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Abstract. In fire-adapted ecosystems, fire is presumed to be the dominant ecological force,
and little is known about how consumer interactions influence forest regeneration. Here, we
investigated seed predation by deer mice (Peromyscus maniculatus) and its effects on
recruitment of ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii )
seedlings in unburned and recently burned fire-adapted montane forests in west-central
Montana, USA. Deer mice were almost twice as abundant in burned than unburned stands.
Deer mouse removal of seeds from petri dishes was two times higher in burned than in
unburned stands, and seed removal levels were 8% higher for ponderosa pine than for the
smaller Douglas-fir seeds. In seed-addition experiments, emergence of seedlings in deer mouse-
exclusion cages was almost six times higher in burned compared to unburned forest. In both
burned and unburned forest, emergence was lower for ponderosa pine than for Douglas-fir.
Seedling survival to establishment did not differ between conifer species but was considerably
higher in burned than in unburned forest. However, effects of seed predation on recruitment
prevailed over fire effects: in cages allowing access by deer mice, emergence and establishment
were extremely rare for both conifer species in both burned and unburned forest. This research
suggests that consumer interactions can substantially influence recruitment even in fire-
adapted forest ecosystems.
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INTRODUCTION

Wildfires are among the most important factors

determining distribution, structure, and dynamics of

plant communities worldwide (Whelan 1995, Bond et al.

2005). In western North America, the influence of

recurring wildfires on tree communities is a focus of

intense research (e.g., Kulakowski et al. 2004, Mac-

Kenzie et al. 2004, Brown and Wu 2005, Franklin et al.

2006, Keyser et al. 2008). Nonetheless, the majority of

studies that investigate the effects of this disturbance on

plant communities implicitly assume ‘‘bottom-up’’ con-

trol (reviewed in Agee 1993, Whelan 1995, Brown and

Smith 2000, Rood et al. 2007, Buhk et al. 2007). In other

words, changes in plant communities following wildfire

are typically explained by direct effects of the physical

environment on plant performance and competition,

ignoring how vertebrates may mediate bottom-up

effects.

Seed predation is recognized as one of the most

important factors influencing plant recruitment (Louda

1982, Maron and Simms 1997, Silman et al. 2003), and

in many parts of the world, rodents are the primary

granivores (Brown et al. 1979, Hulme and Kollmann

2002). In North America, rodent predation of large vs.

small seeds has been demonstrated to control the

transition between desert and grassland in the southern

United States (Brown and Heske 1990); in northeastern

hardwood forests, similar processes influence the rate

and species composition of tree invasion in old fields

(Ostfeld et al. 1997). However, in coniferous forests of

western North America, wildfire is believed to drive

vegetation patterns (Agee 1993), and researchers have

primarily studied rodents in the context of their

response to disturbances, including wildfire (Stout et

al. 1971, Roppe and Hein 1978, Pearson 1999, Clayton

2003, Zwolak and Foresman 2007, 2008). Deer mice

(Peromyscus maniculatus) are known to be voracious

seed predators in these forests, particularly in disturbed

stands where their abundance is often elevated

(Gashwiler 1967, Sullivan 1979, Sullivan and Sullivan

1982, 2004, Tallmon et al. 2003), yet their impact on

natural forest regeneration remains largely unknown.

Thus, in western forests, wildfires not only provide the

primary form of disturbance that initiates secondary

succession, they also directly affect granivore popula-

tions in ways that could greatly influence consumer

pressures. Moreover, because the biological signifi-
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cance of seed predation depends on the extent to which

plants are seed limited, and the degree of seed

limitation is influenced by disturbance (Andersen

1989, Crawley 1992, Hulme 1998, Clark et al. 2007),

fire may affect tree recruitment in western forests in a

variety of ways.

In this study, we experimentally examined the

magnitude of seed predation by deer mice and its impact

on conifer recruitment in wildfire-burned and unburned

forest stands in western Montana. We focused on two

tree species that dominate many forests of western

North America: ponderosa pine (Pinus ponderosa) and

Douglas-fir (Pseudotsuga menziesii ). In both burned and

unburned forest, we (1) quantified deer mouse abun-

dance and seed removal, (2) determined whether

removal rates were higher for larger ponderosa pine

seeds than for smaller Douglas-fir seeds, and (3)

investigated the effects of seed removal on seedling

recruitment. Together, these analyses assess and com-

pare the effects of fire and mice on the composition and

rate of conifer recruitment.

