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[1] Stream hydrology strongly affects the structure of aquatic communities. Changes to
air temperature and precipitation driven by increased greenhouse gas concentrations
are shifting timing and volume of streamflows potentially affecting these communities.
The variable infiltration capacity (VIC) macroscale hydrologic model has been
employed at regional scales to describe and forecast hydrologic changes but has been
calibrated and applied mainly to large rivers. An important question is how well VIC
runoff simulations serve to answer questions about hydrologic changes in smaller streams,
which are important habitat for many fish species. To answer this question, we aggregated
gridded VIC outputs within the drainage basins of 55 streamflow gages in the Pacific
Northwest United States and compared modeled hydrographs and summary metrics to
observations. For most streams, several ecologically relevant aspects of the hydrologic
regime were accurately modeled, including center of flow timing, mean annual and
summer flows and frequency of winter floods. Frequencies of high and low flows in the
summer were not well predicted, however. Predictions were worse for sites with strong
groundwater influence, and some sites showed errors that may result from limitations in
the forcing climate data. Higher resolution (1/16th degree) modeling provided small
improvements over lower resolution (1/8th degree). Despite some limitations, the VIC
model appears capable of representing several ecologically relevant hydrologic
characteristics in streams, making it a useful tool for understanding the effects of
hydrology in delimiting species distributions and predicting the potential effects of climate
shifts on aquatic organisms.
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1. Introduction

[2] Hydrologic regimes in the western United States have
undergone substantial changes over the last half century,
including trends toward earlier snowmelt runoff [Mote,
2003; Regonda et al., 2005; Stewart et al., 2005], reduced
water yields [Luce and Holden, 2009], lower summer flows
[Luce and Holden, 2009; Rood et al., 2008], and increased
or altered flood risk [Hamlet and Lettenmaier, 2007]. These
hydrologic trends are especially strong in the Pacific
Northwest [Hidalgo et al., 2009; Regonda et al., 2005;
Stewart et al., 2005]. These trends have been related to the
effects of a warming climate [Barnett et al., 2008; Hidalgo
et al., 2009], particularly an increase in temperature [Hamlet
et al., 2005; Mote, 2003], although precipitation shifts may
also play a role in some regions [Luce and Holden, 2009;
Moore et al., 2007; Hamlet et al., 2005]. Ongoing increases

in atmospheric carbon are expected to continue warming
trends and shifts in hydrologic regimes during the 21st
century [IPCC, 2007; Adam et al., 2009; Hayhoe et al.,
2004; Knowles and Cayan, 2002; Stewart et al., 2004].
[3] Hydrologic changes have implications not only for

humans but for populations of fish and other aquatic or-
ganisms that are adapted to specific flow regimes [Crozier et
al., 2007; Fausch et al., 2001; Lytle and Poff, 2004; Poff et
al., 1997]. For example, many trout species depend on rel-
atively stable, low flows during the critical period of fry
emergence from redds (nests), as newly emerged fish may
suffer high mortality in high flows [Crisp and Hurley, 1991;
Heggenes and Traaen, 1988; Seegrist and Gard, 1972;
Tonina et al., 2008]. This suggests that fall spawning spe-
cies will tend to benefit from infrequent winter flooding (as
occurs in snowmelt‐runoff streams), while spring spawning
species will benefit from infrequent flooding in summer
[Fausch et al., 2001; Fausch, 2008; Latterell et al., 1998;
Seegrist and Gard, 1972; Strange et al., 1993]. Researchers
have also found that overall hydrologic regime (snowmelt‐
dominated versus rain‐dominated) influences spawning
timing and life history of Chinook salmon [Beechie et al.,
2006]. Flow changes may have important indirect effects
as well, such as increasing the rate of stream warming as
summer flows decline [Isaak et al., 2010].
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[4] Hydrologic models are commonly used to explore
climate‐driven shifts in hydrologic regime of importance to
ecosystems [Batin et al., 2007; Crozier et al., 2007; Mantua
et al., 2009]. One model in particular, the variable infiltra-
tion capacity (VIC) model [Liang et al., 1994; Liang et al.,
1996], has been widely adopted in the western United States
and used to study the effects of droughts [Luo and Wood,
2007], changes in snowpack [Hamlet et al., 2005], water
resources impacts [Hamlet et al., 2009; Vano et al., 2010a,
2010b], and for various other applications. For simulation of
daily flows, the VIC model is typically coupled with a flow
routing model to accommodate downstream transport time
[Lohmann et al., 1996, 1998] and simulate hydrographs
[e.g., Hamlet and Lettenmaier, 2007; Hidalgo et al., 2009;
Hurkmans et al., 2008; Maurer et al., 2002]. Nearly all such
studies have been performed on large rivers (often >104 km2

