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Abstract

Understanding how spatial genetic patterns respond to landscape change is crucial for

advancing the emerging field of landscape genetics. We quantified the number of

generations for new landscape barrier signatures to become detectable and for old

signatures to disappear after barrier removal. We used spatially explicit, individual-

based simulations to examine the ability of an individual-based statistic [Mantel’s r
using the proportion of shared alleles’ statistic (Dps)] and population-based statistic (FST)

to detect barriers. We simulated a range of movement strategies including nearest

neighbour dispersal, long-distance dispersal and panmixia. The lag time for the signal of

a new barrier to become established is short using Mantel’s r (1–15 generations). FST

required approximately 200 generations to reach 50% of its equilibrium maximum,

although G’ST performed much like Mantel’s r. In strong contrast, FST and Mantel’s r
perform similarly following the removal of a barrier formerly dividing a population.

Also, given neighbour mating and very short-distance dispersal strategies, historical

discontinuities from more than 100 generations ago might still be detectable with either

method. This suggests that historical events and landscapes could have long-term effects

that confound inferences about the impacts of current landscape features on gene flow

for species with very little long-distance dispersal. Nonetheless, populations of

organisms with relatively large dispersal distances will lose the signal of a former

barrier within less than 15 generations, suggesting that individual-based landscape

genetic approaches can improve our ability to measure effects of existing landscape

features on genetic structure and connectivity.
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Introduction

A primary goal for landscape genetics research is to

understand how landscape features and environmental

factors influence population structure, gene flow and

genetic drift (Manel et al. 2003; Holderegger & Wagner

2006; Storfer et al. 2007; Balkenhol et al. 2009a). Classi-
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cal population genetics analysis generally assumes sam-

pling groups of individuals from predefined, isolated

populations and then estimates parameters, such as FST,

to assess genetic differences among these subpopula-

tions. However, in continuously or widely distributed

populations, where there often exists substantial inter-

nal structure (e.g. isolation by distance (Wright 1943) or

landscape resistance (Cushman et al. 2006; McRae

2006)), population-based approaches can produce mis-

leading results (Pritchard et al. 2000; Schwartz &



(a)

(b)

Fig. 1 An example of 1 simulation of 1000 randomly located

individuals (dots) on a resistance surface of isolation by Euclid-

ean distance with a complete barrier (vertical black line) for

two maximum dispersal distances (a) 10 km and (b) 30 km.

The largest dark circle (outer dashed line) represents the maxi-

mum dispersal distance. The two circles within the maximum

dispersal distance correspond to the 50% dispersal distances

for the centre individual under a linear (middle dotted line)

and inverse-square movement strategy (tiny inner dashed-

dotted line), respectively (i.e. the centre individual will mate

and have offspring that disperse within this circle 50% of the

time).
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McKelvey 2009; Murphy et al. 2008; Cushman & Land-

guth 2010). One of the biggest contributions from land-

scape genetics research is the generalization of spatial

genetic analysis to include either groups of samples or

individual samples distributed across the landscape

(e.g. Cushman & Landguth in press).

Individual-based landscape genetics approaches

involve sampling of many individuals across broad

landscapes, assessment of genetic differentiation

between individuals and evaluation of relationships

between inter-individual genetic distance (relatedness)

and landscape gradients (Manel et al. 2003; Cushman

et al. 2006; Storfer et al. 2007; Balkenhol et al. 2009a).

The genetic signals of individuals sampled across land-
scapes allow localization of genetic discontinuities,

identification of subpopulations and quantification of

the influence of landscape features on gene flow.

Patterns of genetic distance among individuals or

groups (e.g. Spear et al. 2005; Epps et al. 2007) can be

tested with correlations between landscape features by

assigning different resistance-to-movement values to dif-

ferent landscape features (e.g. a high resistance-to-move-

ment might be assigned to a known barrier). The

approach is based on raster maps that represent the cell-

level resistance to gene flow related to different habitat

or vegetation types, elevation, slope or other landscape

features (see Cushman et al. 2006; Spear et al. 2010).

Cells or pixels are given weights or ‘resistance values’

reflecting the presumed influence of each variable on

movement of the species in question. A matrix of move-

ment costs can then be computed based on shortest cost

paths algorithms between all pairs of individuals.

Common programmes to calculate cost-distance matrices

in landscape genetics include Dijkstra’s algorithm

(Dijkstra 1959) [e.g. implemented through programmes

like UNICOR (http://cel.dbs.umt.edu/software.php)],

CIRCUITSCAPE (McRae & Beier 2007), PATHMATRIX

(Ray 2005), and COSTDISTANCE in ArcGIS (ESRI Corp.,

Redlands, CA, USA).