MATERIALS AND METHODS

Study site

We conducted this research within montane forest on

the Lolo National Forest in west-central Montana,

USA, ;50 km west of Missoula. The dominant species

was Douglas-fir, followed by ponderosa pine, lodgepole

pine (Pinus contorta), and western larch (Larix occi-

dentalis). In the summer of 2005, the I-90 wildfire

burned 4550 ha of the forest. In the spring of 2006, we

selected three pairs of study sites, each pair consisting of

one stand that was burned with a stand-replacement fire

(100% tree mortality and removal of litter layer) and

one located in an unburned forest stand of similar

elevation (1600–1900 m) and aspect (south- to west-

facing). Distances among all stands ranged from 0.9 to

5.5 km.

Deer mouse trapping

We conducted trapping in 2006 and 2007 from June to

August in monthly sessions, each consisting of four

consecutive nights of trapping (with minor adjustments

of this schedule due to adverse weather). Each sampling

grid was located at least 50 m from the edge of burn or

the forest edge and consisted of 169 trapping stations,

spaced 10 m apart and arranged in a 13 by 13 square

(grid area ¼ 1.44 ha). We placed one folding Sherman

live trap (H. B. Sherman Traps, Tallahassee, Florida,

USA), baited with rolled oats and supplied with

polypropylene batting, at each trapping station. To

target deer mice, which are nocturnal, we set traps in the

evening (;18:00) and closed them upon checking in the

morning each day before 10:00. We identified captured

rodents to species, weighed them, determined their sex,

individually marked them using ear tags, and released

them at the trap station.

Seed removal experiments

In 2006 and 2007, we used seed removal experiments

to estimate relative levels of seed predation. We
conducted the experiments in September, after trapping
had ceased, to avoid confounding effects due to the

presence of baited traps. In 2007, we delayed experi-
ments at the last pair of sites due to intense rainfall, and

eventually conducted them under adverse weather
conditions (very low temperature and overnight snow-

fall) and therefore did not include the results in the
analysis of seed removal. Within each trapping grid, we

put out 40 seed offerings, each consisting of a petri dish
(150 3 33 mm) filled with a mixture of 125 mL of sand

and 20 locally collected seeds. Dishes were spaced at 20-
m intervals at locations corresponding to every other

trap station. At each grid, one-half of the dishes
contained ponderosa pine seeds, and one-half contained

Douglas-fir seeds, with dishes arranged in an alternat-
ing, checkerboard pattern by seed species. We presented

seed offerings for two days and two nights. This
duration was based on a pilot study conducted in 2006

and on our previous experience (Pearson and Callaway
2008). We examined seed offerings shortly after sunrise
(;06:30) and before sunset (;19:30) each day. This way,

we could differentiate removal by nocturnal deer mice
and diurnal granivores such as chipmunks (Tamias spp.)

and red squirrels (Tamiasciurus hudsonicus). If a seed
offering had signs of foraging (disturbed sand surface,

broken seed shells, feces), we counted the remaining
intact seeds and filled the dish with fresh sand and new

seeds. When feces were found, we recorded their
presence and identified them as ‘‘deer mouse’’ or ‘‘other’’

rodents. Of the latter species, red-backed vole (Myodes
gapperi ) feces were distinct due to the higher proportion

of green plants in their diet, while feces of granivores
such as chipmunks or red squirrels were larger than

those of deer mice.

Seedling recruitment trials

To address the effects of deer mouse seed predation

vs. fire on seedling recruitment (gauged by seedling
emergence and establishment) of ponderosa pine and

Douglas-fir, we sowed seeds in 20 3 20 3 20 cm wire
mesh cages (mesh size 0.5 cm). One-half of the cages had
3 3 6 cm holes cut in each side to allow access of small

rodents (primarily deer mice, as captures of similarly
sized rodents were uncommon; Zwolak 2008), while the

other half remained enclosed to prevent access. We
spaced cages 0.5–1.5 m apart in sets of two (one enclosed

and one allowing access), and added 10 locally collected
seeds to each cage, with seed species randomly assigned

to each pair. Cages were buried 10 cm into the ground.
To minimize presence of an ambient seedbank, we

removed topsoil inside the cages and replaced it with
mineral soil, dug out from a depth of 0.25–0.5 m. In

unburned forest, the soil was then covered with litter of
the same thickness as that found adjacent to the cages.

