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ABSTRACT 
 
 

Historic Fire Regimes of Eastern Great Basin (USA) Mountains 

Reconstructed from Tree Rings 

 
Stanley G. Kitchen 

 
Department of Plant and Wildlife Sciences 

 
Doctor of Philosophy 

 
 

Management of natural landscapes requires knowledge of key disturbance processes 
and their effects. Fire and forest histories provide valuable insight into how fire and vegetation 
varied and interacted in the past. I constructed multi-century fire chronologies for 10 sites on 
six mountain ranges representative of the eastern Great Basin (USA), a region in which historic 
fire information was lacking. I also constructed tree recruitment chronologies for two sites. I 
use these chronologies to address three research foci. First, using fire-scar data from four 
heterogeneous sites, I assert that mean fire interval (MFI) values calculated from composite 
chronologies provide suitable estimates of point MFI (PMFI) when sample area size is ≈½ ha. I 
also suggest that MFI values for single trees can be used to estimate PMFI after applying a 
correction factor. Next, I infer climate effects on regional fire patterns using 10 site 
chronologies and tree-ring-based indices of drought and of El Niño Southern Oscillation 
(ENSO) and Pacific Decadal Oscillation ([PDO), Pacific Ocean surface temperature variability 
known to affect North American climate. Regional fire years (≥33% of recording sites) were 
synchronized by wet-dry cycles where the probability of occurrence was highest in the first 
year of drought following a wet phase and lowest when climate conditions transitioned from 
dry to wet. Regional fire probability was highest when ENSO and PDO were negative 
(Southwest pattern). Local fire years occurred under a broad range of conditions. Fire 
seasonality was bimodal with early and late-season fires dominant. I imply that Native 
American burning practices were responsible for differences in historic and modern fire 
seasonality. Lastly, I assess fire regime and tree recruitment variability within two fire-sheds. 
PMFI varied more than 10-fold within each site. A mixed-severity regime was dominant. A 
majority (>60%) of fires were small (<10 ha) but together accounted for a minor proportion of 
area burned. Recruitment pulses varied spatially from stand to landscape-scales and were often 
synchronous with multi-decade, fire-quiescent periods. I recommend that management 
strategies employ fire and fire-surrogate treatments to restore disturbance processes to these 
and similar landscapes at spatial and temporal scales consistent with the historic record. 

 
 
Keywords: fire scars, dendrochronology, point mean fire interval, climate-fire interactions, 
anthropogenic fire, mixed-severity fire, mixed-conifer forests, fire restoration 
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INTRODUCTION 

 Fire functions as a “keystone disturbance” for most natural vegetation types in western 

North America dictating plant community structure and the direction and pace of ecosystem 

processes (Frost 1998; Keane et al. 2002). The manner in which fire is manifest over time and 

space is collectively referred to as the fire regime. Fire regime parameters are quantifiable at 

multiple temporal and spatial scales as frequency, extent, pattern, seasonality, and 

predictability (Morgan et al. 2001). An additional parameter, fire severity, is a measure of fire-

induced ecosystem change (Ryan and Noste 1985; Romme et al. 2003) and may vary through 

time and space. These indicators of fire regime are interdependent. For example, severity 

generally increases as frequency decreases due to greater accumulations of fuels over time 

(Wright and Bailey 1982). Similarly, fire severity also correlates with seasonality, extent, and 

pattern (Wright and Bailey 1982; Keane et al. 2002). Fire characteristics are affected locally by 

past events as well as current events on adjacent landscapes (temporal and spatial 

autocorrelation; Morgan et al. 2001). 

 Fire regimes are both heterogeneous and dynamic. Local, spatial scale variation of fire 

regime is related to topography (i.e. elevation, aspect, slope, connectivity) through the effects 

of topographic position on species composition (fuel types and arrangement), productivity, fuel 

desiccation rates, fuel continuity, and wind speed (Swetnam and Baisan 1996; Taylor and 

Skinner 1998; Brown et al. 2001; Heyerdahl et al. 2001; Iniguez et al. 2008, 2009). 

Superimposed over local variation, regional synchronization of fire patterns is driven by 

climate through the effects of precipitation and temperature on fuel production and desiccation. 

For example, in historic fire regimes of southwest pine forests, major fire years are correlated 

with severe drought years, particularly when preceded by 1 to 3 years of above average 
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precipitation (Swetnam and Baisan 1996; Brown and Shepperd 2001; Brown et al. 2001; 

Kitzberger et al. 2001; Margolis and Balmat 2009). This relationship is strongest for dry forest 

types and becomes weaker with increasing effective precipitation (i.e. elevation). Donnegan et 

al. (2001) and Sherriff and Veblen (2008) observed a similar pattern for forests of central 

Colorado and implicated the importance of inter-annual climate cycling for the sequential 

production and conditioning of fuels prior to major fire events. In addition to inter-annual 

synchronization of fire by climate, decadal to millennial scale variation in fire occurrence has 

been correlated to same-scaled climate variation (Touchan et al. 1995; Swetnam and Baisan 

1996; Swetnam and Betancourt 1998; Grissino-Mayer and Swetnam 2000; Brown et al. 2001; 

Donnegan et al. 2001; Heyerdahl et al. 2002a; Whitlock et al. 2003; Kitzberger et al. 2007; 

Morgan et al. 2008). 

Climate may also produce a seasonal signature in fire regime reconstructions. In the 

Southwest, pre-monsoonal dry lightning storms often follow warm dry spring conditions 

resulting in a high proportion of early season fires (Swetnam and Betancourt 1990; Swetnam 

and Baisan 1996; Brown et al. 2001). Conversely, late season fires become dominant at higher 

latitudes where springs are relatively cool and wet and fuel desiccation and thunderstorms 

activity is delayed (Bekker and Taylor 2001; Donnegan et al. 2001; Brown and Shepperd 2001; 

Heyerdahl et al. 2001; Schmidt et al. 2002).  

Locally, unexpected frequency, regularity, or seasonality might be interpreted as 

evidence of anthropogenic influence on fire regime (Swetnam and Baisan 1996; Allen 2002). 

Changes in fire regime associated with changes in anthropogenic uses and management have 

been documented in North America (for examples see Arno et al. 1997; Fulé and Covington 

1999, Shumway et al. 2001, Guyette et al. 2003, Parshall et al. 2003), Europe (Niklasson and 
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Granstrom 2000, Lloret and Mari 2001), and Australia (Ward et al. 2001). Regionally, 

synchronized changes in fire regime are associated with Euro-American settlement and fire 

suppression policy implementation (Swetnam 1993; Covington and Moore 1994; Swetnam and 

Baisan 1996; Fulé et al 1997; Brown and Sieg 1999; Bekker and Taylor 2001; Heyerdahl et al. 

2001; Keane et al. 2002).  

 Fire regime reconstructions, or fire histories, are developed to describe past fire activity 

through one or more parameters of interest for a specific geography and time period, and are 

critical for understanding the relationships between fire regimes, regional and local controls, 

and vegetation dynamics (Arno et al. 1997; Taylor and Skinner 1998; Bekker and Taylor 2001; 

Morgan et al. 2001). To effectively uncover the relationship between regional and local 

controls on fire regime, reconstructions must have resolution at the same scales over which 

variation occurs (Ricklefs 1987; Weins 1989; Levin 1992).  

A variety of methods are employed for fire history development, each with limits in 

temporal and spatial resolution. Those methods capable of fixing fire events with annual 

accuracy are critical for elucidating fire-climate relationships at inter-annual and decadal 

scales. Only cross-dated dendrochronological (tree-ring) approaches are effective in achieving 

that level of accuracy for multi-century time periods. However, tree-ring based fire frequency 

values aggregated from large or ambiguous landscapes can be misleading because they tend to 

overestimate local fire frequencies and because they may fail to identify topographically-

induced variation in fire regime (Swetnam and Baisan 1996; Baker and Ehle 2001; Falk et al. 

2007). Temporal accuracy and spatial resolution of fire frequency reconstructions can be 

improved through careful selection of the size, number, and spacing of sample points across 

the landscape (Heyerdahl et al. 2001; Iniguez et al. 2008; Margolis and Balmat 2009). 
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 Although specific boundaries vary by definitions employed, the Great Basin 

encompasses the northern, elevated section of the “Basin and Range Province” of western 

North American and includes most of the state of Nevada and significant portions of Utah, 

Idaho, California, and Oregon (Fig.I.1). The region is characterized by over 100 relatively 

narrow mountain ranges with a generally north/south orientation and separated by broad, 

internally-drained desert valleys. Elevation for 33 of these ranges exceeds 3,048 m (10,000 ft.; 

Grayson 1993). The climate is generally dry due to rain shadow effects of the Sierra Nevada 

and Cascade Ranges to the west and Rocky Mountains to the east (Peterson 1994). Seasonality 

of precipitation varies along a geographic gradient with the importance of winter and spring 

Pacific frontal storms decreasing and summer monsoons increasing as one travels from north 

to south and from west to east. Precipitation is further modified locally by elevation and 

orographic position. In short, regional climate patterns are intermediate or transitional between 

those of the interior Pacific Northwest and the interior Southwest. 

Great Basin plant community types form more or less distinct zones across elevational 

gradients reflecting parallel gradients in temperature and precipitation (Holmgren 1972; Harper 

et al. 1978). Zonation is further modified by slope, aspect, and substrate. Drought tolerant sub-

shrubs and grasses dominate plant communities of arid valleys and dry foothills. Sagebrush 

(Artemisia spp.)-grass steppe communities occupy a broad zone from valley floors to dry mid-

elevation montane sites. An upward and downward expanding, pinyon(Pinus monophylla)-

juniper (Juniperus spp.) woodland belt is superimposed through the center of the various 

sagebrush-grass steppe types on all but northern ranges (Tausch et al. 1981). Various 

combinations of pine (Pinus), fir (Abies, Pseudotsuga), and spruce (Picea) occupy the mixed 

conifer and sub-alpine forests. A treeless alpine zone is found on the highest peaks.  
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In spite of significant progress in reconstructing historic fire regimes for forested 

landscapes across much of western North America, the interior Great Basin has largely been 

ignored prior to this work (Heyerdahl et al. 1995), subsequently, little is known of 

corresponding historic fire regimes and the processes that drive them; knowledge critical for 

science-based fire and fuels management programs. This study begins to address that need. My 

focus is in the mountains of the east-central portion of the Great Basin corresponding to 

western Utah and eastern Nevada. I have collected tree-ring derived fire history data from 10 

sites located on six mountain ranges. I use subsets of that data to develop three independent 

papers, presented here as chapters, that address contemporary issues in fire history research. 

Each paper is written for publication in a scientific journal and is organized into standard 

sections including: introduction, methods, results, discussion, acknowledgements, literature 

cited, tables and figures. 

Chapter 1 is titled, Composite and Single-tree Fire Chronologies from 

Heterogeneous Landscapes: Strategies for Estimating Point Mean Fire Interval, and deals 

with ways in which fire history data are collected and used to infer fire frequency. Specifically, 

I explore benefits and limitations to amalgamated fire chronologies from multiple trees as 

proxies for point fire frequency using data from four eastern Great Basin sites. I also propose a 

way in which single tree chronologies can be used to estimate point fire frequency. The fire 

history community has wrestled with this issue over the past decade with important 

contributions from Baker and Ehle (2001), Van Horne and Fulé (2006), Falk et al. (2007), 

however, none have provided a satisfactory method for restricting composite records so that 

they provide defensible estimates of point fire frequency, especially for topographically and 

vegetationally heterogeneous landscapes such as those found in the mountains of the eastern 
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Great Basin. That is the purpose of Chapter 1 and the method is subsequently applied on data 

from two fire-sheds in Chapter 3. 

Chapter 2 is titled, Climate and Human Influences on Historical Fires (1400-1900) 

in the Eastern Great Basin (USA). In this paper I use data from 10 sites to infer the fire-

synchronizing role of climate in this region that is geographically transitional between the 

Southwest and Interior Northwest. Sites are located near 40˚ N Latitude, a proposed pivot point 

for a dipole pattern of fluvial and drought conditions that is strongly influenced by Pacific 

surface sea temperature and associated climate variability patterns, namely El Niño Southern 

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO; Mock 1996; Dettinger et al. 1998). 

Significant relationships between fire occurrence and independent reconstructions of drought, 

ENSO, and PDO have been observed north and south of the pivot point in numerous studies 

(for examples see Westerling and Swetnam 2003; Kitzberger et al. 2007; Heyerdahl et al. 

2008). The importance of climate as a driver of fire near the pivot point is less well understood. 

That understanding will improve fire-climate modeling at the sub-continental scale and may be 

critical in future non-analog climate scenarios. I also use fire seasonality evidence to explore 

the possibility of human influence on pre-1900 fire regimes in the region. Although many uses 

of fire by Native American have been documented (Williams 2004), finding evidence for a 

human influence in historic fire regime reconstructions has been difficult (Allen 2002; Griffin 

2002). In this paper I offer credible evidence of a human fire footprint in fire seasonality data. 

Results have implications for management and restoration strategies of associated mountain 

ecosystems. 

In the final chapter I explore “Historic Fire Regime and Forest Variability on Two 

Eastern Great Basin Fire-sheds (USA)”. Although somewhat artificial, the term “fire-shed” 
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as used here designates a topographic unit somewhat sympatric to one or more small 

watersheds and corresponding to an area within which barriers (i.e. bare ridges, cliffs, 

waterways, etc.) are sufficiently permeable to allow fire to spread among all components of the 

landscape. Sampling methodology was the same at both sites. Fire-sheds differed in bio-

physical character and historical use by humans and are generally representative of eastern 

Great Basin mountains. I identify spatial and temporal variation in fire frequency, extent, and 

severity using a combination of approaches and relate findings to vegetation histories at both 

sites. Implications for present and future management options are addressed.  
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Fig. I.1. Map of eastern Great Basin mountain ranges with locations of 10 fire history sites. Study sites 

include Right Fork of Beaver Creek (RBC) and Indian Creek Canyons (INC) on the Tushar Mountains, 

Frisco Peak (FRI) on San Francisco Mountain, Lawson Cove (LAW) and Rose Spring Canyon (ROS) 

on the Wah Wah Range, Burnt Mill Canyon (BMC) and Big Wash (BWA) on the South Snake Range, 

Sinbad Springs (SIN) and Swasey Mountain (SWA) on the House Range, and Tom’s Creek Canyon 

(TOM) on the Deep Creek Range. Sites represent a mix of gridded and targeted sampling strategies. 

  



17 
 

CHAPTER 1 – COMPOSITE AND SINGLE-TREE FIRE CHRONOLOGIES FROM HETEROGENEOUS 

LANDSCAPES: STRATEGIES FOR ESTIMATING POINT MEAN FIRE INTERVAL 

Brief Summary: The effect of sample area size on fire frequency statistics generated from 

fire-scarred trees was investigated on four mixed-conifer forest sites in the eastern Great Basin. 

Results suggest that composite records from ½-ha sample areas and adjusted single-tree 

records could be used to estimate historic point fire interval statistics.  

Abstract. Fire-induced scarring of trees provides temporally precise and spatially fixed proxy 

records of non-lethal fire. Single-tree chronologies are incomplete records of point fire history 

resulting from fires that do not produce scars and to scar erosion. Composite chronologies are 

used to correct for these errors of omission but are subject to increasing risks of errors of false 

inclusion associated with increasing sample area size. I used four eastern Great Basin fire 

chronologies to investigate the effect of sample area size on composite mean fire interval 

derived from heterogeneous landscapes. Composite fire frequency statistics were calculated for 

eight sets of six nested sample areas ⅛ to 128 ha in size, and six additional ⅛ and ½-ha nested 

pairs. Across nested series, fire frequency differed from 2 to 11 fold between ⅛ and 128-ha 

sample areas. An optimal spatial scale of ½ ha offers the best compromise for minimizing the 

competing risks of errors of omission and those of false inclusion, and thus provides a 

defensible estimate of point mean fire interval. Mean single-tree and ‘best-tree’ fire totals were 

48 and 72% of the ½-ha composite total, respectively.  Restricted-area (½ ha) composite and 

single-tree chronologies provide reasonable means for estimating point fire frequency across 

heterogeneous landscapes.  