The most widely used method to associate genetic

distances with landscape cost distances is the Mantel

test (Mantel 1967; see also Sokal & Rohlf 1995; Storfer

et al. 2010). Using partial Mantel tests to test for correla-

tion between genetic distance (relatedness) and alterna-

tive ecological distances enables tests of hypotheses

regarding the effects of landscape structure on gene

flow (e.g. Coulon et al. 2004; Broquet et al. 2006;

Cushman et al. 2006; Schwartz et al. 2009; Cushman &

Landguth 2010, Shirk et al. 2010). By comparing genetic

distances between individuals with ecological cost dis-

tances between them, researchers can test specific

hypotheses about the influences of landscape features

and environmental conditions on gene flow (Cushman

et al. 2006; Epps et al. 2007; Cushman & Landguth

2010, Shirk et al. in press).

Recent empirical studies have detected the effects of

landscape and seascape structure on gene-flow pat-

terns and suggest that spatially explicit, individual-

based approaches in heterogeneous landscapes might

be the best means to help establish mechanistic expla-

nations of landscape connectivity (Cushman et al.

2006; Antolin et al. 2006; Neville et al. 2006; Selkoe

et al. 2008; Pavlacky et al. 2009; Cushman & Landguth

2010; Shirk et al. in press). Furthermore, landscape

genetic approaches can provide insights to key biolo-

gical processes, such as individual movement, mating

or dispersal, and could complement traditional popula-

tion genetic approaches, for example, to localize genetic
� 2010 Blackwell Publishing Ltd



Table 1 Maximum and 50% movement distance radius and number of individuals that occupy the corresponding areas based on a

population density for the given simulation landscape of 1000 individuals in the total extent area of 7235.60 km2. Note that the 50

and 60 km movement distances include individuals outside the focal study area of 70 · 100 km and not included in the simulation

study

Movement

distance

Maximum

movement

distance

area (km2)

Number of

individuals

in area

50% Linear

movement

distance

area (km2)

Number of

individuals in

linear 50% area

50% Inverse-square

movement distance

area (km2)

Number of

individuals in

inverse-square

50% area

Panmictic 7235.60 1000.00 NA NA NA NA

60 km 11 309.73 1563.07 2827.43 390.77 6.28 0.85

50 km 7853.98 1085.47 1963.50 271.37 6.28 0.85

40 km 5026.55 694.70 1256.64 173.67 6.28 0.85

30 km 2827.43 390.77 706.86 97.69 6.28 0.85

20 km 1256.64 173.67 314.16 43.42 6.28 0.85

10 km 314.16 43.42 78.54 10.85 6.28 0.85
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discontinuities (barriers) and thus to understand how

landscape features influence movement and gene flow

(reviewed in Balkenhol et al. 2009a).

Applications of individual-based landscape genetic

analysis techniques are increasing rapidly, yet there

have been few rigorous studies to establish the sensitiv-

ity and reliability of these techniques (but see Murphy

et al. 2008; Balkenhol et al. 2009b; Cushman &

Landguth 2010). One of the most important research

threads needing exploration is the temporal dynamics

of landscape genetic processes. Little is known about

how rates and patterns of landscape change affect the

emergence, change and loss of genetic structure (but

see Ezard & Travis 2006; Murphy et al. 2008; Cushman

& Landguth 2010). Given that species conservation and

management is primarily concerned with recent or

future changes, if landscape genetics is to be used in

this context then there is an urgent need to rigorously

assess both the effects that legacies of past landscape

change have on observed genetic patterns and the

speed at which these genetic patterns change in

response to alterations to existing landscapes. Simula-

tion studies provide the most practical means to investi-

gate the interactions between landscape change and

spatial genetic processes, as they enable control over

the pattern–process relationship and replicated simula-

tion over long temporal periods (see Cushman &

Landguth 2010, Epperson et al. 2010, Landguth et al.

2010; Bruggeman et al. 2010).

We conducted spatially explicit, individual-based

simulations using the CDPOP model (Landguth &

Cushman 2010) to investigate the power of two of the

most commonly used metrics of genetic structure from

population genetics and landscape genetics research

(FST and Mantel’s r, respectively) to detect landscape

change. Specifically, we evaluate the time after estab-

lishment of a barrier between two populations until a
� 2010 Blackwell Publishing Ltd
barrier genetic signal is detected and stabilizes, and the

time after the removal of a barrier until the barrier sig-

nal is lost. We simulate a range of individual movement

strategies (how individuals mate and disperse with

respect to the landscape’s resistance) and maximum dis-

persal distances (how far an individual will move

through mating and dispersal in terms of the land-

scape’s resistance). This allows us to explore the interac-

tion between species-specific dispersal characteristics

and the emergence and loss of genetic structure follow-

ing establishment and removal of dispersal barriers.