In burned forest, there was no litter present.
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We set out eight pairs of cages at 40-m intervals along

two transects parallel to and located ;10 m from the

opposites edges of each trapping grid. In 2006, we added
seeds to the surface during September when natural seed

rain occurs. We quantified seedlings the following June

when emergence was complete (i.e., no new seedlings

were found subsequently), and again in September to

determine survival. We defined establishment as the

proportion of seeds that emerged and survived until
September. We then repeated the experiment for another

year by pulling seedlings, replacing the soil, and adding

new seeds.

Statistical analysis

We estimated abundance of deer mice per site per

month using program MARK (White and Burnham

1999). We used Huggins closed robust design (Huggins

1989, 1991) because of its good performance given

sparse data (Conn et al. 2006). We determined the most

parsimonious models with Akaike’s information criteri-
on corrected for small sample size (AICc). Estimation of

parameters followed Zwolak and Foresman (2008).

Briefly, we modeled apparent survival, capture, and

recapture probabilities as constant, differing between

burned and unburned sites, changing among months, or

changing both between burned and unburned areas and
in time. We varied the parameters independently, thus

there were 64 candidate models (43 43 4) for each year

(Zwolak 2008; R. Zwolak, D. E. Pearson, Y. K. Ortega,

and E. E. Crone, unpublished manuscript). The effective

sampling area of trapping grids (estimated with mean

maximum distance moved; White et al. 1982) did not
differ between burned and unburned forest. We model-

averaged abundance estimates according to Akaike

weights (wi; Burnham and Anderson 2002). To derive

overall deer mouse abundance in burned and unburned

forest for each month, we averaged estimates from

respective trapping sites. For yearly estimates, we
averaged abundance across months, with standard error

reflecting sample variance derived using the Delta

method (Seber 1982:138, Zwolak and Foresman 2008).

We analyzed seed removal, seedling emergence, and

seedling survival with logistic regression models (func-

tion ‘‘lmer’’) in R (R Development Core Team 2006).

Fixed effects included fire (burned vs. unburned), seed

species, rodent access (open vs. closed cages, seedling

emergence models only), and day (first or second, seed

removal models only). Random effects included study

site and, to account for the correlation among subsam-

ples, either cage pairing (in seedling emergence and

survival models) or trap station (in seed removal trials).

We analyzed daytime and nighttime seed removal

separately. In each case, we began with a model

containing all the above-mentioned variables and their

interactions, and determined the structure of the final

model through stepwise regression with backward

elimination of nonsignificant (P . 0.05) variables.

RESULTS

Deer mouse abundance

Estimated abundance of deer mice was 1.6 times

higher in burned compared to unburned forest in 2006

(22.6 6 0.9 vs. 14.3 6 0.5 mice/grid, mean 6 SE), and

1.8 times higher in burned compared to unburned forest

in 2007 (54.2 6 2.8 vs. 29.5 6 2.7 mice/grid; Table 1).

However, there was considerable variation in deer

mouse abundance among grids and sampling months,

particularly in unburned forest (Table 1).

Seed removal

Seed removal at night was higher in burned vs.

unburned forest, particularly in 2006 (fire and fire3year

effects; Table 2a, Fig. 1a). In addition, more ponderosa

pine than Douglas-fir seeds were removed at night

(species effect; Table 2a, Fig. 1a).

During the day, overall differences in removal

between burned and unburned forest were not signifi-

cant. However, in contrast to nighttime removal,

daytime removal was less intense in burned vs. unburned

forest in 2007 (fire3year effect; Table 2b, Fig. 1b). As in

nighttime trials, removal was greater for ponderosa pine

seeds compared to Douglas-fir seeds, though this was

only significant in 2007 (species 3 year effect; Table 2b,

Fig. 1b).