drainage area). However, the ability to simulate flows in
small‐ to mid‐sized streams (101–103 km2 drainage area)
would also be desirable. Smaller streams often have sig-
nificant amounts of biological data available, figure promi-
nently in many conservations efforts, and usually comprise
large fractions of the total length in river networks. How-
ever, VIC calibration has also been limited to the scale of
large river basins, and it cannot be assumed that outputs
from a distributed model calibrated at a broad scale are
transportable to the fine scale, even within the calibrated
domain [e.g., Beven, 1989; Bloschl and Sivapalan, 1995].
Therefore, any attempt to apply VIC outputs to the fine scale
requires careful validation of the resulting hydrographs and
streamflow metrics.
[5] Here we use a simplified routing approach to con-

struct hydrographs from VIC flow data for all streams
<2500 km2 in the Pacific Northwest (PNW) within the
United States. We validate the output by comparing attri-
butes of simulated hydrographs to those from observed
hydrographs at 55 U. S. Geological Survey (USGS) gaging
stations (drainage area 27–2318 km2), with a focus on as-
pects of the hydrologic regime hypothesized to affect fish
and other freshwater organisms. Secondarily, we examine
how differences in model resolution affect predictive accu-
racy. Most applications of VIC have been at a resolution of
1/8th degree [Hamlet et al., 2005; Maurer et al., 2002], but
some recent efforts have adopted a resolution of 1/16th
degree [Elsner et al., 2009]. We compare the performance of
these two model resolutions in simulating observed hydro-
logic metrics.

2. Methods

2.1. VIC Modeling

[6] VIC is a fully distributed and largely physically based
model that solves the surface energy and water balance.
Infiltration, runoff, and base flow processes are based on
empirically derived relationships [Liang et al., 1994] and
characterize the average conditions over the macroscale grid
cell. For historical simulations as performed here, meteo-
rological forcing data for the model are produced using
hybrid methods that combine both low‐elevation station
observations and statistically derived estimates of high‐
elevation temperature and precipitation [Daly et al., 1994;
Hamlet and Lettenmaier, 2005; Maurer et al., 2002]. The
model can also be driven by output from climate models to
forecast flows under future conditions. The physically based

energy balance snow model in VIC is shared with the fine‐
scale distributed hydrology soil vegetation model (DHSVM)
[Wigmosta et al., 1994, 2002] and explicitly accounts for
canopy processes that strongly affect snow accumulation
and melt in the PNW. Snow simulations from VIC were
validated over the Western United States by Mote et al.
[2005]. The 1/8th degree version of the model employed
here was calibrated for the PNW by Matheussen et al.
[2000] using an earlier meteorological forcing data set,
with minor recalibration for the 1/16th degree version
[Elsner et al., 2009]. Calibration consisted of adjustment of
soil parameters, especially three parameters to which the
model showed the greatest sensitivity: the infiltration
capacity shape factor, the soil moisture threshold separating
linear and nonlinear base flow, and the linear base flow
storage constant [Matheussen et al., 2000]. The model was
run on a daily time step, except for the snowmelt model,
which was run on a 3 h time step. More detail on the VIC
data set used here can be found in the work of Elsner et al.
[2009].