This type of study is crucial for understanding if

contemporary genetic patterns are caused by extant

landscapes or are a function of historical events. Under-

standing how rapidly a new barrier can be detected will

allow us to infer if landscape genetic tools can be used

to detect recent landscape fragmentation events, which

is the focus of many ecological and conservation stud-

ies. In addition, it is critical to understand the length of

time over which the signal of historical population bar-

riers remains detectable. By exploring the spatio-tempo-

ral dynamics of landscape genetic processes under

controlled simulated conditions, this research helps pro-

vide a foundation for landscape genetics in spatially

complex and temporally dynamic landscapes.
Models and methods

Simulation programme

We used a spatially explicit, individual-based landscape

genetics programme (Landguth & Cushman 2010) to

simulate individual genetic exchange across 500 nonov-

erlapping generations among 1000 randomly spatially

located individuals as functions of individual-based

movement through mating and dispersal. All simulated

populations were initiated with 30 loci and a 30 alleles
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per locus maximum (resulting in 900 total possible

alleles and mean Ho = 0.967), a k-allele model mutation

rate of 0.0005 in a two-sex, random assignment of off-

spring sex, female individuals mating without replace-

ment and male individuals mating with replacement.

Initial genotypes were assigned by randomly drawing

an allele for each locus from the 30 available alleles.

The programme represents landscape structure through

resistance surfaces whose values represent the cost of

crossing each location (i.e. grid cell or pixel on the land-

scape). Mating and dispersal are modelled as probabi-

listic functions of cumulative cost across these

resistance surfaces (e.g. random, linear or inverse-

square relationships between movement and cumula-

tive cost; Landguth & Cushman 2010). These movement

(mating and dispersal) strategies were scaled to maxi-

mum movement distances (i.e. to restrict an individual

from moving across the entire landscape). For the pre-

sented simulations, probabilities for mating and off-

spring dispersal were identical. All cells were

parameterized with identical resistance values except

for barrier cells, whose resistance created a complete

barrier and individuals could not move across the bar-

rier. In the CDPOP output, genotypes at each genera-

tion for all spatially referenced individuals was

produced from probabilistic cost-distance mating with

Mendelian exchange and probabilistic cost-distance dis-

persal of offspring (Landguth & Cushman 2010). These

spatially located genotypes can then be related to popu-

lation substructure by either assigning spatial regions to

different populations and calculating classical popula-

tion genetic parameters (e.g. FST) or by analysing pair-

wise genetic distances among individuals with Mantel

and partial Mantel tests (Mantel 1967).
Simulation scenarios

Our goal in designing our simulation scenarios was to

represent a wide range of biologically plausible combi-

nations of movement function and dispersal distance to

make our results as generalizable as possible. Our gen-

eral approach involves simulating emergence and

dynamics of genetic substructure associated with the

creation of a new barrier dividing the population, fol-

lowed by subsequent removal of the barrier.

We stipulated a population of 1000 individuals and

simulated all combinations of three movement strate-

gies (linear, inverse-square, panmictic) scaled to six

maximum movement distances (10, 20, 30, 40, 50 and

60 km). The maximum extent for the simulation area

was 70 · 100 km (see Fig. 1 and Table 1).

The simulation involved two components. First, for

each combination of movement strategy and distance,

we placed a barrier, dividing the population in half, and
ran the simulation for 500 generations. Genetic equilib-

rium was reached within 300 generations in all cases.

Then, in the second step, we then removed the barrier

and ran the model for an additional 500 generations. For

each combination of movement strategy and maximum

movement distance, we simulated 10 Monte Carlo repli-

cate runs and calculated FST, Mantel’s r with permuta-

tion tests for statistical significance, and two measures of

effect size (generations until 50% and 90% of equilib-

rium maximum value of FST and Mantel’s r) for detec-

tion of the barrier separating the subpopulations for

each run of each scenario at each of 500 time steps.
Statistical analysis of simulation results

For all simulation scenarios, we computed FST of the

populations on either side of the barrier and Mantel’s r

for each time step of each replicate run. FST was calcu-

lated as

FST ¼ 1� 1

2

H1 þH2

HT

� �
ð1Þ

or the proportion of the total genetic variance contained

in the subpopulation (Wright 1969). H1, H2 and HT are

calculated at each simulation time as the estimated frac-

tion of all individuals who would be heterozygous

based on allele frequency in an ideal Hardy–Weinberg

population for the left subpopulation, right subpopula-

tion and total population, respectively. We computed

partial Mantel tests to correlate genetic distance to bar-

rier-cost distance over time factoring out Euclidean dis-

tance for the partial tests. The test statistic for partial

Mantel tests is calculated by constructing two matrices

of residuals for (i) the regression of the genetic distance

to barrier-cost distance (x) and (ii) the regression of the

barrier-cost distance to Euclidean distance (y). Then the

two residual matrices are compared by the standard

Mantel test,

r ¼ 1

n� 1

Xn

i¼1

Xn

j¼1

xij � �x

sx

yij � �y

sy
ð2Þ

where n is the total population, and �x, sx, �y and sy are

the means and standard deviations of the respective

residual matrices. The inter-individual genetic distance

was calculated following the proportion of shared

alleles (Dps; Bowcock et al. 1994) and barrier-cost dis-

tance was represented as a matrix representing Euclid-

ean distance (and the one control simulation of

panmixia) on either side of a complete barrier separat-

ing the two subpopulations.