Additional key words: fire history, mixed-conifer forests, Great Basin  
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Introduction 

Fire regimes for most western North American dry pine and mixed conifer forests changed 

dramatically after exploitation by Euro-American settlers (Cooper 1960; Covington and Moore 

1994; Arno et al. 1997; Keane et al. 2002a). Quantifying the nature of pre-settlement fire 

regimes and the magnitude and consequences of post-settlement fire regime change is essential 

for developing science-based restoration and management strategies for affected forests (Fulé 

et al. 1997; Brown et al. 2001; Heyerdahl et al. 2001; Keane et al. 2002b; Swetnam 2005; 

Baker et al. 2006; Sherriff and Veblen 2006). Specifically, detailed information regarding 

historic patterns of fire frequency, severity, and extent and how these parameters varied at 

multiple spatial and temporal scales are needed (Taylor and Skinner 1998; Brown and Sieg 

1999; Kaufmann and Huckaby 2000; Bekker and Taylor 2001; Heyerdahl et al. 2001; Morgan 

et al. 2001; Baker 2006; Falk et al. 2007; Beaty and Taylor 2008). Tree-ring based fire 

chronologies, or histories, are valuable tools for developing reasonable estimates of these 

measures of past fire regimes.  

Fire-induced scars on the boles of trees producing annual growth rings provide 

temporally precise and spatially fixed proxy records of non-lethal fire. Many tree species 

(especially conifers) form fire scars under suitable conditions. Species which develop thick 

insulating bark are adapted to survive the frequent, repeated fires characteristic of low severity 

fire regimes and are thus capable of recording multiple fires through time. This protective 

adaptation generally inhibits scarring on older, un-scarred trees (Vines 1968). Consequently, 

many trees that experience the same fires as nearby fire-injured trees never scar. Although fire 

scars may occur on only a fraction of the trees in a stand, the probability of scarring increases 

dramatically after initial scar formation for trees that might otherwise be resistant to scarring. 
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However, even trees predisposed by existing wound surfaces to new scar formation often fail 

to form scars in response to some fires that burn at their base (Dieterich 1980; Dieterich and 

Swetnam 1984). Evidence of fire may also be lost as scar-bearing wood is consumed by 

subsequent fires or lost through processes of scar erosion. Consequently, it must be assumed 

that single-tree fire chronologies are incomplete records of surface fire for any reference period 

(Dieterich 1980; Dieterich and Swetnam 1984; Baker and Ehle 2001).  

Investigations of past surface fire patterns at the stand to watershed scale typically 

involve the collection of scar-bearing cross-sections from several trees or tree remnants. Fire-

scar records are most frequently used to assess the frequency of non-lethal fire although they 

are also useful when investigating fire severity and extent. Generally, no attempt is made to 

insure that all fire-scarred trees within the area of interest are sampled (for an exception see 

Van Horne and Fulé 2006), rather sample trees are selected based upon their quality (i.e. 

number of fire scars, soundness of wood) and actual discovery. Because search protocols and 

effort vary among and within studies, the degree to which the fire records acquired from 

sampled trees represent the population of fire records available in the area of interest must also 

vary. Regardless of search and sampling strategies employed, once sample tree locations are 

geographically fixed on the landscape (e.g. UTM coordinates) the net result is a unique 

collection of partial fire records with known spatial distribution yet unknown completeness. 

The need for defensible strategies for the amalgamation, analysis, and interpretation of 

these records into accurate descriptions of fire regime temporal and spatial variability 

continues to be cause for debate (Baker and Ehle 2001; Stevens and Collins 2004; Swetnam 

2005; Baker 2006; Baker et al. 2006; Fulé et al. 2006; Kou and Baker 2006a,b; Van Horne and 

Fulé 2006). Composite fire chronologies are assembled by combining the individual records of 
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at least two but generally several fire-scarred trees and are used to provide more complete and 

often longer histories of non-lethal fire (Dieterich 1980). This practice provides an effective 

strategy for reducing the probability of errors of omission, or failing to identify and include one 

or more fire years, and has become a common practice in the investigation of historic fire 

patterns. However, the fire frequency statistics associated with composite fire chronologies 

vary as a function of the size of the sample area and the relative abundance of small fires. This 

led Baker and Ehle (2001) to conclude that the composite mean fire interval (MFI) is 

unsuitable as a measure of fire frequency because of this dependency upon sample area size. 

They argued that, as it is typically used composite MFI overestimates the population MFI 

across the landscape. In a study using data from a ponderosa pine (Pinus ponderosa Douglas 

ex Lawson and Lawson) forest, Falk and Swetnam (2003) observed that composite MFI “was 

strongly scale dependent” and suggested that the relationship between MFI and sample area 

size could be predicted in a log-linear fashion. They suggested that the slope of the composite 

MFI to sample area size relationship might be used as an indicator of mean fire size or fire 

synchronization at different spatial scales. In another ponderosa pine study utilizing a complete 

census of all fire-scarred trees from a 1-km2 study site, Van Horne and Fulé (2006) observed a 

50 percent reduction in composite MFI as sample area size increased from 4 to 100 ha. Thus, 

when the objective is to estimate fire frequency with high spatial resolution (point MFI), 

amalgamation of individual, spatially-dispersed fire records increases the risk for errors of 

false inclusion, or including one or more fire years in which fires were not common for all 

points of the area in question. In summary, composite fire chronologies represent a strategy for 

reducing errors of omission but increase the risk for errors of false inclusion. Errors of 

omission result in over-estimation of the length of fire-free intervals while errors of false 
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inclusion have an opposite effect. In addition, composite fire frequency estimates derived from 

larger landscapes conceal useful information regarding spatial variability in point fire 

frequency.  

Filtering from the composite record those fire years not represented on at least a 

minimum percentage of sampled trees (typically 10 or 25%) is a frequently used method for 

reducing the risk of overestimating fire frequency (e.g. Brown and Sieg 1996; Swetnam and 

Baisan 1996; Stephens and Collins 2004). A weakness of this approach is that there is no 

accounting for the spatial distribution of the recording trees used in the composite. 

Subsequently, different-sized fires which produce scars on a high percentage of closely-

grouped trees may not be distinguishable from those that scar a similar number of trees spread 

across a wider landscape (Falk and Swetnam 2003). Filtering modifies estimates of fire 

frequency by eliminating from the composite record small, poorly recorded, poorly preserved, 

or poorly sampled fire events. Conversely, what is often needed is a more accurate measure of 

the variability in point fire frequency, a point being defined as an area equal to the average area 

occupied by a single mature tree because that is the minimum area in which a fire can be 

recorded. Filtering composite records may yield estimates that are similar to what is predicted 

for point fire frequency. However, the accuracy of results are difficult to determine because the 

process is indirect and eliminates from the record relatively small fires rather than directly 

measuring all fires that cross individual points on the landscape. Furthermore, filtering appears 

to support an assumption of uniform fire frequency across the landscape while knowledge of 

fire frequency variability in a population of points could yield critical insights into fire regime 

spatial dynamics. 
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My objective in this study is to address questions pertinent to the development of point 

MFI estimates from the partial fire records recovered from individual fire-scarred trees. In 

contrast to work by Falk and Swetnam (2003) and Van Horn and Fulé (2006) which addressed 

related questions using fire-scar records collected from southwest ponderosa pine forests 

located on relatively uniform topography, this study will utilize data collected from sites that 

are topographically and vegetationally more variable. Subsequently, one might anticipate 

greater spatial variability in fire regime and in the preserved fire record associated with 

heterogeneous environments than what would be predicted for more uniform environments. 

This variability might also be expected to result in greater sensitivity to different sampling and 

compositing strategies for estimating point fire frequency. My first questions address spatial 

scaling of sample areas when selecting trees to include in composite fire chronologies. 

Specifically, what is the optimal spatial scale, or sample area size, that best balances the 

competing risks of errors of omission against those of false inclusion and what impact does 

sample-tree number have on the optimal spatial scale? Any resolution of these questions will 

enable researchers and managers to better assess the utility of existing and future composite 

fire records for estimating point fire frequency. Additional questions consider the potential of 

using single-tree fire chronologies and associated frequency statistics to generate estimates of 

point fire frequency. Specifically, how well does the mean or ‘best’ single-tree fire record 

predict the spatially-constrained composite record? Here I define best trees as those identified 

from a set of spatially-proximate sample trees that record the greatest number of fires during a 

period of interest. Answers to this question have value for developing strategies for estimating 

fire frequency on landscapes where salvageable records from fire-scarred trees are uncommon 
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or widely dispersed, resulting in insufficient clusters of proximal fire-scarred trees for 

assembling spatially-constrained composite chronologies.  

 

Study Sites  

I collected samples from fire-scarred trees at four eastern Great Basin (USA) study sites 

located on three, north-to-south oriented mountain ranges (Fig. 1.1). Two sites, Burnt Mill 

Canyon (BMC) and Big Wash (BWA) are located 20 km apart in Great Basin National Park in 

east-side drainages of the South Snake Range, White Pine County, Nevada. Maximum 

elevation is 3,982 m (Wheeler Peak) with substantial portions of the range above 3,000 m. The 

BMC site (39o 2’ N 114o 16’ W) includes approximately 200 ha in the Burnt Mill Canyon and 

Mill Creek drainages. Elevations range from 2,560 to 2,900 m and slopes vary from 5 to 50%. 

The BWA site (38o 52’ N 114o 14’ W) starts on the park boundary on the southern edge of the 

Big Wash South Fork drainage and follows a National Park Service trail west for 

approximately 700 m. This site is located on a relatively uniform north to northeast aspect 

somewhat dissected by a series of shallow draws. Elevation is 2,490 to 2,560 m and slopes 

vary from 10 to 30%. 

Two additional sites administered by the USDI Bureau of Land Management are 

located 65 and 95 km southeast of BWA on the north Wah Wah and the San Francisco 

Mountain Ranges in Utah’s Millard and Beaver Counties, respectively. Maximum elevation in 

the north Wah Wah range is 2,737 m. Considerable rock is exposed on ridge tops, as cliff faces 

of 1 to 30 m in height, and as talus slopes creating significant barriers to surface fire spread. 

The LAW study site (38o 37’ N 113o 34’ W) ranges in elevation from 2,240 to 2,630 m and 
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includes approximately 400 ha across two branches of the Lawson Cove drainage. At 2,944 m, 

Frisco Peak is the highest point of the San Francisco Mountains. Talus slopes near and at the 

summit are common and likely function as significant barriers to surface fire spread. The FRI 

study site (38o 32’ N 113o 17’ W) ranges in elevation from 2,580 to 2,770 m and follows the 

ridgeline of this range north of Frisco Peak.   

 Vegetation on north and east facing slopes at all sites is primarily mixed-conifer forest. 

Important tree species include Douglas-fir (Pseudotsuga menziesii var. glauca (Beissner) 

Franco), white fir (Abies concolor (Gordon & Glendinning) Lindley ex Hildebrand), ponderosa 

pine (Pinus ponderosa var. scopulorum Englemann) and lesser amounts of limber pine (Pinus 

flexilis James). At LAW and FRI, Douglas fir is uncommon and limber pine is absent. Stands 

of Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) are present near these two sites 

with a few individuals scattered within the WAH site. Stands are generally mixed and 0.1 to 

2.0 ha-sized patches dominated by single species are common. Based upon the abundance of 

observed stumps, the impact of Euro-American logging varies by site from minimal, 

represented by the removal of a handful of easily accessed ponderosa pine trees in drainage 

bottoms of the LAW site, to extensive, represented by the harvest of more than 80% of mature 

ponderosa pines at BMC. There is little or no evidence that other species were commercially 

harvested at any site. Where trees were harvested, secondary growth dominated by white fir 

and Douglas fir is abundant. Charred snags and log fragments are common throughout all sites 

with the exception of some old-growth pinyon (Pinus monophylla Torrey & Frémont)-juniper 

(Juniperus osteosperma (Torrey) Little and J. scopulorum Sargent) stands within the LAW 

site. 
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South and west facing slopes are occupied by mountain sagebrush (Artemisia spp. L.)-

steppe, mixed mountain shrub, curlleaf mountain mahogany (Cercocarpus ledifolius Nuttall in 

Torrey & Gray), and pinyon-juniper communities. Mixed stands of pinyon and juniper occupy 

all aspects at lower elevations at the LAW site. Somewhat sharp ecotones among community 

types reflect topographic control (elevation and aspect) of plant community assemblages and 

corresponding fuels matrices. Fire-scarred trees are primarily ponderosa pine, however 

scattered, fire-scarred representatives of most tree species are also present. 

 In short, all four sites have stands of mixed conifer forest on north and east-facing 

slopes and sufficient fire-scarred trees to support a study evaluating the practice of combining 

individual, tree-ring-based fire records into composite fire histories. All sites but BWA also 

have significant non-forested elements (mountain shrublands), primarily on south and west 

aspects. BMC and BWA are somewhat more mesic than LAW and FRI suggesting greater 

capacity for post-fire fuel recovery for these sites and less restrictive topographic barriers to 

surface fire spread.  

 

Field Methods 

 Systematic grids (500-m intervals) were superimposed over the BMC and WAH study 

sites to stratify sampling effort (Brown et al. 2008). For these sites, a thorough search for fire-

scarred trees (live, snags, stumps and logs) was completed for an area of at least 2 ha (80 m 

radius) centered on each grid point. One to several cross-sections were removed from scarred 

surfaces (cat-faces) of most fire-scarred trees located within search radii using chainsaws and 

standard methods (Arno and Sneck 1977). A few (estimated <20 per study site) fire-scarred 
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live trees and standing snags located near grid points were not sampled due to safety concerns. 

Additional fire-scarred trees were sampled opportunistically as they were encountered between 

grid points. Inter-point search and sampling effort was considered aggressive involving one to 

four individuals for 1 to 4 hours per grid-point and were focused primarily on those portions of 

the landscape occupied by mixed conifer forest where fire-scarred trees proved to be most 

abundant. Although trees with multiple scars were selected preferentially, numerous trees with 

one to three scars were also sampled. These watershed-scale grids encompassed a broad range 

in elevation, however, only the mid-elevation portions where fire-scarred trees were at the 

highest densities are included in the BMC and LAW study areas considered here. A targeted 

search for fire-scarred trees at the BWA site was limited to a 300-m wide belt centered over the 

above-described Park Service trail. A similar search effort at the FRI site extended up to 200 m 

on either side of the Frisco Peak ridgeline road for a distance of 1800 m. Although numerous 

search hours were spent at each of these locations, the effort was not systematic or 

comprehensive in nature. 

 Universal Transverse Mercator (UTM) coordinates were determined at the time of 

sampling (2002-2003) for most sampled trees at BMC and LAW using hand-held GPS units 

accurate to within 15 m. Trees at BWA and FRI and a few previously sampled trees at BMC 

and LAW were relocated (2003-2005) using field notes and their UTM coordinates determined 

as described above. The locations of seven previously sampled trees could not be resolved 

resulting in the elimination of these from use in this study. Species, condition (live, snag, 

stump, or log) and number of apparent scars were noted for each tree at the time of sampling.  

Samples were labeled and wrapped in shrink-wrap for field preservation.  
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Laboratory Methods 

Sample pieces were glued together and to plywood as necessary for stabilization and 

surfaced using appropriate combinations of band saw, power planer, belt sander, and hand 

sanding until cell structure in individual rings became visible using a binocular microscope. 

Each sample was independently cross-dated and cross-checked, by a minimum of two analysts 

using a combination of locally and regionally-developed master ring-width chronologies 

(skeleton plots) and lists of marker (narrow) years (Stokes and Smiley 1968). Specimens that 

could not be clearly cross-dated were excluded from further analysis. Fire scars that could not 

be dated with annual accuracy and injuries of questionable causation were also excluded.  

