 0.58 27 0.09
LiDAR � Landsat 60.5 14.7 �0.1 0.69 21 0.03
Landsat satellite 52.1 14.3 �0.8 0.63 16 0.0

TPA
624.6 (SD 461.5)

LiDAR 506 214.9 �1.1 0.05 472 0.19
LiDAR � Landsat 815 304.8 �0.5 �0.18 926 0
Landsat satellite 611.6 246.5 1.6 0.25 457 0.33

Slope and intercept values are from least squares linear fit; kurtosis and P-values are from Wilcoxon test. A value of P � 0.05 indicates
a significant difference between the stand exam and remote sensing approaches.

Table 3. Results of tests comparing volume LiDAR data to stand exam data.

Stand exam mean and
Predictor variables Mean SD Kurtosis Slope Intercept P-value

Biomass
38.1 (SD 20)

LiDAR 29.1 8.2 �0.05 0.3 18 0.00
LiDAR � Landsat 33.2 10 �1.1 0.4 18 0.00
Landsat satellite 35.2 6.6 1.7 0.2 28 0.31

Bd ft
7,995 (SD 5,147)

LiDAR 8,959 4,501 0 0.5 3,006 0.00
LiDAR � Landsat 10,380 4,916 �0.6 0.8 3,800 0.00
Landsat satellite 7,151 3,420 �1 0.8 2,702 0.03

Total cubic feet
1,883 (SD 1,096)

LiDAR 2,028 866 �0.1 0.69 727 0.01
LiDAR � Landsat 2,204 975 �0.7 0.78 733 0.00
Landsat satellite 1,637 731 �1 0.55 603 0.00

Slope and intercept values are from least squares linear fit; kurtosis and P-values are from Wilcoxon test. A value of P � 0.05 indicates
a significant difference between the stand exam and remote sensing approaches.

Table 4. Estimated per acre cost to acquire and process LiDAR data.

Area
(ac)

Damon study costs
($/ac)

Minimum costs
($/ac)

Average costs
($/ac)

Maximum costs
($/ac)

30,000 2.63 2.27 3.03 3.79
50,000 NA 1.88 2.59 3.29
70,000 NA 1.72 2.39 3.07
90,000 NA 1.63 2.29 2.95

NA, not applicable.
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exams. Our assumption is that the stand
exam data are a truthful representation of
stand conditions. Although we used a forest
growth model to summarize the stand exam
data, we did not use it to make projections of
stand development. The collection dates for
the remote and the field data were nearly
synchronized. Any significant time lag
would create a need to match collection
dates via model simulation, which would in-
troduce another source of potential error.

Imputed plot measurements appeared
to overestimate forest metrics in stands with
low cover and underestimate in stands with
high cover. Because landscape stratification
was based on canopy closure, the study sam-
ple (both the variable- and fixed-radius
plots) discriminated against sites without
tree cover. A majority of the comparisons of
stand exam versus LiDAR classifications had
�25% difference in BA. However, a hand-
ful (nine stands) had �75% difference in
BA. This suggests that we may have had too
few training plots with sparse or no tree
cover.

Imputation is desirable because by us-
ing measured values it can lead to reasonable
and unbiased predictions if sample stands
are well distributed across the range of vari-
ability in forest conditions. This is a prereq-
uisite to any predictive modeling or map-
ping approach used to assign values to
unsampled locations (e.g., regression).
However, regression models can produce
unreasonably high (or low) predictions and
distort the tails in the distribution of pre-
dicted values relative to observations (Eskel-
son et al. 2009). In our analysis, much of the
variability in forest conditions occurs within
stands, which the 20-m imputed maps rea-
sonably portray, but this variability gets
greatly reduced when aggregated to the
stand level. Aggregation effects may also ex-
plain why the stand-level predictions tended
to cluster around the mean condition and
why the Landsat-based imputations did not
differ as much from the LiDAR-based im-
putations as initially expected.

The contribution of LiDAR data to the
objectives of the Malheur NF for prioritiz-
ing landscape management activities was
promising because we found insufficient ev-
idence to suggest that the means of the two
samples (stand exam versus imputed) for the
structural variables of interest were statisti-

cally different. In addition, Malheur NF
managers have benefited from the LiDAR
data more than this analysis suggests. Data
collected during the Damon study were used
by planning staff to estimate forest cover and
structure to identify target stands for fuel
reduction treatments. In addition, lessons
learned during the Damon project have mo-
tivated new contracts for LiDAR data collec-
tion across areas on the Malheur NF an or-
der of magnitude larger.

We recognize that the geographic re-
quirements (scale and level of detail) of for-
est management may well change in the fu-
ture. Forest inventory information mapped
at even finer spatial scales (e.g., 20-m cells
instead of stands) could provide greater
management flexibility. Depending on their
own needs, managers could then aggregate
the information to stands or to other
mapped units, whether a woodlot or a wa-
tershed.
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