We use two measures of barrier detection effects.

First using the partial Mantel’s r, we evaluate the
� 2010 Blackwell Publishing Ltd
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generations until a statistically significant signal is

detected for barrier establishment and until a significant

signal is lost following barrier disappearance. Because

distances are not independent, we used permutation

tests with 1999 permutations to test the significance of

Mantel’s correlation. The generation lag times for bar-

rier establishment and disappearance were recorded for

each scenario for a < 0.05 with the Mantel’s r statistic.

All Mantel tests were conducted using the library ECOD-

IST v1.1.3 (Goslee & Urban 2007) in the statistical soft-

ware package R (R Development Core Team 2007).

The significance of statistical tests such as the Man-

tel’s r is highly dependent on sample size. When sam-

ple sizes are large, differences that are ecologically

trivial may still be statistically significant. In addition,

statistical significance based on permutation (i.e. Mantel

r values are not independent) and significance of differ-

ence from zero based on parametric test statistics (i.e.

FST values are independent) are not comparable mea-

sures. Therefore, we also evaluated the effect size of the

barrier. In all simulations, genetic equilibrium was

achieved and FST and Mantel’s r reached an approxi-

mate asymptote within 300 generations. We use the
(a) (bLinear dispersal

Fig. 2 Time (in generations) for barrier signal establishment based o

of genetic distance to barrier-cost distance over time factoring out E

barrier appearance scenarios for (a) linear dispersal and (b) inverse-s

20, 30, 40, 50 and 60 km, panmictic). Dashed lines are confidence int

different scenario (movement threshold 10 km) is indicated in both gr

Table 2 Time (generations) to detection of a barrier using Mantel P

detected across the movement strategies (linear, inverse-square) and

and 60 km, Pan). For the individual-based barrier establishment scena

(P < 0.05). The starting generation for insignificant detection (P ‡ 0.0

for the barrier removal scenarios. Generations >500 indicates that all r

10 km 20 km

Barrier establishment

Linear movement (generations) 6 2

Inverse-square movement (generations) 14 5

Barrier removal

Linear movement (generations) >500 >500

Inverse-square movement (generations) >500 >500

� 2010 Blackwell Publishing Ltd
equilibrium maximum value as a reference point and

calculate the number of generations required achieving

50% and 90% of this equilibrium maximum following

creation of the barrier, and the number of generations

following the removal of the barrier until 50% and 90%

of the signal is lost.
Results

Time until barrier signal arises

Under nearly all barrier appearance scenarios, the indi-

vidual-based analyses show a positive, significant

Mantel’s correlation appearing in less than 15 genera-

tions. Large correlation values (r > 0.5) occur within

the first 100 generations, and all scenarios trend

towards an equilibrium of r = 1.0 within 300 genera-

tions (Fig. 2, Table 2). A noticeable difference occurs

in the scenarios in which the maximum movement dis-

tance is low (10 km); the highly constrained (or short

distance) mating and dispersal movements in these

scenarios result in substantially slower rate of

approach to equilibrium.
) Inverse-Square dispersal

n significance of Mantel’s r where we examined the correlation

uclidean distance for the partial tests. Mantel’s r values for the

quare dispersal over the seven maximal dispersal distances (10,

ervals for the averaged 10 replicates (dotted lines). The notably

aphs.

-value <0.05 in which a significant generation of a barrier was

scaled to the maximum movement distances (10, 20, 30, 40, 50

rios, the starting generation for significant detection is reported

5) is reported for when a barrier signal is no longer detectable

values were significant

30 km 40 km 50 km 60 km Pan

1 1 1 1 1

3 3 2 2 1

25 17 8 5 1

>500 32 27 24 1



(a) (b)Linear dispersal Inverse-Square dispersal Fig. 3 Time for barrier signal establish-

ment based on significance of FST. FST

values for the barrier appearance sce-

narios for (a) linear dispersal and (b)

inverse-square dispersal over the seven

maximal dispersal distances (10, 20, 30,

40, 50 and 60 km, panmictic). Dashed

lines are confidence intervals for the

averaged 10 replicates (dotted lines).
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The rate of substructure appearance using FST is slow

and nearly linear across the range of maximum dis-

persal distances (Fig. 3). The partial Mantel’s r is much

more sensitive than FST in detecting the effects of recent

landscape changes on spatial genetic substructure, as

indicated by much more rapid rise towards an asymp-

tote at the equilibrial maximum (Fig. 2).