Intra-ring position of each fire scar was recorded as early, middle, and late early-wood; 

late-wood; ring-boundary; or unknown. Ring-boundary scars can result from either late season 

fires that occur after ring growth is complete or early season fires before ring growth is 

initiated. By convention, ring-boundary scars are assigned to the following year (early-season 

fire) in the southwest United States (Baisan and Swetnam 1990) and to the preceding year 

(late-season fire) at northern latitudes (Heyerdahl et al. 2001; Schmidt et al. 2002) based upon 

the seasonality of modern fires and the relative abundance of early-wood and late-wood scars 

in fire-scarred specimens. The intermediate geographic position of these study sites suggests 

the need for caution before adopting either of these conventions as a rule. Therefore, fire years 

for ring-boundary scars were assigned to pre-boundary years when evidence of a late season 

fire (late early-wood or late-wood scar) in that year was found in at least one tree from the 

study area and similarly to the post-boundary year when evidence of an early season fire (early 

or middle early-wood scar) was collected from the study area for the same year. Based upon 

results from a pilot study (Kitchen and McArthur 2003), fire year was assigned to the post-
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boundary year (Southwest convention) when fire year could not be conclusively determined 

using these criteria. Fire seasonality was classified as unknown when it could not be accurately 

determined due to narrowness of rings or eroded fire scar surfaces related to subsequent fire, 

rot, or the presence of insect galleries.  

 Recording years were assigned to each tree from the date of the first injury to the last 

year where the scar surface remained intact. Years were excluded as recording years if the ring 

structure indicated that the area of injury had healed over completely (common for very young 

trees with rapid growth rates) or had been burnt-off or otherwise damaged or lost to the point 

that evidence of potential fire scars would likely be missing.  

A uniform period of analysis (POA) from 1650 to 1850 was selected after all samples 

had been dated to facilitate across-site comparisons (Fig. 1.2). All fire count and fire interval 

statistics considered here apply to this 201-year time frame only. Trees that did not have at 

least one fire or a minimum of 50 years as a recording tree (e.g. 1650 to 1699) during the POA 

were excluded from further analysis.  

 Sample tree locations were plotted on site maps using UTM coordinates. One to three 

sets of six sample areas each were located on each site map for a total of eight sets. Sample 

areas were circular and nested with radii of 20, 40, 80, 160, 320, and 640 m resulting in 

corresponding areas of approximately ⅛, ½, 2, 8, 32, and 128 ha. The ⅛-ha sample areas were 

positioned first on site maps within areas of relatively high sample tree density and include 

clusters of 2 to 10 sample trees with multiple fire scars corresponding to the POA. Larger 

sample areas were then positioned to include all trees located in smaller sample areas assigned 

to the same nested series and the maximum possible number of additional sample trees on the 
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study site regardless of topographic variation. Six additional nested pairs of ⅛ and ½-ha 

sample areas were selected for a more complete evaluation of composite chronologies 

generated from these smaller topographic units.  

Fire totals corresponding to the POA were determined for each tree and sample area. I 

identified ‘best’ trees as those individual trees within each sample area with the most fires 

recorded during the POA. I computed composite fire chronologies and interval statistics for 

each sample area using program FHX2 (Grissino-Mayer 2001). Single-tree mean fire interval 

(MFI) was computed for all sample trees with two or more fire events during the POA. 

Composite interval statistics include MFI and Weibull Median Probability Interval (WMPI). 

WMPI is the estimated interval at which there is a 50% probability of a longer (or shorter) 

interval, based upon the population of intervals analyzed and is considered more appropriate 

than MFI as a measure of central tendency in fire frequency data due to non-normal 

distribution of intervals around the mean (Swetnam and Baisan 1996, Grissino-Mayer 1999). 

When fire interval data are normally distributed then MFI and WMPI are the same. Although 

MFI and WMPI are both reported, I report MFI for discussions of fire frequency here because 

it is the measure of fire frequency most consistently reported in the literature (Van Horne and 

Fulé 2006; Baker and Ehle 2001). I did not test for statistical significance of differences among 

means because of spatial autocorrelation and lack of independence in the sampling design (Van 

Horne and Fulé 2006). 
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Results 

One to several fire-scarred samples was secured from each of 214 trees. Of these, 

samples for three trees could not be cross-dated and the sample for one was lost. Chronologies 

for 30 of the remaining trees did not meet the POA criteria and were not included in this 

analysis leaving a total of 180 study trees from the four study sites (Table 1.1). Tree species 

were 151 ponderosa pine, 12 limber pine, eight Douglas-fir, seven white fir, and two Rocky 

Mountain juniper sampled as 62 live trees, 46 stumps, 48 snags, and 24 logs. Sample depth 

varied among study sites through time (Fig 1.3). Trees from LAW and FRI tended to be older 

with earlier first fire dates (Figs. 1.2 and 1.3). Seventy-nine percent of FRI and 45% of LAW 

trees were recording at the beginning of the POA (1650) while only 6% of BMC trees were 

recording by this date (Fig. 1.3). No BWA trees were in recording status until 1694. At the end 

of the POA the proportion of sample trees per site still in recording status varied from 60 to 

83%. 

Each site experienced numerous fires during the POA (Fig. 1.2) with a mean of 44 fire 

years per site (Table 1.1), representing 22% of all possible years. Across all sites, the mean 

length of the single-tree recording period was 139 years. Among all trees, the number of fires 

per tree during the POA varied from 0 (recording for at least 50 years but no fire scars during 

POA) to 12 with a mean of 3.8 fires. Mean single-tree MFI across all sites was 35.4 years. On 

average, more fire scars and shorter fire intervals were observed on trees sampled at BMC and 

BWA than from those sampled at LAW and FRI. 

Total tree and fire numbers and fire interval statistics for composites records from the 

eight nested series and six additional nested pairs are listed in Tables 1.2 and 1.3, respectively. 
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Because MFI and WMPI values differed by less than 2 years in 50 of 60 paired comparisons, I 

considered them ecologically unimportant. Differences in numbers of POA-fire years from 

smallest to largest sample areas varied from 14 to 33 (Table 1.2) with a mean increase of 23 

fire years. Similarly, changes in MFI varied from -5.8 to -48.8 years with a mean change of -

17.1 years representing a 69% average decrease in the length of fire free intervals associated 

with increased sample area size. Tree and fire numbers and fire frequency statistics for the six 

nested pairs in Table 1.3 are within the range of those for the eight, ⅛ and ½-ha paired sample 

areas listed in Table 2, suggesting that all 14 pairs can be considered in a single group when 

evaluating variability in these smaller sample-area size classes. Variability in MFI was greatest 

for ⅛ and ½-ha sample areas and became incrementally smaller with increasing sample area 

size (Fig. 1.4). Comparisons in fire number and MFI between ⅛ and ½-ha sample areas reveal 

substantial increases in fire number (MFI decrease) associated with the ½-ha sample areas for 

some pairs but not others (Tables 1.2 and 1.3). In one case (LAW-2) the addition of a single 

sample tree with two new fire years resulted in an increase in MFI because the new fire years 

occurred later than the last fire in the ⅛-ha chronology, creating two new intervals, one of 

which was long enough to result in an increase in the composite MFI for the sample area.  

Commonality of fire record among closely-associated individual trees (inter-tree 

distance ≤ 40 m) varied considerably. When two such trees recorded multiple fires over the 

same time period, the proportion of recorded fire-years shared by both trees was typically 

between 50 and 100%. Lack of complete agreement was considered evidence of incomplete 

recording of fire events by one or both trees. Record completeness was improved by 

amalgamation of the fire records of closely associated trees into composite chronologies. 

Commonality among eight sets of closely associated composite records (maximum inter-tree 
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distance 75-140m) varied between 0 and ~60% and was not correlated with the number of trees 

or fires evaluated in each comparison (Table 1.4). 

Across all sites, ‘best’ trees for ½-ha sample areas recorded from three to 12 fires 

during the POA (Table 1.5). The best-tree mean was 72% of the composite for total fires in this 

sample-area size class. The mean number of fires recorded by single trees varied from 2.0 to 

7.6 across all ½-ha sample areas and represents 48% of the mean composite fire total. In 

general, the completeness of record from individual ‘best’ trees or single-tree means decreased 

as the number of fires in the composite increased (Fig. 1.5).  

 

Discussion 

A primary objective of this study was to identify an optimum spatial scale from which 

tree-ring based records of surface fire could be combined into composite records that could in 

turn be used as reasonable estimates of point fire chronologies. I assumed that this optimum 

spatial scale would fall within the size range of sample areas tested and that the methods used 

would produce evidence of both errors of omission and of false inclusion. This evidence could 

then be used to identify a spatial scale that would best balance the risks associated with the two 

sources of error.  

Errors of omission are most likely to occur when sample tree number is low. Sample 

tree number was ≤ 5 for 11 of 14, ⅛-ha sample areas and for 7 (50%) of the ½-ha sample areas 

(Tables 1.2 and 1.3) suggesting that evidence for errors of omission should be strongest for 

these small sample areas with the fewest trees. Subsequently, I expected an inverse relationship 

between tree number and MFI for these small sample areas. However, tree number to MFI 
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correlation values for ⅛ and ½-ha sample areas (Fig. 1.6a,b) were not significant (p≤0.05). The 

considerable scatter in MFI associated with low tree numbers implies that completeness of 

record was difficult to predict from tree number alone and that errors of omission were likely 

in some, but perhaps not in all cases. This point is reinforced by instances where composite 

MFI was reduced by as much as 45% after inclusion of the few trees located on the additional 

⅜ ha of the ½-ha sample areas (see Table 1.2; BWA-2 and Table 1.3; BMC-3 and 4, and FRI-

2). At the same time, composite MFI for ⅛ and ½-ha sample areas with as many as five 

additional trees differed by less than 2 years in six of 14 comparisons. I hypothesized that at 2 

ha, sample area size would be large enough that sample tree number (mean = 9) would be 

sufficient to minimize the risk for errors of omission. If this is true, then the probability of 

discovering more fire years (shorter MFI) on additional fire-scarred trees from within the 

sample area would be low. My hypothesis of the adequacy of 2-ha sample areas to reduce the 

risk of errors of omission is supported by the lack of correlation between tree number and MFI 

for the 2-ha sample areas (Fig. 1.6c). Stronger correlations between tree number and MFI for 8, 

32, and 128-ha sample areas (Fig. 1.6d-f) are unrelated to completeness of record at the point 

scale (errors of omission) but are instead an indication that years with novel small fires are 

added to the composite when more sample trees are added at the larger spatial scales (Falk and 

Swetnam 2003; Van Horne and Fulé 2006). Thus, with sample areas larger than 2 ha there is 

an unacceptable risk for errors of false inclusion in this study.  

Across the eight nested series, fire number differed ~2 to 11-fold and MFI differed ~2 

to 10-fold between the ⅛ and 128-ha sample areas (Table 1.2). The composite MFI to sample 

area size relationship was essentially linear for sample areas of 2 to 128 ha when plotted on a 

natural log scale (Fig 1.4), suggesting that, within this spatial range, aggregation of new fire 
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years proceeded at a relatively constant rate as the sample area expanded, as predicted by Falk 

and Swetnam (2003), and indirectly supports the idea that the optimal spatial scale was ≤ 2 ha 

in size. New trees or clusters of trees included in composite records as sample-area perimeter 

expanded typically lacked evidence of fire years common among trees located within short 

distances. Evidence from eight examples (Table 1.4) suggests that sample areas of ½ to 2 ha 

(diameter 80-160 m) are sufficiently large to result in errors of false inclusion. In summary, the 

risk for errors of omission when using the ⅛-ha sample areas was unacceptably high in many 

cases due to too few sample trees, however, I was not able to predict the acuteness of the risk 

from sample-tree number alone. Increased risk for errors of false inclusion was manifest at 

inter-sample distances as short as 80 m and was often excessive at spatial scales of about 2 ha. 

Thus, in the context of the topographically and vegetationally variable landscapes sampled in 

this study, a defensible approach for generating composite records as estimates of point MFI 

would be to include the greatest number of recording trees possible from sample areas limited 

to ~½ ha (40 m radius). An alternative approach would be to calculate fire interval statistics 

based upon two sample area scales (e.g. ⅛ and 2 ha) and use the results to bracket a range in 

the estimate of fire frequency (Baker and Ehle 2001). Additional research is needed to test 

these conclusions using existing or new data sets from other geographic settings.  

Analysis of spatial variability in fire frequency requires that the density and distribution 

of fire frequency estimates be sufficient to represent the landscape of interest. Fire-scarred tree 

distribution is typically uneven on many forested landscapes, restricting spatial representation 

by composite-based fire frequency estimates. Suitable fire-scarred trees are often too widely 

scattered for amalgamation into spatially-constrained estimates of point MFI. Public policy, 

resource limitation, and other circumstances can also make it inappropriate or infeasible to 
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sample at the intensity required to generate a representative array of point fire frequency 

estimates using the restricted-composite method. Defensible point fire frequency estimates 

based upon individual tree fire records may provide alternative measures of fire frequency 

when composite-based estimates are not possible or practical, and can be used to fill gaps on 

landscapes where composite-derived estimates are spatially limited.  

Because single-tree fire records have a high risk for errors of omission, single-tree 

metrics should be adjusted before application as estimates of point MFI. In this study the 

average single-tree fire number was 48% (range of 32 to 92%) of the ½-ha composite fire total, 

respectively (Table 1.5). Assuming similar sampling strategies, single-tree MFI values could 

converted to estimates of PMFI be adjusted using a ~0.5 multiplier as a correction factor to 

convert single-tree MFI values to estimates of point MFI. Alternatively, estimates might be 

bracketed between high and low values in recognition of the broad range in completeness-of-

record among single-tree means. High and low multipliers of ~0.3 and 0.9 might be 

appropriate based on this study. Thus a single-tree MFI of 35 years (overall mean for this 

study) could be adjusted to a single estimated value of 17.5 years or a bracketed estimated 

range of 10.5-31.5 years using the above multipliers.  

Because ‘best’ trees contain more complete records of fire than average single trees 

they represent a reduced risk for errors of omission. The mean and range for best-tree fire 

numbers were 72 and 47-100% of the ½-ha composite total (Table 1.5). These values serve as 

the basis for correction factors for this class of single-tree records. Thus a best-tree MFI of 25 

years converts to a point MFI estimate of 18 years (25 x 0.72) or an estimated range of 12-25 

(25 x 0.47-25 x 1.0) years. Although best-tree estimates have the advantage of reduced 

uncertainty in comparison to estimates based on single-tree means, their application may be 
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more limited. Problems stem from the difficulty in knowing what constitutes a ‘best’ tree and 

how to recognize it when it is not one of a group of sampled trees (best compared to what?). If 

the ‘best’ status is determined by comparison among a closely-associated group of trees that 

have already been sampled then a restricted-area (i.e. ½-ha) composite would usually be more 

appropriate. However, if the number of samples taken must be limited, considerable triage of 

candidate trees is possible through careful examination of wound surfaces prior to sampling, 

allowing the identification and sampling of probable ‘best’ trees in a field setting. Conversely, 

fire-scar records that might otherwise qualify as ‘best’ trees based upon the relative number of 

fires recorded, length of fire intervals or length of fire record are often isolated from other fire-

scarred trees that might be used for comparison. Lacking better defined criteria, these trees 

would have to be classified as ‘best’ trees based upon the judgment and experience of 

investigators or be treated without the increased precision afforded best-tree status. In either 

case, caution must be used when this approach is taken so that fire frequency estimates are 

restricted to the area in close proximity of sampled trees. Additional research is needed to 

determine how single-tree correction factors might vary with sampling strategy and 

biophysical setting. 

In conclusion, both spatially-constrained composite and single-tree fire histories have 

application in generating estimates of point fire frequency. The optimal spatial scale that 

balanced the competing risks associated with errors of omission with those of false inclusion in 

this study was relatively small at ~½ ha. Composite chronologies based upon multiple fire-

scarred trees and this sample area size are defensible as estimates of point MFI. Simple 

estimates or bracketed ranges of fire frequency based upon single-tree fire chronologies will 

allow greater spatial representation of fire frequency variability across heterogeneous 
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landscapes. This study proposes approaches to generating tree-ring-based estimates of fire 

frequency that are testable and open to refinement through additional research.  
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Table 1.1. Site summary information and single-tree fire statistics. 