We found deer mouse feces in 66% and 30% of trays

with missing seeds in burned and unburned stands,

respectively. Feces of other species (red squirrels and

chipmunks) were found in only a few trays. Although

not quantified, most seed appeared to be eaten at the

TABLE 1. Monthly estimates (6SE) of deer mouse (Peromyscus maniculatus) abundance in burned
(F1–F3) and unburned (C1–C3) sites in Lolo National Forest, Montana, USA.

Site

2006 2007

June July August June July August

F1 18.4 6 2.0 10.3 6 1.9 13.5 6 2.0 55.5 6 13.9 40.7 6 3.6 29.7 6 2.4
F2 15.4 6 2.0 23.5 6 2.8 44.9 6 4.5 49.8 6 13.5 70.6 6 5.0 107.4 6 6.1
F3 20.0 6 2.7 26.9 6 3.4 30.3 6 3.2 45.4 6 12.1 44.9 6 3.7 44.0 6 4.3
C1 10.6 6 1.5 26.8 6 3.1 31.3 6 3.3 50.6 6 15.3 39.3 6 3.5 33.3 6 2.7
C2 3.4 6 0.8 2.2 6 0.6 11.4 6 1.4 8.3 6 3.3 9.8 6 1.6 16.1 6 1.7
C3 9.6 6 1.5 14.9 6 2.2 18.5 6 2.4 57.7 6 18.0 36.8 6 3.4 14.0 6 2.2

Note: The estimates were derived from program MARK, using Huggins-type robust design
models; associated standard errors were unconditional.
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trays, as evidenced by broken seed shells left in the

vicinity of a substantial proportion of seed trays.

Seedling recruitment

Seedling emergence in cages without rodent access

was considerably higher in burned vs. unburned stands

(fire effect; Table 3), but this effect disappeared in cages

with rodent access (rodent access 3 fire effect; Table 3).

In cages without rodent access, 39% of seedlings

emerged in burned forest vs. 7% in unburned forest,

while in cages with access, 0% of seedlings emerged in

burned forest vs. 0.9% in unburned forest (Fig. 2a).

Overall, seedling emergence was lower for ponderosa

pine compared to Douglas-fir (species effect; Table 3).

The difference between conifer species was not affected

by fire or by mice (fire 3 species and rodent access 3

species interactions were nonsignificant and eliminated

from the final model).

Seedling survival also differed strongly between

burned and unburned forest (z ¼ 2.72, P ¼ 0.006; Fig.

2b). In 2007, 75% (55 out of 73) of seedlings in burned

forest survived until September, whereas survival

observed in unburned forest was only 30% (eight out

of 27 seedlings survived). In 2008, the overall pattern of

higher survival in burned forest remained unchanged,

but survival in both burned (30%, 23 out of 76 seedlings)

and unburned (0 out of 10 seedlings) forest was lower

than in 2007 (z ¼�5.48, P , 0.0001). Besides fire and

year, no other factors were significant predictors of

seedling survival.

The ultimate impact of mice on conifer recruitment

can be gauged by multiplying the probabilities of

emergence and survival. In 2007, the proportion of

seeds sown that reached the establishment stage when

mice were excluded was ;26% for ponderosa pine and

34% for Douglas-fir in burned stands, compared to 1%
and 4%, respectively, in unburned stands; mouse access

FIG. 1. Seed removal in burned and unburned forest in
Lolo National Forest, Montana, USA. Error bars denote
standard errors, estimated by setting each group, in turn, to be
the reference (intercept) group in function lmer in R. (a)
Nighttime seed removal: standard errors for seed removal of
ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga
menziesii ) overlap, suggesting that statistically significant
differences among species (Table 2a) reflect consistent species
differences across treatments. (b) Daytime seed removal.

TABLE 2. Results of logistic regression for (a) nighttime and
(b) daytime seed removal trials.