The boxplots presenting the effect-size results for the

three-way factorial of statistical measure (Mantel’s r vs.

FST), dispersal threshold (10, 20, 30, 40, 50 and 60 km)

and movement function (linear and inverse-square)

indicate major differences between Mantel’s r and FST in

the rate at which a new genetic signal emerges follow-

ing the advent of a new barrier dividing a population

with isolation by distance (Fig. 4). There are three major

insights provided by Fig. 4. First, Mantel’s r responds

much faster to the advent of a new barrier dividing a

population regardless of movement function and dis-

persal threshold (a, c vs. b, d in Fig. 4). Second, the gen-

erations required for FST to achieve 50% or 90% of its

maximum equilibrium value (210 and 420 generations,

respectively) is independent of movement threshold or

movement strategy (Fig. 4). Third, Mantel’s r is sensi-

tive to both movement function and movement thresh-

old (a, b vs. c, d in Fig. 4). For example, it takes

approximately 50 generations for Mantel’s r to reach

50% of its equilibrium maximum when the dispersal

function is linear and the dispersal threshold is 10 km,

while it takes approximately 100 generations to reach

the same level when the dispersal function is inverse-

square and the threshold is 10 km. In addition, the

difference in time to reach a given proportion of equilib-

rium maximum between the two movement functions

disappears as the dispersal threshold increases above

20 km (e.g. 15 generations to reach 50% and 100–150

generations to reach 90% of the equilibrium Mantel’s r

at all movement threshold distances above 20 km).
Time until barrier signal disappearance

A significant barrier signal is retained over the entire

500-generation simulation time for scenarios involving
relatively short-distance movement (e.g. linear move-

ment strategy with 10 km movement distance and

inverse-square movement strategy with 10–30 km

movement distances). Time until loss of the barrier sig-

nal is highly dependent on maximum movement dis-

tances. The signal of a former barrier is lost rapidly

when maximum dispersal distances are relatively large

(Figs 5 and 6 and Table 2).

In strong contrast to the pattern observed following

the advent of a new barrier, there are no clear differ-

ences between Mantel’s r and FST in terms of the gener-

ations required for a genetic signature of a former

barrier to be lost in the population (Fig. 7). While there

are no clear differences between the two statistical mea-

sures of population differentiation, there is a strong

effect of both movement function and dispersal thresh-

old on the generations required before a genetic signal

of a former barrier is lost from a population (a, b vs. c,

d in Fig. 7). Similarly, the genetic signal of a former

barrier is also lost faster when dispersal distances are

relatively large. For example, it takes an average of

approximately 100 generations to lose 50% of the bar-

rier signal when the dispersal threshold is inverse-

square and the movement threshold is 10 km, while it

only takes 40 generations when the movement thresh-

old is 20 km and drops to <10 generations when the

movement threshold is 30 km or more (Fig. 7). These

results show that there is considerable effect of organ-

ism vagility on the time required for the signal of a for-

mer landscape condition to be lost from the genetic

makeup of a population, while there is no difference in

the performance of FST and Mantel’s r in how rapidly

they respond to removal of a past barrier.
Discussion

Rapid detection of recent landscape change

A primary goal in landscape genetics is to detect pat-

tern–process relationships in contemporary landscapes,

such as the effects of recent landscape change on popu-

lation connectivity. The most important finding of this
� 2010 Blackwell Publishing Ltd



(a) (b)Linear dispersal Inverse-Square dispersal

Fig. 5 Time until barrier signal disappearance based on significance of Mantel’s r. Mantel’s r values for the barrier removal scenarios

for (a) linear dispersal and (b) inverse-square dispersal over the seven maximal dispersal distances (10, 20, 30, 40, 50 and 60, panmic-

tic). Dashed lines are confidence intervals for the averaged 10 replicates (dotted lines). The notably different scenario (movement

threshold 10 km) is indicated in both graphs.