 

Mean recording years per tree are the mean number of years from the period of analysis (1650 

to 1850) that individual trees were in recording status. Trees in recording status have recorded 

at least one fire, have an open scar surface, and tree-ring structure is sufficiently intact to detect 

fire scars where they occur. Single-tree fire records include mean fire interval (MFI) and range 

of MFI for all study trees from each site. 

 Mean 
Recording 
Years/Tree 

Single Tree Fire Record 

Site Total 
Trees 

Fire 
Years 

Mean 
fires/tree 

Fire number MFI MFI Range 

Min Max 

BMC 53 46 119.0 4.5 1 12 36.8 12.2-154.0 

BWA 25 35 124.1 6.2 3 12 20.6 12.9-40.3 

LAW 78 68 155.4 3.0 0 9 39.4 14.0-99.0 

FRI 24 26 148.2 2.7 0 7 47.4 17.0-156.0 
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Table 1.2. Composite tree, fire number and fire interval statistics for eight sample-area nested 

series.  

 

Interval statistics include: mean fire interval (MFI), Weibull Median Probability Interval 

(WMPI), and minimum and maximum intervals within the period of analysis (1650-1850). 

Site/ 
Nested 
series 

Sample 
area size 

(ha) 

Total number Composite Interval range (yrs) 

trees fire yrs MFI WMPI min max 

BMC-1 1/8 10 17 10.4 10.0 3 21 

1/2 15 18 9.8 9.2 2 21 

2 15 18 9.8 9.2 2 21 

8 22 29 6.4 5.5 1 19 

32 27 36 5.1 4.3 1 19 

128 37 41 4.5 3.8 1 19 

BMC-2 1/8 3 3 54.5  48 61 

1/2 6 4 44.7 45.0 25 61 

2 10 7 23.7 17.5 2 61 

8 11 8 20.3 15.6 2 61 

32 16 12 12.9 9.4 2 54 

128 37 33 5.7 4.9 1 19 
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Site/ 
Nested 
series 

Sample 
area size 

(ha) 

Total number Composite Interval range (yrs) 

trees fire yrs MFI WMPI min max 

BWA-1 1/8 6 15 10.1 9.9 4 19 

1/2 7 15 10.1 9.9 4 19 

2 10 20 7.7 7.0 1 19 

8 15 28 5.4 5.0 1 11 

32 23 32 4.7 4.4 1 11 

128 25 35 4.3 4.0 1 10 

BWA-2 1/8 4 10 14.9 14.4 2 25 

1/2 5 15 10.1 9.2 2 19 

2 7 15 10.1 9.2 2 19 

8 9 19 7.8 7.3 2 19 

32 22 30 5.1 4.6 1 13 

128 25 35 4.3 4.0 1 10 

LAW-1 1/8 7 11 15.2 14.4 2 23 

1/2 11 11 15.2 14.4 2 23 

2 14 14 13.7 12.3 2 26 

8 18 17 11.1 9.5 2 26 

32 21 22 8.5 7.3 2 26 

128 37 35 5.2 4.1 1 23 
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Site/ 
Nested 
series 

Sample 
area size 

(ha) 

Total number Composite Interval range (yrs) 

trees fire yrs MFI WMPI min max 

LAW-2 1/8 2 5 23.5 23.8 14 32 

1/2 3 7 30.3 26.8 11 77 

2 4 14 14.0 13.6 6 31 

8 4 14 14.0 13.6 6 31 

32 11 23 8.3 7.6 1 17 

128 22 38 5.1 4.6 1 11 

LAW-3 1/8 2 5 25.5 25.4 15 36 

1/2 3 7 24.3 24.3 15 36 

2 5 9 18.3 17.2 3 35 

8 7 10 16.2 14.4 2 33 

32 13 12 14.5 12.9 2 33 

128 23 22 7.9 6.5 1 27 

FRI-1 1/8 2 6 29.0 28.0 20 56 

1/2 2 6 29.0 28.0 20 56 

2 6 10 17.0 15.8 6 36 

8 9 16 12.1 10.8 2 29 

32 12 18 10.7 9 1 29 

128 17 20 9.6 8.1 1 29 
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Table 1.3. Composite tree, fire and fire interval statistics for six sample-area nested pairs.  

 

Interval statistics include: mean fire interval (MFI), Weibull Median Probability Interval 

(WMPI), and minimum and maximum intervals within the period of analysis (1650-1850). 

Site/ 
Nested 
series 

Sample 
area size 

(ha) 

Total number Composite Interval range (yrs) 

trees fire yrs MFI WMPI min max 

BMC-3 1/8 3 12 12.7 12.5 5 24 

1/2 5 16 9.3 8.7 2 24 

BMC-4 1/8 4 10 14.7 11.9 1 28 

1/2 6 14 11.5 9.2 1 28 

LAW-4 1/8 2 4 31.0 31.7 24 35 

1/2 4 4 31.0 31.7 24 35 

LAW-5 1/8 4 4 42.0 39.9 16 69 

1/2 6 5 31.5 331.5 16 44 

LAW-6 1/8 2 12 15.8 15.9 8 25 

1/2 3 14 12.4 11.2 1 25 

FRI-2 1/8 4 6 25.6 25.2 15 40 

1/2 7 10 14.2 11.8 2 36 
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Table 1.4. Composite fire-year commonality between proximal clusters of fire-scarred trees. 

 

Total trees and fire numbers for eight pairs of fire-scarred tree clusters indicating the number 

of trees and fire years in each cluster. Number of common fires is the total fire-years in the 

POA shared by both members of a set. Cluster area was ≤ 1/2 ha. Maximum inter-tree distance 

is the greatest distance between any two trees from each paired cluster.  

Site-Series  
ID 

Tree number Maximum 
inter-tree 

distance (m) 

Fire number Number of 
common 

fires 
Cluster Cluster 

A B A B 

BMC-2 6 4 115 4 5 2 

BMC-4 4 2 90 10 7 3 

BWA-1 7 3 140 15 13 8 

BWA-2 4 3 120 10 8 3 

LAW-1 11 3 140 11 4 1 

LAW-2 3 1 100 7 9 2 

FRI-1 2 4 115 6 5 1 

FRI-2 4 3 75 7 4 0 
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Table 1.5. Individual tree and composite (½-ha sample area) fire number comparisons. 

 

The ‘best’ tree is that tree from among those assigned to each composite with the greatest 

number of fires recorded for the period of analysis (1650-1850). Single-tree mean is the mean 

number of fires per tree of those assigned to each composite.  

Site-Series 
ID 

Composite Best tree Single tree 
mean 

 ------------------ Fire number ------------------ 

BMC-1 18 12 6.1 

BMC-2 4 3 2.0 

BMC-3 16 8 7.6 

BMC-4 14 8 4.5 

BWA-1 15 11 7.1 

BWA-2 15 7 5.0 

LAW-1 11 9 3.7 

LAW-2 7 5 3.7 

LAW-3 7 7 5.7 

LAW-4 4 4 2.5 

LAW-5 5 4 2.7 

LAW-6 14 9 6.7 
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Site-Series 
ID 

Composite Best tree Single tree 
mean 

 ------------------ Fire number ------------------ 

FRI-1 6 6 5.5 

FRI-2 10 6 3.7 

mean 9.9 7.1 4.8 
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Figure 1.1. Location of four fire history study sites within the eastern Great Basin (USA). Sites are; 

Burnt Mill Canyon (BMC) and Big Wash (BWA) on the Snake Range,  Lawson Cove (LAW) on the 

Wah Wah Range, and Frisco Peak (FRI) on the San Francisco Range. 
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Figure 1.2. Fire history chronologies for four eastern Great Basin fire history study sites. Sites are 

arranged from top to bottom; Burnt Mill Canyon (BMC) and Big Wash (BWA) from the Snake Range, 

Lawson Cove (LAW) from the Wah Wah Range, and Frisco Peak (FRI) from the San Francisco Range. 

Horizontal lines represent individual sample trees. Solid lines indicate trees are in recording status. 

Short vertical lines are placed to indicate years with fire scars for each individual tree. Shading demarks 

the 1650-1850 period of analysis. 
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Figure 1.3. Cumulative number of trees in recording status at each of the four study sites (BMC = 

Burnt Mill Canyon; BWA = Big Wash; LAW = Lawson Cove; FRI = Frisco Peak) during the period of 

analysis (1650-1850). 
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Figure 1.4. Relationship between sample area size and composite MFI across the eight nested series. 

Error bars = one standard deviation. Sample size area is plotted on the X axis using a log normal scale. 
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Figure 1.5. Relationship between single-tree mean (inverted triangle) and ‘best’ tree (circles) total fire 

numbers and ½-ha composite fire numbers. Proximity to the diagonal line (representative of when 

single tree and composite totals are equal) is an indication of the relative completeness of the fire record 

of individual tree chronologies. 
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Figure 1.6. The relationship between MFI and sample tree number within each of six sample area size 

classes using eight nested series and six nested pairs (⅛ and ½-ha sample areas only).  
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CHAPTER 2 – CLIMATE AND HUMAN INFLUENCES ON HISTORICAL FIRES (1400-1900) IN THE 
EASTERN GREAT BASIN (USA) 

 

Abstract: High fire activity in western North America is associated in historic and modern 

records with drought, which is influenced by Pacific Ocean surface sea temperature anomalies 

and associated atmospheric circulation patterns. Drought and increased fire activity are 

associated with negative El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation 

(PDO) phases in the Southwest and with positive phases in the Northwest. Historic and modern 

fire seasonality patterns also differ geographically.  My objectives were to infer climate effects 

on historic fire patterns for 10 sites in the eastern Great Basin, a dry region geographically 

transitional between the Southwest and Northwest, and to identify evidence of a human signal 

in reconstructed fire histories. I constructed surface fire chronologies from 2,173 fire scars 

associated with 555 trees and 651 fire events. I identified 67 regional and 247 local fire years 

and 187 no-fire years from 1400 to 1900 C.E. Fire seasonality varied among sites and was 

bimodal across sites with both early- and late-season fires more numerous than mid-season 

fires. This pattern is distinct from that observed for modern lightning-caused fires which peak 

in mid-season, suggesting a human influence on historical ignition patterns. I compared fire 

chronologies with tree-ring reconstructions of summer temperature, the Palmer Drought 

Severity Index (PDSI), ENSO, and PDO. Fires were significantly more common during 

drought (negative PDSI) for four sites and for regional fire years. Conditions were significantly 

wetter 2 years prior to regional fire years and drier during the 4 years prior to no-fire years, 

providing evidence of the effect of antecedent precipitation (or the lack thereof) on the 

probability of fire occurrence. Regional fire years were associated with negative ENSO and 

positive-to-negative PDO transitions while no-fire years were associated with positive ENSO 
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and negative to positive PDO. Local fire years occurred under a broad range of climate 

conditions. Results suggest that climate was an important synchronizer of fire at the regional 

scale and that locally fire regimes were the product of climate-regulated fuels and some 

combination of human and lightning ignition patterns that likely varied through time and space.  

Key Words: anthropogenic fire; climate-fire interactions; El Niño-Southern Oscillation; fire 

history; fire seasonality; Great Basin; Pacific Decadal Oscillation; Palmer Drought Severity 

Index 

 

Introduction 

Climate influences fire probability and pattern through its effect on the accumulation 

and conditioning of fuels. Analysis of multi-century tree-ring based fire chronologies from the 

Southwest (Swetnam and Betancourt 1990, 1998; Brown and Wu 2005; Margolis and Balmat 

2009), Central Rockies (Donnegan et al. 2001; Grissino-Mayer et al. 2004; Schoennagel et al. 

2005; Sibold and Veblen 2006; Sherriff and Veblen 2008;), Northern Rockies (Heyerdahl et al. 

2008a), Black Hills (Brown 2006), Northwest (Heyerdahl et al. 2002; Norman and Taylor 

2003; Hessl et al. 2004; Heyerdahl et al. 2008b; Taylor et al. 2008), Pacific Southwest 

(Swetnam 1993; Stevens and Collins 2004; Taylor and Beaty 2005; Skinner et al. 2008), and 

Intermountain highlands (Brown et al. 2008) and of written records of modern, regional fire 

patterns (Collins et al. 2006; Westerling et al. 2006; Morgan et al. 2008) provide consistent 

documentation of the link between drought and increased fire occurrence in western North 

America. In dry forest types, antecedent wet conditions may increase the probability for major 

fire years by increasing the production and continuity of fine fuels needed for surface fire 
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spread (Donnegan et al. 2001; Sheriff and Veblen 2008; Brown et al. 2008; Margolis and 

Balmat 2009). Historically, regional wet-dry cycles synchronized fire activity at parallel spatial 

scales (Donnigan et al. 2001; Kitzberger et al. 2001, 2007; Grissino-Mayer et al. 2004; 

Heyerdahl et al. 2008a,b; Morgan et al. 2008; Skinner et al. 2008; Taylor et al. 2008).  

Climate variability in western North America and associated patterns of fire occurrence 

have been coupled to fluctuations in Pacific Ocean sea surface temperatures (SST) including 

the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO; 

Westerling and Swetnam 2003; Kitzberger et al. 2007). In the Southwest negative phases of 

ENSO and PDO result in relatively dry conditions and high fire occurrence and positive phases 

result in wet conditions and low fire occurrence (Swetnam and Betancourt 1990, 1998; 

Margolis and Balmat 2009). The effects of one or both of these climate patterns appear to 

extend into the Central Rockies (Donnegan et al 2001; Sherriff and Veblen 2008), Colorado 

Plateau (Brown et al. 2008), and as far south as Baja California (Skinner et al. 2008). ENSO 

and PDO effects on precipitation and fire activity in the Northwest tend to be opposite those of 

the Southwest; negative phases are wet and positive phases are dry, which in turn favor higher 

than average fire activity (Heyerdahl et al 2002, 2008b). When ENSO and PDO phases are in 

sync (+/+ or −/−) their effects on climate and fire activity are magnified (Gershunov et al. 

1999; McCabe and Dettinger 1999; Brown et al. 2008; Heyerdahl et al. 2008b; Skinner et al. 

2008). It has been suggested that the geographic fulcrum that separates these opposing climate-

fire modes lies at ~40° N latitude (Mock 1996; Dettinger et al. 1998; Brown and Comrie 2004; 

Schoennagel et al. 2005; Brown et al. 2008). An understanding of the nature of past and 

present climate-fire relationships on landscapes proximal to this alleged transition zone is 
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lacking and may be critical for assessing geo-spatial variation in fire patterns under changing 

climate conditions.  

Fire is also regulated by the frequency and timing of ignitions. Successful ignitions are 

generally the result of dry lightning storms or human activities. Teasing out the relative 

importance of each in historic fire chronologies can be difficult where the probability of 

ignition is high from both sources (Allen 2002: Griffin 2002). Allen (2002) proposed that 

indirect evidence of human influence on historic fire regimes might come in the form of 

unexpected patterns in fire frequency or seasonality, or in decreased climate-fire correlations.  

My objectives were to: (1) infer climate drivers of historic surface fires for eastern 

Great Basin forests located south of, but in close proximity to 40˚ N latitude, (2) assess 

temporal and spatial variability in fire seasonality and occurrence and (3) identify evidence of a 

possible human footprint on past fire regimes. I explore relationships among multi-century, 

tree-ring derived fire chronologies and existing tree-ring based indices of regional climate that 

capture annual variability in summer temperature and drought as well as large scale climate 

patterns that have been shown to fluctuate over longer time periods (ENSO and PDO). I infer 

that differences between historic fire seasonality patterns and those observed in modern fire 

records or predicted from climate and biogeographic settings constitute indirect evidence for 

human influence on fire regimes (Allen 2002; Williams 2004).  