Variable�

Regression
coefficient
(6SE) z P

a) Overnight seed removal

Intercept �4.44 6 0.l92 �4.80 ,0.0001
Fire 5.59 6 1.28 4.38 ,0.0001
Day 0.73 6 0.05 13.45 ,0.0001
Species 1.16 6 0.32 3.70 0.0002
Year2007 2.60 6 0.08 34.92 ,0.0001
Fire 3 year2007 �0.82 6 0.15 5.56 ,0.0001

b) Seed removal during daytime

Intercept �6.85 6 1.50 �4.55 ,0.0001
Fire �2.92 6 2.11 �1.38 0.167
Day 0.87 6 0.06 14.01 ,0.0001
Species 0.91 6 0.54 1.70 0.090
Year2007 4.02 6 0.13 30.23 ,0.0001
Fire 3 year2007 �2.84 6 0.15 �18.70 ,0.0001
Species 3 year2007 0.62 6 0.15 4.17 ,0.0001

� Fire indicates burned vs. unburned forest; day denotes the
change in seed removal rates during the second day of the trials;
species is the removal of ponderosa pine (Pinus ponderosa),
relative to Douglas-fir (Pseudotsuga menziesii ); and year2007 is
the seed removal in 2007 relative to that in 2006. See Methods:
Seed removal experiments and Statistical analysis for further
explanation.

TABLE 3. Results of logistic regression for seedling emergence
trials.

Variable�
Regression

coefficient (6SE) z P

Intercept �2.28 6 0.37 �6.08 ,0.0001
Fire 2.01 6 0.45 4.47 ,0.0001
Rodent access �2.23 6 0.74 �3.01 0.0026
Species �0.87 6 0.44 �2.00 0.046
Year2007 �0.82 6 0.42 �1.94 0.053
Fire 3 year2007 2.27 6 0.53 4.28 ,0.0001
Fire 3 rodent access �3.82 6 1.22 �3.12 0.0018
Species 3 year2007 �3.59 6 0.61 �5.87 ,0.0001

� Fire indicates burned vs. unburned forest; rodent access
denotes emergence in open cages; species is the emergence of
ponderosa pine (Pinus ponderosa) seedlings relative to those of
Douglas-fir (Pseudotsuga menziesii ); and year2007 is the
emergence during the second year of the cage germination
trials. See Methods: Seedling recruitment trials and Statistical
analysis for further explanation.
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reduced these values to 0% in burned stands and ,1% in

unburned forest. In 2008, establishment without mice

was ;1% for ponderosa pine and 16% for Douglas-fir in

burned stands, compared to ,1% for both species in

unburned stands; mouse access reduced these propor-

tions to 0.

DISCUSSION

Our results demonstrate that wildfire creates highly

favorable conditions for seedling recruitment, but

intense seed predation by elevated deer mouse popula-

tions greatly reduces this effect. Deer mice were

probably responsible for most seed loss in burned forest

because deer mice accounted for 86% of individuals

captured on the study areas (Zwolak 2008; R. Zwolak,

D. E. Pearson, Y. K. Ortega, and E. E. Crone,

unpublished manuscript). In addition, seed removal in

burned forest was intense only at night, when chip-

munks, the only other rodents that were regularly

captured in burned forest (Zwolak 2008; R. Zwolak,

D. E. Pearson, Y. K. Ortega, and E. E. Crone,

unpublished manuscript), are inactive. Moreover, in one

of our burned sites, chipmunks were absent in 2006 and

rare in 2007 (Zwolak 2008; R. Zwolak, D. E. Pearson,

Y. K. Ortega, and E. E. Crone, unpublished manuscript),

but seed predation at that site was as intense as at other

burned sites, where more chipmunks were captured.

Finally, signs of foraging and feces left on most

depredated seed trays indicated seed removal by mice.

When deer mice were excluded from seed cages, seedling

emergence and survival were high in burned forest, yet

very low in unburned stands. However, when mice could

FIG. 2. Demography of ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii ) seedlings in burned and
unburned forest. Error bars denote standard errors, estimated by setting each group, in turn, to be the reference (intercept) group in
function lmer in R. (a) Seedling emergence. ‘‘Rodent access’’ indicates emergence in germination cages with openings and
‘‘exclosure’’ denotes emergence in closed germination cages. Seedlings were not found in rodent access cages in burned forest. (b)
Seedling survival.