(b)(a)

(d)(c)

Fig. 4 Time for barrier signal establishment based on effect size for Mantel’s r and FST. The boxplots collectively present a three-way

factorial of differences among two statistical measures of genetic differentiation (Mantel’s r and FST), across six dispersal thresholds

(10, 20, 30, 40, 50 and 60 km), and dispersal and mating movement function (linear and inverse-square). Boxplots (a) and (b) compare

generations to 50% and 90% of equilibrium value of Mantel’s r and FST, respectively, across six dispersal and mating threshold dis-

tances and a linear dispersal function simulated in CDPOP. Boxplots (c) and (d) compare generations to 50% and 90% of equilibrium

value of Mantel’s r and FST, respectively, across six dispersal threshold distances and an inverse-square dispersal function simulated

in CDPOP. The first digit of the x-axis label indicates which statistical measure is used: 1—Mantel’s r, 2—FST. The second digit of the

x-axis label indicates which threshold distance is used: 1—10 km, 2—20 km, 3—30 km, 4—40 km, 5—50 km, 6—60 km.
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(a) Linear dispersal Inverse-Square dispersal(b)

Fig. 6 Time until barrier signal disappearance based on significance of FST. FST values for the barrier removal scenarios for (a) linear

dispersal and (b) inverse-square dispersal over the seven maximal dispersal distances (10, 20, 30, 40, 50 and 60 km, panmictic).

Dashed lines are confidence intervals for the averaged 10 replicates (dotted lines).

(a) (b)

(c) (d)

Fig. 7 Time for barrier signal disappearance based on effect size for Mantel’s r and FST. The boxplots collectively present a three-

way factorial of differences between two statistical measures of genetic differentiation (Mantel’s r and FST), across six dispersal

thresholds (10, 20, 30, 40, 50 and 60 km) and dispersal and mating movement function (linear and inverse-square). Boxplots (a) and

(b) compare generations to loss of 50% and loss of 90% of equilibrium value of Mantel’s r and FST, respectively, across six movement

threshold distances and a linear dispersal and mating function simulated in CDPOP. Boxplots (c) and (d) compare generations to loss

of 50% and 90% of equilibrium value of Mantel’s r and FST, respectively, across six movement threshold distances and an inverse-

square movement function simulated in CDPOP. The first digit of the x-axis label indicates which statistical measure is used:

1—Mantel’s r, 2—FST. The second digit of the x-axis label indicates which threshold distance is used: 1—10 km, 2—20 km, 3—30 km,

4—40 km, 5—50 km, 6—60 km.
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study, therefore, is that the lag time for a new barrier to

become detectable is relatively short using the Dps sta-

tistic and Mantel tests. This is in contrast to empirical

studies that found long lag time for detection of the

genetic effects of landscape change using FST (Holz-

hauer et al. 2006; Keyghobadi et al. 2005). We found

Mantel’s r achieves an equivalent effect size roughly 10

times faster than FST. This rapid detection of a barrier

with individual-based approaches compared to FST con-

firms results from previous simulations under a one-

dimensional stepping stone model (Murphy et al. 2008).

It is also consistent with some recent empirical studies

that have found allele frequency-based metrics respond

rapidly to recent landscape change (Spear & Storfer

2008; Murphy et al. 2010a,b).

The highly nonlinear relationship between time to

barrier detection and dispersal strategy using Mantel

tests with Dps has a number of important implications

for research and management. For dispersal abilities lar-

ger than 10km (i.e. approximately 1 ⁄ 5th the distance

across the study area), time to barrier detection was

short (1–3 generations). However, there is a strong non-

linear threshold relationship, such that as dispersal abil-

ity becomes very low, time until barrier detection rises

rapidly. For species that have naturally low dispersal

ability, it will take much longer for a barrier to be

detected than those with long-distance dispersal capa-

bility. This implies that genetic studies of species with

low dispersal might not detect effects of landscape frag-

mentation for many generations, even if the landscape

change has resulted in complete isolation of subgroups

of a previously connected population (see Epperson

2007; Spear & Storfer 2008; Murphy et al. 2010b). This

could easily lead to incorrect supposition that the land-

scape change has not resulted in population isolation,

which could lead to failure to identify potentially seri-

ous conservation issues (e.g. Gerlach & Musolf 2000;

Keyghobadi et al. 2005, Gerlach & Musolf 2000).

For most mobile animals, and plants with relatively

broad pollen and seed dispersal distances, the lag time

to barrier detection is short. This suggests that early

detection of population fragmentation can be achieved

using individual-based genetic methods on organisms

with relatively long range mating and ⁄ or dispersal. In

addition, landscape change can begin to influence the

genetic structure and architecture of a population

almost immediately. For example, genetic structure

resulting from recent road fragmentation has been

observed using individual-based measures (Keller et al.

2004; Clark et al. 2010).

The strong contrast between the sensitivity of Man-

tel’s r and FST for detecting barrier signals has impor-

tant implications that should guide the selection of

methods used to measure the effects of recent land-
� 2010 Blackwell Publishing Ltd
scape change on population connectivity. The explana-

tion for the observation that time to emergence of a

barrier signal was independent of movement strategy

and was much slower using FST in that FST is based

on heterozygosity. This makes it much less sensitive to

recent landscape change than Mantel’s r, because a

shift in genotype frequencies is likely to happen more

quickly than changes in heterozygosity (Luikart et al.