 

Study Area 

Biogeographic setting 
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 The Great Basin encompasses the northern, elevated section of the Basin and Range 

Province of western North American and includes most of the state of Nevada and significant 

portions of Utah, Idaho, California, and Oregon. The region is characterized by over 100 

relatively narrow mountain ranges with a generally north/south orientation and separated by 

broad, internally-drained valleys. The climate is generally dry due to rain shadow effects of the 

Sierra Nevada and Cascade Ranges to the west and Rocky Mountains to the east (Peterson 

1994). Seasonality of precipitation varies along a geographic gradient with the importance of 

winter and spring Pacific frontal storms decreasing and summer monsoon increasing from 

north to south and from west to east. Six mountain ranges are represented in this study 

including the Tushar Mountains on the eastern rim of the Great Basin and San Francisco, Wah 

Wah, Snake, House and Deep Creek Ranges extending to the north and west (Fig. 2.1). The 

study area covers approximately 1.7 degrees latitude and 1.9 degrees longitude and is 

immediately south of 40° N (Table 2.1), the proposed pivot point for the dipole pattern of 

droughts and pluvials associated with ENSO and PDO variability.  

Eastern Great Basin plant communities are stratified into more or less distinct zones 

across gradients in elevation reflecting parallel gradients in temperature and precipitation 

(Holmgren 1972; Harper et al. 1978). Zonation is further modified by slope, aspect, and 

substrate. Sagebrush-grass communities occupy a broad zone from valley floors to dry mid-

elevation sites. Woodlands of singleleaf (Pinus monophylla) or Colorado pinyon (P. edulis) 

and Utah and Rocky Mountain junipers (Juniperus osteosperma; J. scopulorum) occupy a mid-

elevation thermal belt that is superimposed more or less through the center of the sagebrush 

(Artemisia spp.) zone and have expanded up and down-slope over the last century (Tausch et 

al. 1981). Stands of mountain mahogany (Cercocarpus ledifolius) and other tall shrubs are 
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most abundant at mid-elevations and are sometimes expansive. Mixed and monotypic stands of 

ponderosa pine (P. ponderosa), white fir (Abies concolor), and/or Douglas fir (Pseudotsuga 

menziesii) occupy mid-elevations and transition to limber (P. flexilis) or bristlecone pine (P. 

longaeva) and sometimes Engelmann spruce (Picea engelmannii) with increasing elevation. 

Quaking aspen (Populus tremuloides) is often present but is less abundant than in mountains 

immediately east of the Great Basin. A treeless alpine zone is found on the highest mountains 

such as the Tushar, Snake, and Deep Creek Ranges. As a member of the generally more 

massive and mesic central Utah highlands, vegetation of the Tushar Mountains differs from 

that of the other ranges included in this study with the addition of subalpine fir (Abies 

lasiocarpa), the greater abundance of quaking aspen, and the diminished importance of high-

elevation pine (scattered limber pine only). Ponderosa pine, a key species for developing multi-

century fire histories, is present on all six study ranges but decreases in abundance from south 

to north. 

Human occupation 

The Great Basin has been inhabited by humans for at least 13,000 years. The study area 

encompasses a region where, immediately prior to Euro-American settlement, Western 

Shoshone, Ute, and Southern Paiute cultures converged in what is now western Utah (Simms 

2008). The mobile hunter-gatherer economies practiced by these Numic-speaking inhabitants 

contrast with the more sedentary, semi-agricultural model of the Fremont that appears to have 

dominated the area from 900 to 1300 C.E. (Simms 2008). For millennia before the Fremont, 

Archaic foraging strategies included the desert-mountain settlement pattern with wide-ranging 

seasonal migrations, and the less-mobile wetland settlement pattern in which economies 

benefited from resource-rich environments such as those found at lake margins and marshes 
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(Janetski and Madsen 1990; Simms 2008). Undoubtedly, fire had many useful applications and 

was an essential tool for manipulating natural environments (Williams 2004) as well as an 

accidental consequence of occupation (Kay 2007) throughout this long pre-history. However, 

knowledge regarding specific practices used in this region and how they or their impacts on 

vegetation might have varied through space and time is lacking (Griffin 2002). Steward’s 

(1938) ethnographic studies shed some light on the uses of fire by Numic inhabitants at about 

the time of Euro-American settlement. The purposes for setting fire given by his informants 

were generalized by Griffin (2002) into three categories typical of hunter-forager societies 

namely: (1) to increase the quantity and quality of useful vegetation, (2) to improve or maintain 

habitat for important animals, and (3) to drive game in hunting. Numerous human-set fires on 

the eastern edge of the Great Basin were observed and recorded in the fall of 1776 by the 

Dominguez-Escalante expedition which passed through the eastern margins of the Great Basin 

while searching for an alternative route from Santa Fe to California (Chavez and Warner 

1976).  In spite of these and other records (see Griffin 2002), the relative importance of human-

set fires on the historic fire regimes of the eastern Great Basin and the plant communities they 

structured is not well understood and remains a point of scientific disagreement. 

As with other parts of the continent, the first impacts of European colonization on 

Native Americans in the eastern Great Basin were likely from diseases to which they had little 

resistance. Elsewhere, repeated epidemics in the 1500s to 1700s reduced Native American 

populations by 70% or more (Thornton 1987; Reff 1991; Butzer 1992). Evidence for a 

disruption in human fire ignition patterns associated with such drastic depopulation might be 

anticipated in the Great Basin.  
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Euro-American settlement within the study area began with the arrival of Mormon 

settlers in the 1850s (Young et al. 1979). Settlements were small and widely dispersed, 

especially west of the better-watered valleys located adjacent to mountains forming the eastern 

rim of the Great Basin. Farming and ranching were the principal economic activities of early 

settlers. Horses, cattle, and sheep were introduced at the time of settlement. Regionally, 

stocking rates were generally low until the 1880s when the number of sheep trailed to the area 

for winter-spring grazing increased dramatically and remained high for 50+ years (Murdock 

and Welsh 1971). Large numbers of domestic livestock impacted surface fire regimes 

throughout the western United States by reducing the quantity and continuity of fine fuels 

needed for fire spread (Pyne 1982; Mandany and West 1983; Covington and Moore 1994). The 

timing and intensity of livestock-induced impacts on fire regimes within the study area likely 

varied among and within mountain ranges in response to such factors as surface water 

availability, ruggedness of terrain, and trailing distance. Preferred tree species were selectively 

cut by early settlers for fuel-wood and for general construction needs.  In subsequent decades 

mining operations on most ranges in the area increased demands for water, lumber, and other 

natural resources. Today, most of the mines are closed and the regional population remains 

sparse. The need for fire prevention was debated until 1910 when the federal government 

adopted an aggressive policy of fire suppression on all public lands (Pyne 1982; Keane et al. 

2002). Similar to the effects of livestock, the application of this policy within the sparsely 

inhabited and undervalued study area must have varied considerably and may have been 

essentially non-existent on remote mountain ranges before post-World War II mechanization 

extended agency capacity to fight fire on most landscapes. 
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Methods 

Historical surface fire chronologies 

Fire-scar-based fire histories were reconstructed for 10 sites from six study ranges with 

a combined range in elevation of 1,035 m (Fig. 2.1; Table 2.1). A systematic sampling strategy 

using plots spaced at 500-m intervals was used to sample across the range of elevation within 

small watersheds at RBC, INC, BMC, and LAW study sites (see Brown et al. 2008). I 

employed a targeted sampling approach for the remaining sites (Van Horne and Fulé 2006). 

Sample tree number and sample area size varied among sites (Table 2.1). Species, condition 

(live, snag, stump, or log), and elevation were noted for each sample tree. Universal Transverse 

Mercator (UTM) coordinates were determined for sample trees using hand-held GPS units 

accurate to within 15 m. One or more cross-sections were removed from scarred surfaces (cat-

faces) of fire-scarred trees using chainsaws and standard methods (Arno and Sneck 1977). 

Although trees with multiple scars were selected preferentially, numerous trees with 1 to 3 

scars were also sampled. 

Sample pieces were stabilized with glue and plywood as needed and surfaced using 

appropriate combinations of band saw, power planer, belt sanders and hand sanding until cell 

structure was discernible using a binocular microscope. Each sample was independently cross-

dated by a minimum of two analysts using a combination of locally and regionally-developed 

master ring-width chronologies (skeleton plots) and lists of marker (narrow) years (Stokes and 

Smiley 1968). Specimens that could not be clearly dated and fire scars that could not be dated 

with annual accuracy were excluded from the analysis.  

Fire seasonality 
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I determined a calendar year for each fire scar and assigned each an intra-ring [i.e. early 

(EE), middle (ME), late early-wood (LE) or late-wood (LW)] or inter-ring [ring boundary 

(RB)] position when fire-scar condition permitted (Dieterich and Swetnam 1984). Seasonality 

of fire scars associated with very narrow rings or eroded scar-ring structure was classified as 

unknown (UNK). Ring-boundary scars are caused by either late season fires that occur after 

ring growth is complete or by early season fires that burn before ring growth is initiated. 

Typically, these inter-ring scars are assigned to the following year in the southwest United 

States and to the preceding year at more northern latitudes based upon the seasonality of 

modern fires and the relative abundance of early-wood and late-wood scars in fire-scarred 

specimens in historic fire studies (Schmidt et al. 2002, Kitchen and McArthur 2003). The 

intermediate geographic position of these study sites suggests caution is warranted before 

adopting either convention as a rule. First, I assigned inter-ring scars to preceding years when 

evidence of a late season fire (LE or LW scar) in that year was found in at least one tree from 

the study area, and similarly to the post-boundary year when evidence of an early season fire 

(EE or ME scar) was collected from the study area for the same year. Based upon results from 

a pilot study (Kitchen and McArthur 2003), fire year was assigned to the post-boundary year 

(Southwest convention) when fire-year could not be conclusively determined using these 

criteria.  

I assigned seasonality as unknown, dormant, early, middle, late, or multi-season for 

each fire event (site by year combination) using predetermined classification criteria that 

assess, as a group, the ring positions of the complete list of fire scars associated with each fire 

event (Table 2.2). Fire events classified as multi-season always included EE and LE or LW fire 

scars and generally also included ME and RB fire scars (Baisan and Swetnam 1990; Grissino-
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Mayer et al. 2004). This classification was intended to capture fires that might have burned 

through the majority of the fire season across the sample area. Fire seasonality through time 

was assessed for all sites combined by comparing the proportion of fire events in each seasonal 

class among 50-year bins from 1400 to 1900. 

Climate effects on fire occurrence 

All years with at least one assigned fire scar were composited into a single fire 

chronology for each site, using program FHX2 (Grissino-Mayer 2001). It is common practice 

to require a minimum of two trees per site with evidence of fire for a year to be considered a 

fire year based upon the assumed greater possibility that single injuries within a year may not 

have been fire-induced (e.g. tree-fall, lightning; see Brown and Wu 2005; Brown 2006; Brown 

et al. 2008). With the incomplete sampling strategies employed in this study there was a 

similar likelihood of capturing either one or two fire-scars per year among all sampled trees per 

site, making the arbitrary designation of a two-scar threshold for fire-year classification 

difficult to defend. My decision to include single-tree fire years in this study is further justified 

because a large proportion (76%) of the scars in question were imbedded (not the first) within 

scar series on individual fire recording trees, suggesting a high probability that they were 

indeed fire-caused. A site was considered to be a recording site when a least one tree from the 

site was in recording status. A tree was in recording status when it had experienced at least one 

fire, the post-fire scar surface was sufficiently intact to detect subsequent fire scars and the cat-

face remained open subjecting the tree to a high probability for injury from new fire events. 

Low- and high-filter regional fire chronologies were created from the individual site 

chronologies representing those fire years in which fire was recorded on at least 33 or 50% of 

recording sites, respectively. Local fire years, or years when fire was recorded on < 33% of 
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recording sites, and years with no fire scars for any of the 10 sites (no-fire years) were also 

tabulated. 

 I compared individual site and regional fire chronologies to four indices of climate 

variability derived from independent, tree-ring reconstructions of climate variables to assess 

fire-climate relationships. These indices include: (1) warm-season temperature (April-

September) at one grid point near the study area (grid point 17; Briffa et al. 1992); (2) Palmer 

Drought Severity Index (PDSI), a measure of June through August drought, averaged from 

four grid points closely associated with the study area (grid points 71, 72, 86, and 87; Cook et 

al. 2004); (3) winter (December through February) NINO3, an index of ENSO variability that 

fluctuates on a sub-decadal (3-8 year) scale (D΄Arrigo et al. 2005); and (4) Pacific Decadal 

Oscillation (PDO) an index of annual north Pacific temperature patterns that vary at decadal 

scales (McDonald and Case 2005). I used superposed epoch analysis (SEA) to compare 

average annual climate conditions to climate conditions associated with fire and non-fire years 

in the regional and individual site fire-climate analyses, and to conditions prior to (5 years) and 

following (2 years, Temperature, PDSI and NINO3 and 3 years PDO) the event year (Swetnam 

1993; Swetnam and Baisan 1996). I identified significance of departures at two levels based 

upon 95 and 99% confidence intervals determined by bootstrapping techniques (1000 trials; 

Grissino-Mayer 2001). 

 

Results 

Between four and 167 sampled trees per site were cross-dated for a total of 555 fire-

scarred trees from the 10 sites (Table 2.1). Although datable scars were sampled from 11 tree 
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species, most were taken from ponderosa pine (58%), Douglas-fir (15%), or limber pine (9%). 

These same species typically had the most scars per tree, with one ponderosa pine stump from 

the ROS site recording 35 fire dates. Dead trees (snags, logs and stumps) made up 64% of 

cross-dated trees.  

The earliest and latest fire dates were 1205 and 1960. Because five of the sites (BMC, 

LAW, FRI, INC, and ROS) were in recording status by the year 1400 (Fig 2.2.), I selected this 

date as the fire-climate analysis starting point for these sites and for the regional analysis. More 

recent dates were selected as starting points for the other individual sites (RBC 1500; SWA 

and SIN 1550; TOM and BWA 1700) corresponding to dates when fire records for each site 

began. The end year for all fire-climate analyses was 1900 corresponding to a drop-off in fire 

occurrence at most sites in the mid to late 1800s (Fig. 2.2). Between 1400 and 1900, I 

identified a total of 342 fire years with 67 and 24 regional fire years, respectively (Table 2.3; 

Fig. 2.2) using the low- and high-level filters. Regionally, low- and high-filter mean fire 

intervals were 9 and 26 years with a 1-year minimum interval and 33- and 109-year maximum 

intervals. There were 247 local fire years and 187 no-fire years.  

Fire seasonality 

Ring position was assigned to 1,691 of the 2,173 dated fire scars. Three sites dominated 

the region-wide fire scar totals due to the greater number of fire-scarred trees sampled at these 

sites (Table 2.1; Fig. 2.3a). Ring boundary scars dominated fire-scar ring positions for eight 

sites (range 46-68%) and accounted for 27% of scar positions for the other two (INC and RBC; 

Fig 2.3a). Across all sites EE scars accounted for 3 (SIN) to 26% (INC) and ME scars 

accounted for 7 (FRI) to 30% (INC) of assigned fire-scar ring positions. Late season scars (LE 
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and LW combined) contributed between 8 (BWA) and 32% (RBC) of totals. Overall, no clear 

among-site patterns were apparent in the seasonal distribution of fire scars. Regionally, nearly 

half of the scars assigned ring positions were assigned an RB position with the EE, ME, and 

LE approximately equal to each other and double the number of LW scars (Fig. 2.3b). 

 The among-site inequality in the regional analysis is partially overcome by switching 

the focus from fire scars to fire events (compare Figs. 2.3a and 2.4a). Unknown seasonality 

was assigned to 92 of 651 fire events (Fig. 2.4b). At least one RB scar was associated with 59, 

44, and 71% of early-, late-, and multi-season fire events, respectively. I observed that the 

proportion of fire events classified as dormant (RB scars only) ranged from 11 (RBC) to 62% 

(BWA) among sites (Fig. 2.4a) and, excluding unknowns, represents just over one in three 

fires, regionally (Fig. 2.4b). Among sites, early-season fires ranged from 6 (SIN) to 27% (INC) 

and middle-season fires ranged from 5 (BWA) to 27% (INC). Taken together they account for 

another one in three fires at the regional scale. Late season fires varied from 15 (BWA) to 48% 

(RBC) and with multi-season fires account for the final ⅓ of fire events across the region. 