RAFAŁ ZWOLAK ET AL.1128 Ecology, Vol. 91, No. 4



access seeds, emergence virtually ceased, negating the

differences between burned and unburned environ-

ments. The striking disparity between seedling estab-

lishment in open and closed cages in burned stands

suggests strong seed limitation (Clark et al. 2007) for

these species as they reestablish following wildfire, and

indicates that seed predation by deer mice might mediate

the process of postfire forest succession. In seed

predation trials, deer mice demonstrated slight but

significant preference for larger ponderosa pine over

smaller Douglas-fir seeds. However, seed removal in

burned forest was so intense that no seedlings were

found in open germination cages, regardless of sown

species. Therefore, mice are more likely to slow the rate

of reestablishment than alter seedling composition

within this system.

Mice are known to increase in abundance after forest

disturbances, including wildfire (Pearson 1999, Fisher

and Wilkinson 2005, Zwolak 2009) and for their ability

to control plant populations through intense seed

consumption (Kauffman and Maron 2006, Pearson

and Callaway 2008; Bricker et al. 2010). However, our

study is the first to demonstrate that mice reduce

seedling recruitment in burned forest, thereby counter-

acting otherwise positive effects of fire on conifer

regeneration. This ecological effect may be unique to

the postfire succession in western North America. For

example, in Pinus coulteri woodlands in coastal Cal-

ifornia, where the small-mammal community is domi-

nated by kangaroo rats (Dipodomys agilis), rodents

substantially contributed to postfire seed dispersal and

seedling establishment (Borchert et al. 2003). In Pinus

halepensis forests in Spain, seed predation in burned

areas was lower than in unburned areas, and exclusion

of rodents (probably Apodemus spp.) resulted in only

moderate increases in seedling density (Broncano et al.

2008). In another study conducted in Spain, only the

simultaneous exclusion of all seed predator guilds (ants,

rodents, and birds) increased germination of Pinus nigra

after a recent fire (Ordóñez and Retana 2004).

It is possible that some of the seeds removed from the

seed trays and germination cages were cached rather

than eaten (Vander Wall et al. 2005, Moore and Swihart

2008). Even though deer mice are thought to act as seed

predators rather than seed dispersers (Sullivan 1978),

some individuals do cache seeds (Vander Wall 1992,

Vander Wall et al. 2001). Therefore, our estimates of

seed removal may be considered the upper boundary of

seed mortality caused by deer mice. However, naturally

occurring seedlings in burned forest were rare and

seedling clumps, a telltale sign of germination from

rodent caches (Vander Wall 1992, Borchert et al. 2003),

were never found. Deer mice appeared to serve mostly as

seed predators in burned forest.

Seed predation often varies both in time and space

(Whelan et al. 1991). Such changes in consumer pressure

may provide opportunities for successful plant recruit-

ment. In montane and boreal forests, most postfire

conifer recruitment occurs before the depletion of aerial

seed banks, i.e., within the first 2–3 years after fire

(Turner et al. 1997, Charron and Greene 2002),

coinciding with the elevated abundance of deer mice in

burned areas (Zwolak 2009). However, populations of

deer mice fluctuate from year to year (e.g., Zwolak and

Foresman 2008); thus some years may be better for

conifer recruitment than others. Spatially, mice quickly

colonize even large wildfires (R. Zwolak, personal

observation). Their high abundance in burned forest

reflects elevated fecundity, possibly due to improved

foraging efficiency in burned, structurally simplified,

habitat (Zwolak 2008, Zwolak and Foresman 2008; R.

Zwolak, D. E. Pearson, Y. K. Ortega, and E. E. Crone,

unpublished manuscript) However, some seeds may

escape detection, for example when buried in cracks or

crevices (our experiments could not capture this

phenomenon), and successfully germinate. Still, severe

fires sometimes lead to the development of persistent

grass and shrub-dominated communities (Savage and

Mast 2005, Lentile et al. 2006, Tappeiner et al. 2007,

Keyser et al. 2008). The slow rate or changed trajectory

of postfire regeneration is usually attributed to the lack

of near seed sources (Keyser et al. 2008). This study

suggests that intense seed predation may also play a role.

Our results serve as a prominent example of how

vertebrates mediate the effects of the physical environ-

ment on plant communities. Deer mice alter seedling

recruitment and may act as drivers of postfire succession

in western forests. Because fires elevate deer mouse

densities, this situation represents an unforeseen, indi-

rect effect of forest fires, and a disturbance-mediated

‘‘top-down’’ effect of rodents on plant communities.
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