1998; Murphy et al. 2008, 2010b). This suggests that

FST is a poor choice of response metric in studies

aimed at measuring effects of recent landscape change

on population connectivity (but see limitations of our

work below) and that individual-based genetic dis-

tances coupled with the mantel test are more sensitive

alternatives.
Genetic legacies of past landscape structure

Our results indicate that the effects of past landscape

conditions from more than 100 generations ago might

still be detectable with Mantel’s r or FST, in species with

limited dispersal abilities. This finding is important

because it suggests that historical events and past land-

scape changes may have long-lasting legacy effects on

the spatial genetic structure of populations from certain

species (Dyer et al. 2010).

The strong relationship between dispersal ability and

time for a barrier signal to be lost provides useful guid-

ance to researchers and conservation managers. For

organisms with large dispersal abilities relative to popu-

lation density, a barrier signal is lost rapidly. Over 50%

of the effect size (Mantel’s r) of the signal of a past barrier

is lost within 15 generations for populations of organisms

with relatively large dispersal abilities. This implies that

the legacy of past landscape structure may not be a major

problem in studies of highly mobile organisms (but see

Dyer et al. 2010). However, our simulation suggests that

organisms with relatively restricted dispersal abilities

will retain a genetic signal from a past barrier for tens to

hundreds of generations. For example, it took over 300

generations to lose 90% of the barrier signal for organ-

isms with inverse-square movement function and dis-

persal thresholds up to 20 km.

There is a strong nonlinear relationship between time

for a former barrier to become undetectable and dis-

persal ability. This strong nonlinearity in time to loss of

a past barrier signal as function of dispersal distance has

important implications for studies that hope to separate

the effects of current from past landscape conditions

(Dyer et al. 2010). This ‘ghosts of landscape past’ effect

suggests that analyses of relationships between spatial

genetic structure and landscape features should care-

fully consider past landscape features, especially when

the dispersal abilities of the study organism are limited.



Fig. 8 G’ST (dashed line), FST (dotted line) and Mantel’s r

(dash-dotted line) values for the barrier appearance scenario of

inverse-square dispersal with the 10 km maximal dispersal.

Dashed lines are confidence intervals for the averaged 10 repli-

cates (dotted lines).
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Scope and limitations

The simulations framework used in this study has sev-

eral advantages for landscape genetic analyses. It

enabled us to simulate gene flow in modelling experi-

ments in which the process was known and the key

parameters of dispersal ability were systematically var-

ied to explore the effects of population vagility on the

rate of emergence and loss of a genetic signal caused by

a population barrier. In addition, because the simulation

we implemented is individual-based and spatially expli-

cit, we were able to directly compare the sensitivity of

Mantel’s r to Dps and FST in detecting barrier effects

from current and past landscape conditions. However,

as in any simulation, our analysis is a simplification

and has a limited scope.

There are three main simplifications in our analysis

that should be considered when interpreting our

results. First, our model is based on nonoverlapping

generations. The effects of overlapping generations in

long-lived species on the emergence of genetic structure

are not considered in our analysis. Overlapping genera-

tions can have some impact on population genetic

structure (e.g. Epperson 2003), but little research has

been conducted in heterogeneous landscapes. Some

longer-lived highly mobile species might not show

effects of fragmentation on a timescale useful for mak-

ing conservation and management decisions (Coulon

et al. 2004) or only show weak effects (Coulon et al.

2006; Spear & Storfer 2008). In addition, many long-

lived plant species show more continuous genetic struc-

ture where fragmentation effects are less easy to detect

(e.g. Wagner et al. 2005). Future work should explore

the effects of overlapping generations on landscape

genetic inferences.

Second, our model is based on a constant-sized popu-

lation. We stipulated a constant population across simu-

lated generations because we wanted to explore the

relationships between dispersal ability and genetic dif-

ferentiation across a barrier without the confounding

influence of the effects of a dynamic population on

genetic change. However, real populations may have

lower effective population size and ⁄ or effective popula-

tion size may fluctuate over time. This can have little

(Murphy et al. 2008) or substantial influences on the nat-

ure and rate of genetic change observed (e.g. Engen

et al. 2005). It will be important for future work to

explore the effects of dynamically varying population

size in heterogeneous landscapes using genetic methods.

Third, this simulation is based on 1000 individuals ini-

tialized with 30 alleles and 30 loci per allele. The rate of

detection of the genetic signal caused by landscape

change is likely highly sensitive to variation in the

proportion of population sampled, the number of loci
analysed and the allelic richness and heterozygosity.