Multi-season fires were only detected on the five largest sites. As with the fire scar seasonality 

analysis, no clear geographic patterns (e.g. north to south) emerged from the analysis of fire 

event seasonality although site differences are apparent. Results demonstrate a somewhat 

balanced importance between early and late season fires across the region (Fig. 2.4a and b), 

and the more or less equal likelihood that RB scars would be formed from both early or late 

fire events.  

Dormant-season fire events as a percentage of all fires with assigned seasonality 

(unknowns excluded) were most common from 1450-1549 and from 1850-1899 (~50%) and 

only dropped below 30% (23%) during the 1650-1699 50-year bin. If I further restrict the 
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analysis to exclude dormant-season events, then early-season fires were most common from 

1400-1499 (~47%), least common from 1600-1649 (16%) and ranged from 24 to 36% for the 

balance of the analysis period (Fig. 2.5). Middle-season fires ranged from 43% (1450-1499) to 

19% (1750-1799) with a 500-yr mean of 27%. Late-season fires were least common during the 

1400s (~20%), increased during the 1500s (~30%), peaked at in the early 1600s (53%) and 

remained high (~43%) for the next 250 years. 

Climate effects on fire occurrence 

 Departures in summer temperature for the year of fire (or no fire) were not significant 

in individual site or regional analyses and will not be considered further here. PDSI was 

negative for 50 of 67 low-filter regional fire years and 22 of 24 high-filter regional fire years 

(Fig. 2.6a). Departures in PDSI were significantly negative (indicating drought) during fire 

years for four sites (Fig. 2.7) and for both classes of regional fire years (Figs. 2.8a and d). The 

first year after fire was significantly negative for two sites (Fig. 2.7) and for both classes of 

regional fire years (Fig. 2.8a and d). Conditions during at least one year before fire were 

significantly PDSI-positive (indicating wet conditions) for four sites (Fig. 2.7). PDSI 

departures 2 years before regional fire years were significantly positive, resulting in a pattern 

of wetter than average conditions before and dry conditions during and immediately after 

regional fire years (Fig. 2.8a and d). I observed no significant departures in PDSI associated 

with local fire-years (Figs. 2.6d, 2.8g). Although conditions during and after no-fire years were 

not different than average, departures for the 4 preceding years were significantly negative 

(Fig. 2.8j), suggesting that fire was least common after extended periods of drought. 
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 NINO3 was negative for 36 of 67 and 15 of 24 low- and high-filter regional fire years, 

respectively (Fig. 2.6b). Departures in NINO3 during fire years were significantly negative for 

three sites (Fig. 2.7) and for both classes of regional fire years (Fig. 2.8b and e). No significant 

departures in NINO3 were observed for local fire years and associated lag years (Fig. 2.6e, 

2.8h), but the positive departure for no-fire years was significant (Fig. 2.8k).  

 PDO was strongly positive from the mid 1400s to late 1500s and again for shorter 

periods in the mid-1700s and mid-1800s (Fig. 2.6c). Although fire years are spread throughout 

the analysis period, the frequency of regional fire years appears to be greatest when PDO was 

near neutral or negative. Departures in PDO during regional fire years and for 3 years after are 

significantly negative (Fig. 2.8c and f) suggesting that regional fire years were most likely to 

occur at or just after positive-to-negative phase changes in PDO. A tendency for this pattern is 

apparent in eight individual site analyses, and is supported by significant departures in four 

(Fig. 2.7). Conversely, departures in PDO for no-fire years and 2 years after are significantly 

positive (Fig. 8l), suggesting that fire is least likely to occur during a negative-to-positive PDO 

phase change.  

  

Discussion 

 Fire chronologies for the 10 sites in this study reveal a general pattern of frequent 

surface fires that was sustained over a long period of time (Fig 2.2). This is particularly so on 

larger sites with greater numbers of sample trees and broader sample tree dispersal, as 

indicated by sample area size (Table 2.1), suggesting the importance of the contribution of 

small fires to the site-level composite fire records. Because sites differed in sample strategy, 
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effort and area, it would be inappropriate to make intra-site comparisons regarding fire 

frequency. Fire histories for five sites begin before 1400 C.E. providing at least partial fire 

records for a period recognized as pre-Little Ice Age. Visual examination of these composite 

chronologies (Fig. 2.2) would seem to suggest that site-level fire return intervals were longer 

before ~1500. However caution is needed in interpreting site-level fire frequencies for this 

portion of the records as they were constructed from fewer trees than what contributed to the 

composite fire chronologies in later centuries. Thus it would be difficult at best to tease out the 

effects of this fading record from any real differences in fire frequency between pre-1500 and 

later time periods. On the other hand variation in fire seasonality should not be impacted by the 

fading record, assuming that the fire records preserved from the earliest centuries are 

representative of the period.  

Fire seasonality 

 The annual timing of new tree-ring growth varies among tree species and individuals 

within species and is related to variations in yearly weather, elevation, and topographic setting. 

Overriding this variation, I observed a predominance of RB (inter-ring) fire scars that were 

associated with substantial proportions of both early- (59%) and late-season (44%) fire events 

and were the only class of fire scars associated with 204 of the 559 fire events in which 

seasonality was assigned (Fig. 4b). These results demonstrate that the historic fire season in the 

eastern Great Basin was potentially long, beginning before and ending after the period of 

annual ring growth. This should come as no surprise given the generally dry climate in the 

region expressed by both early spring snowmelt and a weak or absent summer monsoon. If the 

ambiguous, dormant season fire events are split more or less evenly between the early- and 

late-season fire groupings, a bimodal pattern emerges with a 36% early-, 15% middle-, 45% 
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late- and 4% multi-season fire distribution. Considerable variation in fire seasonality was 

observed among sites (Fig. 2.4a). Altering the relative percentages in the division of dormant 

fires to early and late fire groupings to reflect the seasonal patterns encountered on individual 

sites would change the relative proportions of early and late season fires but the bimodal shape 

of the distribution would largely be preserved.  

 Interestingly, the among-site variation and bimodal pattern in fire seasonality observed 

here are similar to those identified for the San Juan Mountains (Grissino-Mayer et al. 2004), a 

study area located slightly south (~37˚ 30΄ N) and roughly 500 km east of these eastern Great 

Basin sites on the Colorado Plateau. The authors in that study suggested that wet conditions 

during the summer monsoon would reduce fire occurrence during mid-summer resulting in a 

bimodal fire seasonality pattern but offered no explanation for among-site differences. Among-

site variability in fire seasonality has been reported for site clusters elsewhere in western North 

American studies including the Blue Mountains in Oregon (Heyerdahl et al. 2001) and the 

Sierra San Pedro Mártir in northwestern Mexico (Skinner et al. 2008). Topographic variability 

expressed at fine spatial scales might explain some differences in fire seasonality due to the 

effects of features such as aspect, slope, and elevation on the rate of fuel desiccation and timing 

of tree-ring growth. Conversely, if we allow for a human element in fire ignitions, the 

variability in patterns of human occupation or burning strategies might easily explain major 

among-site differences in early and late-season fire dominance such as those observed in this 

study.  

 Long-term climate variability has been used to explain temporal variability in fire 

seasonality through the interaction of temperature and precipitation (timing and abundance) on 

the production and desiccation of fine fuels (Grissino-Mayer and Swetnam 2000). I evaluated 
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the potential influence of climate variation on fire seasonality in the eastern Great Basin by 

observing proportional changes among the 50-year bins from 1400 to 1900 in this record (Fig. 

2.5). Early-season fires dominated in the 1400s suggesting lower winter-spring precipitation 

and wetter summer monsoons relative to the Little Ice Age that would follow. As the climate 

cooled and summers dried through the 1500s, fire seasonality would have been in transition 

with fewer early-season fires and an increasing number of late-season fires relative to the 

1400s, as was observed. The proportional shift from early- to late-season fires reached its 

maximum during a cool-wet period in the early 1600s (Fig. 2.6a) after which a relative balance 

between early- and late-season fires was reached by the late 1700s. That balance persisted until 

the late 1800s where fire seasonality shifted somewhat back towards late-season fires once 

again. Grissino-Mayer and Swetnam (2000) described a gradual shift for a cluster of Southwest 

sites (northwest New Mexico) from predominantly middle- and late-season fires prior to 1800 

to predominantly early-season fires by the end of the 19th Century. They postulate that as the 

Southwest warmed at the end of the Little Ice Age, the dominant precipitation mode shifted 

from winter-spring to summer monsoon and fire seasonality changed accordingly. Although 

the nature and pace of fire seasonality change for the Great Basin sites was similar to that of 

the Southwest sites, the direction was not. The summer monsoon is much weaker and sporadic 

and winter-spring precipitation more reliable in the eastern Great Basin than in the Southwest, 

precluding any late to early-season shift in fire seasonality.  

 Modern (post 1980) fire seasonality distribution for the eastern Great Basin, measured 

either in number of fires or area burned, has a broad middle- to late season (July and August) 

peak (Griffin 2002; Schmidt et al. 2002; Westerling et al. 2003). A narrower peak from mid-

July to mid-August is suggested for lightning-caused fires based upon a 42-year record of fire 
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from the Snake Range (Nevada) and surrounding area (data on file at the US Forest Service, 

Shrub Sciences Laboratory, Provo, Utah). The predicted effect of the warming trend that began 

in the mid-1800s would be to lengthen the fire season resulting in more early- and late-season 

fires and dampening rather than strengthening a mid-season peak. This prediction is confirmed 

by a lengthening of the fire season in the western United States associated with the accelerated 

warming trend during the last three decades (Westerling et al. 2006). Although similar in some 

ways (late season dominance) to the fire seasonality distribution inferred for the late 1800s, the 

modern, lightning-caused distribution lacks the bimodal pattern apparent for most individual 

sites and regionally for 500 years suggesting that regulation of historic fire seasonality likely 

involved one or more factors besides climate.  

 Unexpected seasonality patterns may constitute an indirect clue of a human footprint on 

fire regimes (Allen 2002; Williams 2004). Unexplained among-site differences in fire 

seasonality such as those described here and in the San Juan Mountains (Grissino-Mayer et al. 

2004) might also infer a human-modified fire regime due to local differences in burning 

practices. In this study, the case for an anthropogenic source of ignitions is perhaps strongest 

for the Sinbad Springs (SIN) site. The ~1 ha area of this site is defined by a small cluster of 

mature ponderosa pine trees associated with a perennial spring. Ponderosa pines are located 

along and near the bottom of a ravine and end where surface water drops off a 30-m limestone 

cliff. Beyond the influence of the spring the vegetation changes sharply to old growth pinyon-

juniper and mountain mahogany woodland that is poorly adapted for frequent burning. 

Therefore, the probability of fire spreading to the 1-ha study from the surrounding landscape is 

extremely low. Consequently, the ignitions that sustained the high frequency fire regime 

recorded in fire scars (4 sample trees) almost certainly originated from within the site. Given 
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the small and recessed nature of the study site relative to the surrounding landscape, the 

likelihood of lightning being the primary source of ignitions is remote. The presence of a 

reliable water source in this generally dry landscape would have been an attraction to both 

humans and animals that would constitute important food sources. Thus, the best explanation 

for the fire chronology found at this site is that it represents, perhaps exclusively, a pattern of 

intentional (and possibly accidental) ignitions by Native Americans dating back to late 16th 

Century (Swetnam and Baisan 1996). Late- and dormant-season fires are approximately equal 

in number and together they account for nearly 90% of the fires at this site suggesting that 

burning occurred primarily in late summer or fall. This may have been the only time that the 

spring-fed vegetation was sufficiently cured to burn most years and is in agreement with 

historical accounts that indicate that fall was a preferred time for Native American burning in 

this part of the West (Chavez and Warner 1976; Griffin 2002). Fall is also a time of reduced 

lightning-caused fire occurrence in modern records (Griffin 2002) strengthening the argument 

for human ignitions at this site. Reasons for intentional burning of this site are potentially 

numerous (Williams, 2004) and include clearing vegetation to improve visibility for ambush 

hunting, ‘greening’ of vegetation to attract large herbivores, or improving growth 

characteristics of useful vegetation. Although the unique biophysical setting of this site is 

useful for deducing a probable source of ignitions, fire frequency and seasonality are not 

extreme when compared to other sites in this study where natural fire ignitions are likely to 

have been more important. This could be interpreted as an indication of the difficulty of teasing 

out the human fire ‘footprint’ from a background fire regime dictated by lightning ignitions. 

Alternatively, the relative ‘normality’ of the fire regime for this site when weighed with the 
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unexpected bimodal distribution and among-site variability in fire seasonality could also 

suggest that the impact of human ignitions, though locally variable, was likely widespread. 

Climate effects on fire occurrence  

 A strong correlation between regional fire years and drought was expected. I also 

expected that antecedent wet years (positive PDSI) favorable for fine fuel production would be 

statistically significant. It is of interest that conditions 2 years prior to regional fire years were 

significantly wetter than average but conditions 1 year prior were not (Fig. 2.8a,d). It was also 

notable that significant drought persisted for two years after regional fire years. This pattern 

suggests that years of widespread regional fires were not merely a product of one-year 

droughts but that fire was synchronized by multi-year, wet-dry oscillations. Thus the 

probability of fire was highest during the first year of strong drought following one or more 

wet years. The potential impact of earlier wet years (lag -3 to -5) would be muted in 

comparison due to the natural breakdown of fine fuels as time between fuel production and fire 

ignition increased. The lack of significant departure for the year immediately before regional 

fire years could indicate that these years were climatically transitional in the multi-year 

oscillation. This pattern of fire-timing in response to multi-year precipitation variability is also 

evident in the individual site SEA of PDSI (Fig. 2.7), though significant departures are 

scattered among only half of the sites. A reverse pattern of multiple years of drought resulting 

in subsequent low fire probability (no-fire years) is a logical extension of the pattern and 

represents a separate segment of the oscillation (Fig. 2.8j). Conversely, years in which fire 

occurred on few sites (local fire years) do not follow this pattern and in fact appear not to be 

linked to climate variation in any way (Fig. 2.8g-i). An increased probability for synchronized 

fire associated with a multi-year positive-to-negative shift in PDSI has been documented 
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elsewhere in western North America including the Tahoe Basin of eastern California (Beaty 

and Taylor 2008), Rincon Mountains in southeastern Arizona (Iniguez et al. 2009), Sacramento 

Mountains, southeastern New Mexico (Brown et al. 2001), and Archuleta Mesa in 

southwestern Colorado (Brown and Wu 2005). 

 The relationship between regional fire years and ENSO was clearly Southwestern in 

nature (Swetnam and Betancourt 1990, 1998) with fires-years correlated with significantly 

negative and no-fire years correlated with significantly positive NINO3 departures (Fig. 

2.8a,e,k). The relationship appears a bit more muddled in the individual site analyses, 

indicating that NINO3 was a poor predictor of fire probability for most sites. PDO values for 

regional fire-years and 3 years thereafter were significantly negative while values for no-fire 

years and for two years after were significantly positive relative to average. This multi-year 

pattern is similar to that observed for the PDSI analysis in that the probability of regional fire 

was greatest as PDO was shifting downward to a series of years of significantly low values, an 

indication of drought in the southwest. The multi-year positive departure in PDO during and 

following no-fire years is also consistent with the idea that regional fire years were 

synchronized by multi-year drivers of climate and that fires were least likely as the climate 

shifted from average (dry) to wetter conditions. Skinner et al. (2008) reported similar patterns 

for regional and no-fire years in relation to drought and PDO for northwestern Mexican forests 

using McDonald and Case (2005) and Biondi et al. (2001) PDO indices. A third index 

(D’Arrigo et al. 2001) failed to reveal this pattern there or for the Colorado Front Range 

(Sherriff and Veblen 2008). These differences in PDO-fire relationships reflect differences in 

the climate proxies themselves and suggest one or more are substantially influenced by 

additional factors. Although clarification of the PDO-fire relationship will require refinements 
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in proxy records, the patterns observed here and in northwestern Mexico using the McDonald 

and Case (2005) and Biondi et al. (2001) PDO proxies, suggest a broad regional fire 

synchronization in response to multi-year oscillations in precipitation that are at least to some 

degree responsive to variation in PDO. 