2.2. Assigning Output to Stream Segments

[7] We used VIC model outputs to construct hydrographs
for every stream segment in the National Hydrography Data-
base Plus data set (NHD Plus; http://www.horizon‐systems.
com/nhdplus/) in USGS hydrologic region 17 (Pacific
Northwest) with watersheds <2500 km2. This was an arbi-
trary cutoff set at a level that included most streams in the
region for which freshwater biotic data were available, but
which excluded rivers. We assumed that for sites larger than
this, a flow modeling approach incorporating channel rout-
ing would be more appropriate and desirable than the
method employed here. Excluding streams with watersheds
>2500 km2 eliminated 3.4% of segments.
[8] To develop stream hydrographs, we first summed the

runoff and base flow values from the VIC output flux files
for the 1915–2006 period for each 1/16th degree cell. We
then applied a unit hydrograph developed for an application
of the VIC model to the Fraser River Basin in Canada
[Schnorbus et al., 2010] that imposed modest flow lags to
represent the travel time to each cell outlet. The unit hy-
drograph specified a flow distribution of 0.9 on day 0, 0.075
on day 1, and 0.025 on day 2. We then assigned the re-
sulting hydrographs to NHD Plus catchments based on the
cells the catchments fell within (or mostly within) and
multiplied by the area of the catchment‐cell intersection to
produce an estimated daily flow from that portion of the
catchment. In the NHD Plus data set, catchments are non-
overlapping polygons that define the drainage area above
the outlet of each stream segment, exclusive of all upstream
catchments. We then conducted a downstream accumulation
(summation) of these flows, such that the flow for each
stream segment was the sum of all upstream flows, plus its
own (Figure 1). This approach was very similar to that used
by Yang et al. [2010] for routing VIC flows in the In-
dianapolis region. We repeated this process using the 1/8th
degree resolution VIC data. Calculations were performed in
ESRI ArcGIS 9.2, Filemaker Pro and R 2.8.

2.3. Calculating Metrics

[9] From these hydrographs, we calculated a set of me-
trics to summarize aspects of the flow regime hypothesized
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to be important determinants of fish distributions. These are
listed in Table 1 and described below. All metrics were
calculated for the 20 year period between 1 October 1977
and 30 September 1997. We selected this time frame due to
the availability of good flow records and numerous con-
temporaneous fish collection data to which flow metrics
could later be matched.
[10] 1. Center of timing of flow (CT). The center of

timing of the mass of flow (CT) for an annual water year
hydrograph summarizes a great deal of information about
the flow regime, including type and timing of precipitation,
timing of snowmelt, and length of the summer low‐flow
season [Regonda et al., 2005]. The statistic can be defined
as the centroid or mean of the annual flow mass [Stewart et
al., 2005] or the date at which half of the annual flow has
been exceeded (i.e., the median) [Regonda et al., 2005]. We
used the latter as it is purported to be less sensitive to
extreme flow events [Moore et al., 2007], although our tests
showed very similar results for both methods.
[11] 2. Overall hydrologic regime (HR). On the basis of

CT, we grouped streams into three classes of hydrologic
regime: “early” streams with CT < 150 (27 February), which
have rainfall and high flows in the winter; “late” streams
with CT > 200 (18 April), which have snowfall and few
high flows in the winter; and “intermediate” streams with
CT between 150 and 200. These classes are analogous to
previous classifications of Northwestern streams into rain‐

dominated, snowmelt‐dominated, and transient hydrographs
[e.g., Beechie et al., 2006; Mantua et al., 2009].
[12] 3. Frequency of high flows during winter (W95,

W99, W1.5, W2). As mentioned above, high winter flows
may negatively affect fall‐spawning fish. Because it is
unclear what threshold of flow is harmful, we calculated
four metrics: the number of days in winter that flow was in
the top 5% or top 1% of annual flows (W95 and W99,
respectively), and the probability that a 1.5 year flow event
or a 2 year flow event would occur during the winter (W1.5
and W2, respectively). Winter was defined as December
through March.
[13] 4. Frequency of high flows during summer (S95).

Similarly, we calculated the frequency of high summer
flows, which may be harmful to spring‐spawning fish. We
calculated only S95 (analogous to W95), as flow events
larger than this almost never occur in the summer in much of
the region. The start of summer was calculated individually
for each stream segment and each year as the first day
after 1 June when flows fell below the mean annual value;
this ensured that summer started after the subsidence of
the snowmelt flood. Summer was assumed to end on
30 September, regardless of the starting date.
[14] 5. Mean annual flow (MA) and mean summer flow

(MS). Most fish species are adapted to a certain range of
stream sizes, which correlate with mean annual flow. Mean
summer flow (calculated for the season as described above)
may be even more relevant as it describes the lowest‐flow
period that may be most limiting to fish and may correlate
with maximum water temperature [Isaak et al., 2010].
[15] 6. Days of summer low flows (S10, S20) and 7Q10.