This paper investigated a single combination of popula-

tion size, number of alleles and number of loci. Ongoing

work (E. L. Landguth, unpublished data) has shown that

the number of loci and the number of alleles both

strongly affect the equilibrium effect size and the power

of causal modelling to detect the effects of landscape

structure on genetic differentiation in complex land-

scapes. Further work is needed to explore how variation

in sampled population size, number of loci and the rate

at which the effect of landscape change on genetic dif-

ferentiation becomes detectable (see Murphy et al. 2008).

In this manuscript, we chose to focus on what is far

and away the most commonly used individual-based

(Mantel’s r) and population-based (FST) metric of gene

flow. What is different about our simulation is that we

were looking at transient states associated with the

imposition or removal of a barrier. In these situations,

FST is theoretically flawed, as it assumes constancy and

equilibrium. In our simulations, initial heterozygosity

was extremely high, much higher than would be likely

in a natural population of the size simulated. Because

heterozygosity was extremely high at t = 0, maximum

FST was very low. With succeeding generations, hetero-

gygosity dropped, and maximum FST increased leading

to a signal, which started small and slowly increase-

d—always limited by the maximum FST. This is clearly

shown by applying Hedrick’s transform from FST to

G’ST which scales FST to its maximum value (Hedrick

2005). Figure 8 shows clearly that a scaled FST is, in

fact, as sensitive, or more so, than Mantel’s r based on

genetic distance. However, using to G’ST is not a pana-

cea; to G’ST has many of the underlying assumptions
� 2010 Blackwell Publishing Ltd
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associated with the F-statistics and can be misleading

under some circumstances such as high migration rates

(Ryman & Leimar 2008). Mantel tests make few

assumptions about the underlying population structure,

equilibrium, neutrality of the markers or evolutionary

model. Additionally, partial Mantel tests allow spatial

patterns to be separated allowing barrier analysis in

complex correlated environments.

The loss of heterozygosity across generations in our

simulations may have been larger than is expected in

natural populations, but we believe that rapid losses of

heterozygosity associated with imposed barriers are not

uncommon. In many cases, large contiguous popula-

tions have become highly fragmented in relatively short

periods of time. Thus, the weaknesses we have demon-

strated in the use of FST in these simulations will occur

to one extent or another in nature.

There are, of course, many alternative methods that

have been used to identify barriers. For example,

Safner et al. (in press) reviewed a number of alternative

individual-based approaches for the detection of bar-

riers finding that Bayesian methods performed better

than edge detection methods with GENELAND detect-

ing the barriers in 49% of the simulation runs at

generation 100. Additionally, there is a plethora of

population-based metrics, including DST (Jost 2008).

Also, the proportion of shared alleles was used as the

distance metric for the Mantel tests. Many additional

metrics with varying assumptions and power are avail-

able (for review, see Legendre & Legendre 1998), and

future work should explore how choice of genetic dis-

tance measure affects the emergence and loss of genetic

signals.

The simulation we conducted was designed to repre-

sent a broad range of dispersal abilities relative to pop-

ulation density and landscape heterogeneity. However,

more work will be needed to evaluate the functional

nature of the responses we identified. Specifically, our

analysis suggests that there are strongly nonlinear rela-

tionships between time until a genetic signal appears or

is lost following landscape change and dispersal ability.

The simulations we ran do not enable generalization of

the relationships between population density, move-

ment strategy and dispersal distance. This is an impor-

tant topic and more work is needed to quantify the

threshold-like relationships suggested by this analysis

between rate of emergence and loss of genetic structure

and population density, dispersal distance, movement

strategy and spatial complexity of the landscape.
Conclusion

These results overall are encouraging for those who

wish to use individual-based landscape genetic
� 2010 Blackwell Publishing Ltd
approaches to infer the influences of current landscape

features on gene flow and population connectivity.

New landscape features, like roads, deforested areas, or

other movement barriers, have rapid effects that are de-

tectible almost immediately with individual-based land-

scape genetic approaches. FST is much less sensitive

than Mantel’s r on Dps (Keyghobadi et al. 2005;

Murphy et al. 2010a,b), but initial simulations suggest

that this is not because of individual-based approaches

performing better than group-based statistics (which

will occur in some circumstances), but rather because of

the choice of an appropriate metric given the power of

the metric for the question of interest.

Most combinations of movement strategy and dis-

persal threshold that we simulated indicated a rapid

loss of the effects of previous landscape structure, and a

decline to nonsignificance within a few hundred gener-

ations at most. This suggests that for organisms with

relatively large dispersal abilities, legacy effects from

past landscape conditions are likely to be lost within

less than 15 generations, while they may remain for

dozens to hundreds of generations for organisms with

very limited dispersal abilities. This highlights the

importance of considering organism vagility and life

history when interpreting results of landscape genetic

analysis. These results also indicate that longer-term

changes, such as major post-Pleistocene climatic and

biome shifts, are sufficiently distant to have no detecti-

ble effect on current genetics using microsatellites or

other neutral genetic markers.
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