 Low-filter, regional fire-year frequency was somewhat stable from the late 1400s to 

1822 with periods of high frequency from 1619 to 1738 and from 1777 to 1822 (Table 2.3; Fig. 

2.2). An anomalously long gap in regional fire years occurred between 1553 and 1579 (Fig. 

2.2), a period devoid of major drought (average to high PDSI), muted inter-annual differences 

in ENSO, and high PDO (Fig 2.6a-c), conditions favorable for reduced fire activity (Kitzberger 

et al. 2001). Regional fire frequency remained relatively low until about 1620. During this 

period of below average fire synchronization, late 16th century drought gave way to wetter 

conditions (negative to positive PDSI), ENSO oscillations were average, and PDO was mostly 

positive (indicating wet) and stable. During the next 120 years of high frequency fire, droughts 

were frequent and severe, ENSO oscillations were about average, and PDO was mostly 

negative. Average PDO became slightly positive but was highly variable during the 40-year 

period of somewhat reduced frequency in low-filter, regional fire frequency that occurred 

between 1738 and 1777. This period of reduced regional fire is synchronous with a distinct 

hiatus in regional fires documented for southwestern Colorado (Grissino-Mayer et al. 2004). In 

this study, local fire frequency remained high during this period suggesting that the 

phenomenon, if real, was weaker in the eastern Great Basin. A second long hiatus in regional 

fire years occurs from 1822 to 1855 and is more or less synchronous with a lengthening of fire 

intervals at five sites (SIN, BWA, LAW, FRI, ROS; Fig. 2.2). During this 33-year period 

severe drought years are few, ENSO oscillations are muted, and PDO is mostly positive and 
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trending higher (Fig. 2.6a-c), conditions similar to those of the mid 1500s hiatus already 

identified. A decrease in fire activity during the early 19th Century has been documented for 

sites in the interior Northwest (Heyerdahl et al. 2001, 2002), Colorado Plateau (Brown and Wu 

2005; Brown et al. 2008), Central Rockies (Donnegan et al. 2001), Southwest (Swetnam and 

Baisan 1996; Swetnam and Betancourt 1998, Iniguez et al. 2009), northern Mexico (Skinner et 

al. 2008), and Argentina (Kitzberger et al. 2001). This study supports the conclusions in these 

earlier studies that this widespread period of reduced fire occurrence was a result of reduced 

variability in ENSO oscillations but also identifies the lack of severe drought and positive PDO 

as possible contributing factors. 

 The last regional fire year was in 1857, roughly synchronous with the last fire recorded 

for three sites (SWA, SIN, BWA). All of the remaining sites continued to record fires into the 

20th Century (although at mostly lower frequencies) with the last local fire year recorded in 

1960. A late 1800s loss or reduction in fire-scar-based fire records is a common feature of fire 

regime reconstructions in the western United States and is generally attributed to the impacts of 

domestic livestock on fine fuels and changes in human burning practices. The persistence of 

fire well into the 20th Century on about half of the sites suggests that the timing and intensity of 

livestock impacts varied within this study area. Post-1900 ignitions may also have been less 

frequent though both natural and human sources were probable. Earlier disruptions of Native 

American ignition patterns may have contributed to longer fire intervals as early as ~1800 (see 

FRI, ROS, and LAW; Fig. 2.2). The deployment of modern fire suppression techniques and 

equipment after World War II improved suppression efforts on these remote ranges and was 

more or less synchronous with the last fire-years recorded in the study.  
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Conclusions 

 This study revealed a fire seasonality pattern best interpreted as long and bimodal with 

early and late season peaks and considerable among-site variation. Although fire seasonality 

varied with climate throughout the period of analysis (1400-1900) it never approached the 

broad middle to late-season peak observed in modern fire records. The most reasonable 

interpretation for the cause of this pattern of fire seasonality requires human ignitions and 

constitutes credible evidence that Native American peoples consistently affected fire regimes 

in the region. Multi-year, wet-dry cycles synchronized fire at a regional scale with greatest fire 

activity corresponding to wet-to-dry transitions and least fire activity associated with dry-to-

wet transitions. Responses to Pacific-driven oscillations in climate followed a Southwest mode 

supporting the notion that the pivot-point in the precipitation dipole lies north of the study area. 

The lack of a clear north-south trend among these sites precludes further speculation regarding 

the proximity of that pivot-point. Taken together, results support an interpretation that fire 

regimes were the product of dynamic interactions between a variable climate and human fire 

use. The relative importance of each of these factors likely varied through time and across the 

study landscape. Comparable analysis of historic fire seasonality data from other sites are 

needed and would serve as tests of the interpretations made here. Finally, I must ask whether a 

completely natural fire regime (lightning ignitions only) is sufficient to maintain pre-1900 

forest structure and resilience. The answer to that question will require a better understanding 

of the extent to which human-ignited fires affected historical fire frequency, severity and extent 

at both local and broad spatial scales and will ultimately be critical to inform sound long-term 

forest restoration and maintenance plans. 
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Table 2.1. Fire chronology sites from the eastern Great Basin arranged from north to south. Names with asterisk were gridded sites. 

Site (code) Mountain range Location (LAT/LON) Elevation 
range (m) 

Area (ha) No. fire-
scarred 

trees 

No. of fire 
years 

Recording 
years 

(to 2000) 

Tom’s Creek Canyon (TOM) Deep Creek 39˚52΄ N/113˚52΄ W 2475-2480 5 6 16 294 

Swasey Mountain (SWA) House 39˚24΄ N/113˚19΄ W 2370-2620 30 14 15 443 

Sinbad Springs (SIN) House 39˚23΄ N/113˚19΄ W 2375-2395 1 4 20 439 

Burnt Mill Canyon (BMC)* Snake 39˚02΄ N/114˚16΄ W 2365-3230 455 110 99 734 

Big Wash (BWA) Snake 38˚52΄ N/114˚14΄ W 2480-2560 20 28 40 307 

Lawson Cove (LAW)* Wah Wah 38˚37΄ N/113˚34΄ W 2195-2685 430 137 124 707 

Frisco Peak (FRI) San Francisco 38˚32΄ N/113˚17΄ W 2580-2770 60 27 59 796 

Indian Creek Canyon(INC)* Tushar 38˚23΄ N/112˚23΄ W 2365-2550 130 32 57 754 

Rose Spring Canyon (ROS) Wah Wah  38˚17΄ N/113˚36΄ W 2240-2330 120 30 116 661 

Right Fork, Beaver Creek Canyon 
(RBC)* 

Tushar 38˚12΄ N/112˚27΄ W 2360-3080 910 167 105 501 
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Table 2.2. Criteria for assigning fire event seasonality based upon fire-scar ring positions (UNK= 

unknown, RB = ring boundary, EE = early, early wood; ME = middle, early wood; LE = late, 

early wood; LW = late wood). Yes (Y) indicates a minimum of one fire scar of that class is listed 

for the fire year at a given site.  

Presence (Y) or absence (N) of each class of inter- or intra-ring fire scar among those assigned 
to each fire event. 

Assigned 
season 

UNK RB EE EM LE+LW 

Y N N N N Unknown 

 
Y or N Y N Y N 

Y or N Y N N N Dormant 

Y or N Y Y Y or N N Early 

Y or N N Y/ EE>ME Y N 

Y or N N Y or N Y/ME≥EE 
ME≥LE+LW 

Y or N Middle 

Y or N Y N Y Y Late 

Y or N N N Y or N Y/LE+LW>ME 

Y or N Y or N Y Y or N Y Multi-season 
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Table 2.3. Regional, local, and no-fire years summaries grouped by century (1400-1999). All 

dates are low-filter (≥33% of recording sites) except those in bold which are high-filter (≥50% of 

recording sites) regional fire years. 

 Fire years  

 Regional Local No-fire years 

Century Dates Total Total Total 

1400-1499 1407  1423  1444  1475  1490  1495  
1497 

7 16 77 

1500-1599 1506  1522  1523  1525  1532  1538  
1543  1547  1552  1580  1589  1598 

12 50 38 

1600-1699 1605  1619  1623  1630  1632  1637  
1645  1650  1653  1666  1668  1670  
1679  1684  1685  1687  1693  1694  
1695  1696 

20 55 25 

1700-1799 1700  1701  1703  1707  1708  1715  
1722  1728  1729  1735  1736  1738  
1751  1755  1763  1777  1780  1786  
1788  1795 

20 66 14 

1800-1899 1800  1804  1806  1809  1813  1822  
1855  1857 

8 59 33 

1900-1999  0 14 86 
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Figure 2.1. Map of eastern Great Basin mountain ranges with the location of 10 fire history sites. Study 

sites include the Right Fork of Beaver Creek (RBC) and Indian Creek Canyons (INC) on the Tushar 

Mountains, Frisco Peak (FRI) on San Francisco Mountain, Lawson Cove (LAW) and Rose Spring 

Canyon (ROS) on the Wah Wah Range, Burnt Mill Canyon (BMC) and Big Wash (BWA) on the South 

Snake Range, Sinbad Springs (SIN) and Swasey Mountain (SWA) on the House Range, and Tom’s Creek 

Canyon (TOM) on the Deep Creek Mountains. A gridded sampling design was employed for sites marked 

by squares while targeted sampling strategies were employed at sites marked by circles.
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Figure 2.2. Fire chronologies for the 10 eastern Great Basin sites arranged from north (top) to south. Horizontal lines are 

composites of fire record for each site. Solid lines indicate at least one tree is in recording status. Short vertical lines 

mark fire dates. Locations of low-filter (
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Figure 2.3. Total intra- and inter-ring fire scars by position for individual study sites (a) and percentages 

across all sites (b). UNK = Unknown; RB = ring boundary; EE = early early-wood; ME = middle early-

wood; LE = late early-wood; LW = late-wood.   
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Figure 2.4. Seasonality of fire events for individual sites (a) and across all sites (b) using established 

criteria.  
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Figure 2.5. Fire event seasonality through time (1400-1900) expressed as a percent of all fire events in 

each 50-year bin excluding unknown and dormant season seasonal classifications. Seasonality is black = 

early; medium grey = middle; dark grey = late; and light grey = multi-season. Years listed on horizontal 

axis indicate the start of 50-year bins. 
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Figure 2.6. Variation (1400-1900) in annual climate indices plotted against low- (large open triangle) 

and high-level (large filled triangle) regional fire years (a-c) and local- (small filled triangle) and non-fire 

years (small open circle; (d-f). Light lines are indices of annual climate variation. Heavy lines (a-c only) 

are climate index smoothed with cubic splines that retain 50% of variation over segments of 25 years. 

  



105 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Superposed epoch analysis (SEA) of average climate departures during fire years at each of 

10 eastern Great Basin sites. Numbers in parentheses are total fire years at each site. Analysis is for 5 

years before and 2 or 3 (PDO) years following fire-years. Light and dark shading indicate departures 

exceeding 95 and 99% confidence intervals. 
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Figure 2.8. Superposed epoch analysis (PDO) of average departures for PDSI, NINO3, and PDO during 

high- and low-filter regional fire years (RFY-50; a-c and RFY-33; d-f) and local (g-i) and non-fire years 

(j-l). Analysis is for 5 years before and 2 or 3 (PDO) years following fire-years. Light and dark shading 

indicate departures exceeding 95 and 99% confidence intervals. 
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CHAPTER 3 – HISTORIC FIRE REGIME AND FOREST VARIABILITY ON TWO EASTERN GREAT BASIN 
FIRE-SHEDS (USA) 

Abstract: Management of naturally forested landscapes requires knowledge of key disturbance 

processes and their effects on plant community composition and structure. Spatially-intensive 

fire and forest histories provide valuable information about how fire and vegetation vary and 

interact on heterogeneous landscapes. I constructed 800-yr fire and recruitment chronologies for 

two eastern Great Basin fire-sheds using fire-scar and establishment evidence from 48, variable-

radius recruitment plots (500 m grid) and from fire-scarred trees between plots. Fire-sheds are 

located in the Snake Range of eastern Nevada (BMC) and Wah Wah Range of western Utah 

(LAW) and span a range in elevation and vegetation zones typical for the region. Estimates of 

point mean fire interval varied more than 10-fold at BMC (7.8-125.6 years) and LAW (13.3-

138.4 years). Control of fire frequency variation was largely manifest at the landscape scale at 

BMC and at finer spatial scales at LAW where topography was more broken. At BMC, a distinct 

within-fire-shed pattern in fire frequency variation was difficult to explain without invoking the 

possibility of human-caused ignitions.  A majority of fires were small (<10 ha) but large fires 

(≥100 ha) accounted for 78% at BMC and 89% at LAW of cumulative area burned. Tree 

recruitment for mid-elevation mixed-conifer stands was somewhat episodic and asynchronous 

among plots. Recruitment pulses were synchronous with multi-decade fire quiescent periods and 

often followed landscape-scale fires. I concluded that fire frequency was under strong 

topographic control and that fire severity was mixed and variable through time and space 

resulting in a dynamic mosaic of variable-aged vegetation intermixed with long-lived, fire-

resilient trees and open shrub-steppe communities. Fire regime and forest composition change 

began in the early (LAW) and mid-1800s (BMC), causing shifts in composition and structure at 

the stand scale and homogenization at the landscape scale. I recommend that management 
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strategies prioritize the use of fire and surrogate treatments on mid-elevation forests that have 

deviated most from historic conditions and associated shrub-steppe communities where conifer 

encroachment is greatest. Planned disturbances should be of mixed severity and size to recreate 

vegetation mosaics at the scale documented in the study. 

Key words: Dendrochronology, Point mean fire interval, Mixed-severity fire, Multi-scale 

analysis, Anthropogenic fire, Fire restoration 

 

Introduction 

Successful forest management and restoration strategies require a thorough understanding 

of natural disturbance regimes and their effects on vegetation. Fire histories provide a means to 

describe and quantify variation in fire regimes from past eras at various scales of time and space 

(Morgan et al., 2001; Keane et al., 2002). To effectively assess fire regime variability, fire 

regime reconstructions must have resolution at the same scales in which variation occurs 

(Ricklefs, 1987; Weins, 1989; Levin; 1992). Fire histories derived from tree-ring evidence 

provide a means for assessing the effects of broad-scale (e.g. climatic) to fine-scale (e.g. 

topographic) drivers of fire regime variability over long periods (Swetnam and Baisan, 1996; 

Swetnam and Betancourt, 1998; Brown and Shepperd, 2001; Brown et al., 2001; Heyerdahl et 

al., 2001; Taylor and Skinner, 2003; Grissino-Mayer et al., 2004; Sibold et al., 2006). For 

example, investigations of the role of climate as a driver of historic fire patterns are possible 

because tree-ring evidence of past fires can be fixed with annual and often seasonal precision. 

Consequently, considerable progress has been achieved in assessing the role of climate in 

synchronizing fire occurrence regionally as the number and spatial representation of cross-dated 
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fire chronologies increased in recent decades (Grissino-Mayer and Swetnam, 2000; Brown et al., 

2008; Heyerdahl et al., 2008a, 2008b; Kitzberger et al., 2001, 2007; Westerling and Swetnam, 

2003; Swetnam and Betancourt, 1990, 1998).  