The number of zero‐flow days is a straightforward indicator
of drought and a frequently calculated flow metric [Poff and
Ward, 1989; Richter et al., 1997], but the VIC model does
not allow zero flow. As an alternative, we calculated the
number of days in the summer in which flows were less than
10% of MA and 20% of MA (S10 and S20). We also cal-
culated the 7Q10 statistic, the 7 day low flow with a 10 year
return interval.
[16] 7. High pulse count (HP). This is a measure of stream

flashiness, which may exercise an important influence on
aquatic organisms, especially in urban areas [Konrad and
Booth, 2005]. We followed DeGaspari et al. [2009] in

Table 1. Mean Absolute Percent Error (MAPE) and Bias for
Flow Metrics Calculated From 1/16th Degree Resolution VIC
Model Versus Observed Data (MAPE16 and Bias16) and 1/8th
Degree Resolution VIC Model Versus Observed Data (MAPE8
and Bias8)a

Flow Metric MAPE16 MAPE8 Bias16 Bias8

W2 32% 31% 4% 8%
W1.5 29% 31% 9% 4%
W99 27% 29% −7% −3%
W95 22% 26% −3% −1%
S95 245% 315% 181% 244%
MA 18% 20% −12% −15%
MS 32% 37% −10% −17%
S20 83% 89% −29% −21%
S10 101% 103% −94% −90%
7Q10 57% 59% −10% −15%
HP 137% 141% 137% 141%

aMetrics are defined in the text.

Figure 1. Illustration of the area‐weighted sum methodol-
ogy for 1/16th degree cells. The heavy‐weighted stream seg-
ment drains all of the area shown in gray. The grid overlay
shows 1/16th degree cells. The calculation of flow for that
stream segment is obtained by multiplying the unit‐sum hy-
drograph for each upstream cell (outlined in bold) by the
drainage area within that cell; these are summed to produce
the flow for the segment. Eighth degree cells are composed
of four 1/16th degree cells and are approximately 10 km by
14 km (varying by latitude).
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defining HP as the frequency of events that exceed the
threshold of 2 times mean annual flow.

2.4. Model Validation

[17] We identified 55 USGS gaging stations in the Pacific
Northwest to serve as validation sites (Table A1, Figure 2).
Fifty of these were part of the Hydro‐Climatic Data Net-
work (HCDN) [Slack et al., 1993], a set of gaging stations
on streams with minimal anthropogenic flow alteration. We
excluded large stations (those draining >2500 km2) and
those partly draining Canadian land, because they lacked
NHD coverage. We supplemented these with five other
gaging stations that met these criteria but were excluded
from the HCDN list because of minor station relocations or
shorter flow records (but which had flow records for the
1978–1997 period of interest). We compared flow metrics
calculated from the observed daily hydrographs with those
calculated from the VIC flow data (both 1/16th degree and
1/8th degree resolutions) for the appropriate stream seg-
ments at each station. We summarized differences between
predicted and observed values as mean absolute percent
error (MAPE) and prediction bias. In addition, we calculated
the Nash‐Sutcliffe efficiency index (Ef) [Nash and Sutcliffe,
1970] for modeled versus observed hydrographs at a daily,
weekly, and monthly time steps for the 20 year period to
assess the overall goodness of fit of the hydrologic models.

[18] Because analysis of initial results showed poor
modeling of low flows, we conducted an additional test to
determine whether these results represented systematic bia-
ses (which could be improved via calibration) or random
errors. We calculated the Ef and the Pearson correlation
coefficient (r) for the annual 7 day low‐flow values for
1/16th degree output versus observed values. The Ef statistic
measures degree of agreement between predicted and
observed values, whereas r measures degree of correlation
between the values. If errors were due to systematic biases,
r would tend to be high even when Ef was low.
[19] We used a form of residual analysis to explore pat-

terns in model predictive success by linearly regressing flow
metrics and other potential predictors against monthly Ef.
We hypothesized that three factors might influence Ef: (1)
stream size (indicated by MA), as smaller streams might
show greater bias, or larger streams might be poorly pre-
dicted due to lack of formal routing; (2) runoff timing
(indicated by CT), as rainfall‐dominated or snowfall‐dom-
inated regimes might prove easier to predict; and (3) degree
of groundwater connectivity, indicated by base flow index
(BFI) [Wolock, 2003], as VIC does not explicitly model
movement of water into and out of deep subsurface re-
servoirs. The BFI measure, which ranges in value from 0 to
100, is an independent estimate of groundwater connectivity
not derived from the VIC modeling. Because two sites had

Figure 2. Validation gaging stations, monthly Nash‐Sutcliffe efficiencies (Ef), and base flow index
(BFI). Circles show gaging stations used for validation, coded by model predictive performance as indi-
cated by monthly Ef. Baseflow index is indicated by gray shading. Large streams and rivers within the
study domain are shown as fine black lines. The two labeled sites (Metolius and Little Lost) are
described in the text as examples of poor performance in areas of high BFI. Map extent is 110°W–
125°W, 41°N–49°N.
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large negative monthly Ef values that severely skewed the
distribution of the response variable, we converted all neg-
ative values to zero for the residual analysis, which pre-
served the overall pattern of the responses while preventing
these outliers from exerting excessive influence.

3. Results

[20] Modeling results described here refer to outputs of
the 1/16th degree VIC modeling compared to observed
values unless otherwise noted. For overall goodness of fit,
we focus on monthly Ef because it captures most of the
essential seasonal components of the hydrograph. For 19
sites (35%, Table A1 and Figure 2), Ef > 0.7, which is often
cited as a threshold for a good model fit [e.g., Boone et al.,
2004]. For an additional 23 sites (42%) 0.5 < Ef < 0.7, a
range that can be considered acceptable fit [Boone et al.,
2004]. For the remaining 23% of sites fit was fair to poor
(Ef < 0.5), with four sites scoring negative Ef values, re-
flecting significant bias in the models [McCuen et al., 2006].
The median Ef score for all sites was 0.63 (we report the
median instead of the mean because the distribution of
scores is heavily skewed, as negative Ef scores are
unbounded while positive scores are bounded by 1). The
median weekly Ef was 0.54 and the median daily Ef was
0.43.
[21] Predictions of CT had a median error of 12 days,

with a negative bias for snowmelt sites (i.e., snowmelt was
predicted to occur earlier than was observed) and a positive
bias for rainfall sites (Figure 3). There was a consistent
linear relationship between predicted and observed CT; a
regression of predicted on observed yielded a coefficient of
determination (r2) of 0.90. This linear regression can be
used to bias‐correct the predictions, reducing median CT

error to 9 days. Only 4 of the 55 sites were misclassified in
terms of hydrologic regime. Three of these were predicted to
be intermediate but observed to be early, while one was
predicted to be early but observed to be intermediate.
[22] The probabilities and frequencies of high winter

flows were predicted with low bias and good accuracy
(Table 1, Figure 4a). Predictions of more frequent events
(W95) were more accurate than those of less frequent events
(W2). In contrast, S95 was poorly predicted and heavily
biased (Table 1, Figure 4b), largely due to a tendency to
predict high summer flows in many streams where they
were not observed.
[23] Mean annual flow was predicted with good accuracy

and a slight negative bias (Table 1, Figure 4c), while mean
summer flow was predicted with moderate accuracy and a
slight positive bias (Table 1). Low summer flows were
poorly predicted with a strong negative bias, especially for
the S10 metric, for which MAPE exceeded 100% (Table 1
and Figure 4d). In many cases, this resulted from a failure
to predict observed low flows; for example, at seven sites
observed S10 was >10 days but predicted S10 was 0. Re-
sults for 7Q10 were better (Table 1), but still showed high
error rates (MAPE of 57%). High pulse count was poorly
predicted, with high error and high bias (Table 1), resulting
from a general over‐prediction of events. We noted that the
model frequently predicted a strong flow response to a
precipitation event that elicited a relatively small observed
response.
[24] Additional analysis of the low‐flow errors showed

that median Ef (across all sites) for minimum annual 7 day
low flows was −4.39, indicating very poor fit. However,
median r for predicted versus observed 7 day low flows was
0.75, indicating that much of the prediction error can be
removed by a simple linear transformation. This suggested
that the temporal pattern of ups and downs (i.e., the rank
structure) was reasonably well modeled, but that the mag-
nitude of fluctuations and the mean low flow were not well
specified. On the whole, larger streams had better rank
structure, with the three largest streams recording the three
highest correlations of predicted versus observed low flows
(r > 0.90), while smaller streams had more variable per-
formance. There were no obvious correlates to explain the
worst performing sites, which varied greatly in geographic
location, stream size, and flow timing.
[25] In most cases, there was little difference between

predictions from the 1/8th degree resolution VIC output and
the higher resolution 1/16th degree output (Table 1). Pre-
dictions of flow metrics from the 1/16th degree model ten-
ded to be more accurate, with one exception (W2), but the
differences were small. Where the 1/16th degree data pro-
duced better predictions, it was often due to a better ability
to capture the timing and magnitude of the spring flood
peak.
[26] The residual analysis revealed a noisy but significant

negative quadratic relationship between CT and monthly Ef

(p < 0.01 for both CT and CT2, r2 = 0.16), with higher
average Ef scores at low and high CT than at intermediate
CT. BFI showed an even stronger relationship with monthly
Ef (p =.0001, r

2 = 0.23), such that sites with high BFI tended
to have low Ef. Results were somewhat confounded by a
strong correlation (r = 0.81) between CT and BFI, which
made it difficult to separate these relationships. Nearly all
streams with low CT also had low BFI, suggesting the

Figure 3. Predicted versus observed timing of the center
of flow mass. Hydrologic regime is indicated by symbol
color: gray for early timing, white for intermediate timing,
black for late timing. The 1:1 line is shown as a solid line,
and the best fit linear regression line is shown as a dashed
line.
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possibility that the apparently good performance of streams
with low CT could be a function of low BFI. However,
streams with high CT performed well in spite of the fact that
many had high BFI, suggesting a pattern of good predictions
for snowmelt‐dominated systems. There was a weak but
significant relationship between MA and Ef (p = 0.01, r2 =
0.10) such that sites with higher mean annual flows tended
to be slightly better predicted than sites with low flows.

4. Discussion

[27] Our simplified routing approach for applying VIC
data to small streams produced hydrographs that were often

a good fit to observed data, with median Ef values that
compared favorably to those reported in other VIC studies
[e.g., Hurkmans et al., 2008]. More importantly, a number
of flow metrics derived from the modeled hydrographs
accurately represented attributes of the observed hydro-
graphs. Mean flows, winter high flows, CT, and hydrologic
regime were usually accurately predicted, although summer
high and low‐flow metrics were not. Residual analysis re-
vealed that the strongest correlate of model predictive ability
was BFI. This was consistent with the expectation that sites
with large groundwater effects (contributions or losses)
would not be well predicted. In the Metolius River, for
example, substantial ”interbasin’ groundwater inflows

Figure 4. Predicted versus observed metrics for (a) W95, (b) S95, (c) MA (log scale), and (d) S20. The
1:1 line is shown as a solid line.
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[Gannet et al., 2001] caused predicted flow to be under-
estimated. Conversely, the Little Lost River is a losing
stream that flows over fractured basalt, and VIC greatly
overestimated summer flows in this system.
[28] The relationship with BFI is more striking when gage

sites are divided into high, medium, and low categories.
Sites with BFI less than 60 have a mean monthly Ef of 0.72;
those with BFI of 60–80 have a mean monthly Ef of 0.58;
and those with BFI above 80 have a mean Ef of −2.52. If we

exclude the anomalous Metolius and Little Lost Rivers, we
find that monthly Ef tends to be high (mean 0.70, standard
error 0.15) for the 25 streams >500 cfs mean annual flow but
ranges from poor to very good for the 28 smaller streams
(mean monthly Ef 0.52, standard error 0.28). This is con-
sistent with the hypothesis that VIC predictions may exhibit
fine‐scale biases in some cases, but these become less
important at broader scales. This could arise due to un-
modeled within‐cell variability, limitations of calibration, or

Table A1. U.S. Gaging Stations Used in Model Validation, With Drainage Area, Flow, Monthly Ef, and Daily Ef
a

Station Name
Drainage
Area (km2)

Mean Annual
Flow (cfs)

Mean Annual
Flow/Area
(mm yr−1) Monthly Ef Daily Ef

14091500 Metolius River, OR* 818 1469 1603 −7.79 −10.05
13118700 Little Lost River, ID* 1140 69 54 −5.19 −10.65
12048000 Dungeness River, WA 404 382 844 −0.36 −0.12
13083000 Trapper Creek, ID* 139 16 101 −0.23 −3.03
13305000 Lemhi River, ID 2318 264 102 0.25 −0.67
12488500 American River, WA 204 221 964 0.28 0.18
13235000 S. Fork Payette, ID 1181 840 635 0.31 0.19
13120500 Big Lost River, ID 1165 320 245 0.33 −0.11
12424000 Hangman Creek, WA 1785 215 108 0.35 0.18
13023000 Greys River, WY 1160 645 496 0.36 0.32
13345000 Palouse River near Potlatch, ID 821 247 268 0.39 0.27
13139510 Big Wood River, ID 1658 490 264 0.4 0.13
13297330 Thompson Creek, ID* 75 17 204 0.45 0.12
12413000 N. Fork Coeur d’Alene at Enaville, ID 2318 1816 700 0.51 0.33
13297355 Squaw Creek, ID* 185 34 165 0.52 0.29
12411000 N. Fork Coeur d’Alene above Shoshone, ID 868 660 679 0.54 0.37
13161500 Bruneau River @ Rowland, NV 989 111 100 0.55 0.35
12332000 Middle Fork Rock Creek, MT 319 113 316 0.57 0.33
14020000 Umatilla River, OR 339 229 603 0.57 0.43
12390700 Prospect Creek, MT 471 221 418 0.58 0.3
10396000 Donner und Blitzen River, OR 518 146 252 0.59 0.37
12027500 Chehalis River near Grand Mound, WA 2318 2739 1055 0.59 0.45
12447390 Andrews Creek, WA 57 30 472 0.59 0.41
13186000 S. Fork Boise River, ID 1645 744 404 0.59 −0.11
13011500 Pacific Creek, WY 438 271 553 0.61 0.54
12431000 Little Spokane River, WA 1722 278 144 0.62 −0.48
12186000 Sauk River, WA 394 1089 2470 0.63 0.46
12414900 St. Maries River, ID 712 348 436 0.63 0.17
12302055 Fisher River, MT 2170 479 197 0.64 0.49
13200000 Mores Creek, ID 1033 280 242 0.64 0.64
13185000 Boise River, ID 2150 1193 496 0.65 0.57
14178000 N. Santiam River, OR 559 987 1575 0.66 0.64
14185900 Quartzville Creek, OR 257 628 2183 0.66 0.55
13018300 Cache Creek, WY 27 12 406 0.67 0.38
12189500 Sauk River near Sauk, WA 1849 4242 2048 0.68 0.18
12330000 Boulder Creek, MT 185 42 205 0.68 0.65
12020000 Chehalis River near Doty, WA 293 553 1686 0.71 0.52
13316500 L. Salmon River, ID 1492 743 445 0.73 0.65
13011900 Buffalo Fork, WY 837 525 560 0.74 0.65
12054000 Duckabush River, WA 172 409 2121 0.75 0.64
+12134500 Skykomish River, WA 1386 3798 2448 0.75 0.68
14137000 Sandy River, OR 681 1309 1716 0.75 0.71
14222500 E. Fork Lewis River, WA 324 693 1913 0.76 0.55
14185000 S. Santiam River, OR 451 801 1588 0.79 0.75
12010000 Naselle River, WA 142 416 2619 0.8 0.74
12370000 Swan River, MT 1738 1174 603 0.82 0.7
13313000 Johnson Creek, ID 552 336 544 0.82 0.72
12451000 Stehekin River, WA 831 1370 1472 0.83 0.48
12013500 Willapa River near Willapa, WA 337 604 1602 0.84 0.68
12040500 Queets River near Clearwater, WA 1153 4496 3483 0.84 0.73
12452800 Entiat River, WA 526 364 617 0.84 0.75
12144500 Snoqualmie River, WA 971 2560 2354 0.86 0.77
13331500 Minam River near Minam, OR 622 449 645 0.89 0.81
12035000 Satsop River, WA 774 2048 2361 0.91 0.77
12039500 Quinault River, WA 684 2877 3757 0.92 0.61

aStations with an asterisk indicate those that are not part of the HCDN data set.
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errors in interpolating weather station data that might be
large for individual cells but lower when averaged across
many cells. The generally good performance for larger
stream sites suggests that the lack of a network flow routing
algorithm did not impose a major performance penalty.
[29] The estimates of CT were biased early for snowmelt

sites and late for rainfall sites. A potential explanation for
this is underestimation of winter precipitation. That is, if
winter rain is underestimated then CT will be overestimated,
whereas if winter snow is underestimated the snowpack will
be predicted to melt earlier [Luce and Holden, 2009] and CT
will be underestimated. These biases could result from
limitations of the meteorological forcing data, which are
extrapolated from weather stations located mainly at low
and mid elevations [Hamlet et al., 2005]. Alternatively, the
bias could arise from other errors, such as failure to account
for heterogeneity in snowmelt rates [Luce et al., 1998] or
streamflow recession rates [Tague and Grant, 2009]. If such
errors resulted in underestimation of CT at high‐elevation
sites, improper calibration (performed at large river sites
far downstream) might have effectively balanced this by
adjusting parameters that resulted in overestimation of CT at
low‐elevation sites.
[30] Although low flows were not accurately predicted by

VIC, our analyses suggested that these errors may derive
from systematic biases rather than a failure to match climatic
signals. That is, model predictions tend to be systematically
higher or lower than observed values, but interannual vari-
ability in flows is still captured with reasonable fidelity in
the historical data (as indicated by the correlation between
predicted and observed minimum annual 7 day low flow).
This means that low‐flow predictions in their raw form
should probably not be used for spatial comparisons among
sites, but may be useful for long‐term trend analyses at
single sites. For example, it might be perfectly reasonable to
use VIC to predict trends in low‐flow responses to climate
change at a specified site (assuming accurate driving data).
However, before doing so we suggest evaluating model
performance at nearby gaging stations and giving careful
consideration to the nature and potential causes of model
error in that region. Biases could also be reduced through
postprocessing via statistical procedures such as linear
regression or quantile mapping [Snover et al., 2003].
Alternatively, the VIC model could be calibrated on a
region‐by‐region basis via adjustments in soil or vegetation
parameters.
[31] Performance of VIC modeling using a 1/8th degree

resolution was almost as good as 1/16th degree resolution,
for the metrics we examined. This is promising because
1/16th degree VIC modeling is not only much more com-
putationally intensive (by a factor of 4) but also has only
been performed in limited regions to date, whereas 1/8th
degree modeling has been conducted across the Western
United States [Hamlet et al., 2005]. We caution, however,
that our validation sites were on streams large enough to
drain at least several 1/8th degree cells. For headwater
streams small enough to drain only one or two 1/16th degree
cells, the finer‐resolution data could provide more accurate
predictions, especially in areas of high relief.
[32] Our results indicate that it is possible to use VIC to

accurately predict several ecologically relevant hydrologic
metrics for entire stream networks. Previous efforts toward

this goal relied on statistical approaches to classify streams
by flow regime and then built regression equations to predict
flow metrics from landscape characteristics within each
classification. This can be effective [e.g., Sanborn and
Bledsoe, 2006] but the resulting prediction sets are static
and not readily modified to account for hydrologic changes
induced by warming. In contrast, the VIC model can be
forced with data from general circulation models to explore
the effects of altered temperature and precipitation patterns
on critical processes such as snow dynamics, evapotrans-
piration rates and soil moisture. Thus, it provides a rational
basis for predicting changes to snowmelt timing, winter
high‐flow frequencies, and other aspects of the hydrologic
regime that may be critical determinants of aquatic species
distributions and population dynamics.

Appendix A

[33] The gaging stations used in model validation are
listed in Table A1.
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