Fire histories constructed from spatially-precise sampling strategies are useful for 

evaluating fine-scale controls of fire regime variation (Heyerdahl et al., 2001; Beaty and Taylor, 

2008; Iniguez et al., 2008). Investigations using intensive sampling strategies suggest that 

topographic variables, interacting with differences in vegetation, affect fire regime characteristics 

differently, depending on the biophysical context. For example, historic fire frequency varied 

with aspect in the Blue Mountains (Oregon and Washington) but only when terrain was steep, 

and when contrasting topographic facets were large and separated by barriers to fire spread 

(Heyerdahl et al, 2001). In addition, fire frequency did not differ with elevation when fuels 

matrices were continuous. Similarly, studies in the Klamath Mountains of California (Taylor and 

Skinner, 1998) failed to detect differences in fire frequency related to elevation (slope position) 

even though fire severity increased as species composition and age structure changed on 

intermediate and upper slopes. In contrast, fire frequency differed significantly in relation to 

differences in elevation and corresponding forest types in the southern Cascade Range, 

California (Bekker and Taylor, 2001) and was inversely related to fire size. In another California 

study (Lake Tahoe Basin), fire frequency, fire severity, and cohort patch size varied in mixed-

conifer forests with aspect and slope position (Beaty and Taylor, 2008). In the Sacramento 

Mountains (New Mexico) fire was more frequent at lower than at higher elevations but did not 

differ between ponderosa pine (Pinus ponderosa) and mixed conifer forest types (Brown et al., 

2001). Fires were also more common on the west side of the range than on the more 

topographically heterogeneous east side. A similar pattern was reported for the Santa Catalina 
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Mountains (Arizona) in which a larger mean fire size was inferred as the reason for the higher 

fire frequency associated with a more homogeneous landscape (Iniguez et al, 2008). These 

results inferred that fire frequency was controlled at the landscape rather than stand level, a result 

similar to what has been observed elsewhere (Heyerdahl et al., 2001; Margolis and Balmat, 

2009).  

When forest histories are constructed in concert with fire histories they allow 

examination of linkages between fire regime and vegetation dynamics (Taylor and Skinner, 

2003; Brown and Wu, 2005; Margolis and Balmat, 2009; Bekker and Taylor, 2010). 

Synchronous mortality or recruitment may infer mixed- (Kaufmann et al., 2000; Fulé et al., 

2003; Taylor and Skinner, 2003;) or high-severity (Sibold et al., 2006; Beaty and Taylor, 2008; 

Margolis and Balmat, 2009; Bekker and Taylor, 2010) fire regimes depending on the presence 

(absence) of fire scars and spatial scale. Demographic data are also used to delineate fire 

perimeters for fire-size calculation (Everett, 2008; Iniguez et al., 2008, 2009; Margolis and 

Balmat, 2009; Bekker and Taylor, 2010). Linked analyses facilitate assessment of the relative 

importance of fire regime in driving vegetation dynamics and of how stable that relationship 

might be over time (Kaufmann et al., 2000; Fulé et al., 2003; Brown and Wu, 2005; Iniguez et 

al., 2009). 

Existing studies have considerable value for developing ecologically sound management 

strategies locally, however, it remains unclear how broadly results should be extrapolated. 

Additional work using intensive sampling strategies is needed (Taylor and Skinner, 2003; 

Swetnam, 2005; Iniguez et al., 2008) particularly in regions and biophysical settings that have as 

yet been understudied. For example, most studies completed to date were conducted on 

landscapes of more or less continuous forest. Thus, additional work is needed to determine how 
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fire regimes vary on topographically variable landscapes with spatially-complex vegetation 

patterns. The mountains of the eastern Great Basin represent such an opportunity.  

The Great Basin encompasses the northern, elevated section of the Basin and Range 

Province of western North America. It includes 100+ mountain ranges with a generally 

north/south orientation, separated by broad, internally-drained desert valleys. Elevation for 33 of 

these ranges exceeds 3,050 m (10,000 ft.; Grayson, 1993). The climate is dry due to rain shadow 

effects of the Sierra Nevada and Cascade Ranges to the west and Rocky Mountains to the east 

(Peterson, 1994). Seasonality of precipitation varies along a geographic gradient with the 

importance of winter and spring Pacific frontal storms decreasing and summer monsoons 

increasing as one travels from north to south and from west to east. Locally, steep precipitation 

gradients are dictated by elevation and orographic position.  

Great Basin vegetation types occur in more or less distinct zones across gradients of 

elevation reflecting parallel gradients in temperature and precipitation (Holmgren, 1972; Harper 

et al., 1978). Zonation is further modified by slope, aspect, and substrate. Drought tolerant sub-

shrubs and grasses dominate plant communities of arid valleys and dry foothills. Sagebrush 

(Artemisia spp.)-grass steppe communities occupy a broad zone from the alluvial bajadas at 

mountain bases up to dry mid-elevation landscapes. Species diversity increases in this type with 

increasing elevation and in places stands of tall shrubs such as curlleaf mountain mahogany 

(Cercocarpus ledifolius) displace sagebrush, sometimes forming extensive mono-specific stands. 

Mosaics of various shrubland and forest types are common at middle elevations. A pinyon-

juniper woodland belt is superimposed near the center of the sagebrush-grass steppe type on all 

but northern ranges and has expanded during the past century into the upper and lower 

shrublands that bracket its core distribution (Tausch et al., 1981; Miller et al. 2008). Woodlands 
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occupy the tops of many mountain ranges of more modest elevation. Various combinations of 

pine (Pinus), fir (Abies and Pseudotsuga), and spruce (Picea) with primarily Rocky Mountain 

affinities occupy mixed conifer and sub-alpine forest zones on taller mountains. Conifer diversity 

decreases from east to west reflecting bottlenecks in post-Pleistocene dispersal (Wells 1983). A 

treeless alpine zone is found on the highest peaks. Because of the steepness of many ranges, 

multiple abrupt changes in vegetation, and therefore fuels matrices, may be juxtaposed over short 

distances.  

Published fire histories for sites from the Great Basin are few (Heyerdahl et al., 1995; 

Kitchen and McArthur, 2003). This oversight is likely due, at least in part, to a perceived lack of 

trees, such as ponderosa pine, that function as good recorders of multiple, nonlethal fires. 

Interestingly, at the initiation of this study little had been published describing fire regimes for 

mountains of the eastern or southern Great Basin where ponderosa pine is common if not 

abundant. Published results of studies that ran concurrent with this study begin to fill the void for 

historical fire regime information relevant to the Great Basin. One addresses landscape-scale 

variation in fire regime in a pinyon pine dominated landscape in central Nevada (Bauer and 

Weisberg, 2009). In addition, two masters theses investigate fire history patterns on mountains 

located in the southern Great Basin where ponderosa pine is present (Jamieson, 2008; Kilpatrick; 

2009). These last two studies reveal relatively high frequency for surface fires up to the late 

1800s with a reduced frequency extending into the 1900s.  

My objective was to produce spatially explicit, multi-century fire and tree recruitment 

histories for two fire-sheds representative of montane landscapes of the eastern Great Basin and 

to address five questions with regards to fire regime and tree recruitment. I selected study fire-

sheds with geographic proximity to ensure similarity in climatic pattern while allowing for 
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variability in topography and anthropogenic use history. As used here, the term ‘fire-shed’ 

designates a topographic unit somewhat sympatric to one or more small watersheds and 

corresponding to an area within which barriers (i.e. bare ridges, cliffs, waterways, etc.) are 

sufficiently permeable to allow fire to spread among all components of the landscape. My 

questions were; (1) How did fire frequency vary within each fire-shed in relation to topography? 

Specifically I was interested in the range and pattern of variation and spatial scale at which it 

would be manifest. (2) When did historic fire patterns change in these fire-sheds and what were 

possible causes for the change? (3) How did fire size vary within fire-sheds and through time? 

(4) How did species-specific tree recruitment vary through time and space in relation to fire, fire 

quiescent periods, and climate? (5) What can be inferred about fire severity from tree recruitment 

patterns? 

 Study Fire-sheds 

I selected two fire-sheds for this study, one on the South Snake Range, White Pine 

County, Nevada, USA and a second approximately 65 km southeast on the Wah Wah Mountains, 

Millard County, Utah (Fig. 3.1). The first (BMC) is located within Great Basin National Park 

and includes forested and non-forested portions of Mill Creek and Burnt Mill Canyons, east 

slope drainages near the north end of the range. Maximum elevation is 3,344 m at the summit of 

Buck Mountain. The lower limit of the study area was defined by the park boundary at about 

2,300 m. This study area is approximately 4 km long (east to west) and 1.5 km wide, with a total 

area of ~600 ha (Fig 3.1). Mean annual precipitation at Great Basin National Park headquarters 

(elev. 2,080 m), located approximately 4 km south of study area, is 336 mm (WRCC, 2009). I 

estimate that mean annual precipitation for the study area varies with elevation from 

approximately 340 to 1,000 mm with differences attributable primarily to differences in winter-
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spring snowfall. Parent material is predominantly quartzite and granite with some limestone at 

lower elevations. Mill Creek is a small stream ≤ 2 m across and, aside from a few small springs, 

is the only perennial surface water in the study area. Conifers dominate on north and east aspects 

with gradual transitions between subalpine and dry mixed conifer and pinyon-juniper woodland 

types. Important tree species include Englemann spruce (Picea englemannii), limber pine (Pinus 

flexilis) ponderosa pine, single-needle pinyon (or just pinyon) pine (P. monophylla), Douglas-fir 

(Pseudotsuga menziesii), white fir (Abies concolor), and Utah Juniper (Juniperus osteosperma). 

Pockets of quaking aspen (Populus tremuloides) are found along Mill Creek and scattered 

throughout the mixed conifer and subalpine forest types. Curlleaf mountain mahogany occurs as 

scattered plants in sagebrush-steppe, mixed conifer, and pinyon-juniper types and as solid stands 

on some warmer south-facing slopes up to ~3,000 m. Mid-elevation shrub-steppe communities 

dominated by medium-statured shrubs such as mountain sagebrush and mountain snowberry 

(Symphoricarpos oreophilus) are widespread on drier slopes between mixed conifer forests and 

pinyon-juniper woodlands and are in various stages of invasion by pinyon, white fir, and 

mountain mahogany.  

The second fire-shed (LAW) is located near the north end of the Wah Wah Range in the 

Lawson Cove drainage. The high point is at the southern extreme on Ranch Peak at 2,718 m. The 

study area extends northward from Ranch Peak 3.5 km down two main branches of the drainage 

to ~2,200 m, near the point where pinyon-juniper woodlands become discontinuous (Fig. 3.1). 

Study area width varied from 0.5 to 2 km. Total area was approximately 525 ha. Mean annual 

precipitation on Ranch Peak is 343 mm (1999-2009; data on file USDA Forest Service, Shrub 

Sciences Laboratory, Provo Utah) from which I estimate mean annual precipitation for this study 

area to be 240 to 340 mm. Parent material is primarily limestone and dolomite with lesser 
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amounts of volcanic dacite. Considerable rock is exposed on ridge tops, as cliff faces 1-30 m in 

height, and on talus slopes. Higher cliffs form natural boundaries for parts of the east and west 

sides of the study area. There is no perennial surface water within or near the study area. White 

fir is the most abundant tree species on north and east facing slopes down to about 2,300 m and 

is also common in canyon bottoms at lower elevations. Pinyon pine and Utah juniper dominate 

lower elevations and are found throughout the study area, although largely restricted to west and 

south-facing slopes and dry rocky ridges at upper elevations. Rocky Mountain juniper (Juniperus 

scopulorum) becomes common and partially replaces Utah juniper at upper elevations. 

Ponderosa pine is found as scattered trees and in small, locally-dominant stands on ridge tops, 

east and north facing slopes and along drainage bottoms. A relatively large stand (32-ha) of 

Great Basin bristlecone pine (Pinus longaeva) occupies Ranch Peak, where it is variably 

dominant to co-dominant with white fir. Several additional clusters are scattered within the fire-

shed on north and east-facing slopes generally above 2,500 m. Douglas fir is widely scattered on 

upper north facing slopes and in drainage bottoms. Numerous openings are dominated by low 

and medium-statured shrubs such as black sagebrush (Artemisia nova), green ephedra (Ephedra 

viridis), and littleleaf mountain mahogany (Cercocarpus intricatus). 

The Great Basin has likely been inhabited by humans for at least 13,000 years. The Snake 

and Wah Wah Ranges were located near the convergence of influence for Western Shoshone, 

Ute, and Southern Paiute cultures immediately prior to Euro-American settlement (Simms, 

2008). These Numic-speaking inhabitants practiced mobile, hunter-gatherer economies in 

contrast with the more sedentary, semi-agricultural model of the Fremont that is known to have 

occupied the area during the thirteenth century and possibly for some time before (Simms, 2008). 

Undoubtedly, fire was used by all of these groups as an essential tool for manipulating natural 
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environments (Williams, 2004), however, knowledge regarding specific practices used in this 

region and how they or their impacts on vegetation might have varied through space and time is 

lacking (Griffin, 2002).  

The first impacts of European colonization on Native Americans in the eastern Great 

Basin were likely from diseases to which they had little resistance. Elsewhere in North America, 

repeated epidemics in the 1500s to 1700s reduced Native American populations by 70% or more 

(Thornton 1987; Reff 1991; Butzer 1992). Evidence for a disruption in human fire ignition 

patterns associated with such drastic depopulation might be anticipated in the Great Basin. 

Although the timing of Euro-American settlement in the valleys adjacent to the fire-sheds 

was approximately the same (1860’s), the nature of settlement-related impacts differs 

considerably. Pre-1900 logging for ponderosa pine on the South Snake Range was extensive in 

support of local settlement and mining activities as evidenced by numerous decayed stumps in 

many areas. Conversely, logging in the Lawson Cove drainage was restricted primarily to a few 

ponderosa pines in drainage bottoms. The BMC fire-shed was intensively grazed in summer by 

domestic cattle from the 1860’s to 1999 when grazing permits were terminated (NPS, 2009). In 

contrast, significant numbers of livestock did not have access to the LAW fire-shed until large 

numbers of domestic sheep were brought to winter in Wah Wah Valley beginning in the 1880’s 

and continued to the mid-1900’s (Murdock and Welsh, 1971). Sheep spent summer and early fall 

months on better-watered ranges to the east. The impact these herds may have had on vegetation 

of the LAW fire-shed is unknown, but past use would have been limited, as it is today, to periods 

when snow was present (for drinking water) but not so deep as to hinder movement and access to 

forage. Although sheep and cattle currently spend winter and spring in the general area, they 

have not used the rugged terrain of the fire-shed for several decades. Subsequently, because of 
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the “undisturbed character, typicality, potential for scientific study [related to bristlecone pine 

presence], and lack of conflict” (Tuhy, 1985) associated with the northern part of the Wah Wah 

Mountain Range a major portion (including all of the LAW fire-shed) was nominated as a USDI 

Bureau of Land Management Research Natural Area.  

 

Methods 

 Field sampling and sample preparation and analysis 

Evidence for fire and tree recruitment history reconstructions was collected from 24 plots 

in each fire-shed and opportunistically from fire-scarred trees found individually and in clusters 

between plots. I first selected a location for a reference plot in each fire-shed based on an 

observed abundance of fire-scarred trees. Subsequent plots were placed across the study area at 

500-m intervals using Universal Transverse Mercator (UTM) coordinates along cardinal 

directions from the reference plot and were arranged to span a broad range in elevation and forest 

type (Fig. 3.1). Plot identity within the resulting grid was specified by alphanumeric couplets 

designating row (east-west) and column (north-south) location. In the field, plot centers were 

located using hand-held GPS receivers accurate to 15 m. When plots fell on unsuitable terrain 

(i.e. roads, cliffs, rock outcrops), plot centers were moved 50 m in a randomly-selected cardinal 

direction. I determined elevation, aspect, slope, and slope position (lower, middle, upper, ridge) 

for each plot.  

I used an n-tree density-adapted sampling method to select sample trees for each plot 

(Jonsson et al., 1992, Lessard et al., 2002) with a maximum plot size of 0.5 ha (40 m radius). 

Sample trees included those nearest to plot center up to a maximum of 36 trees (generally 30) 
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with at least 20-cm diameter breast height (DBH = 1.4 m). Remnants (stumps, snags, and logs) 

were included unless judged to not be datable due to rot. Unsampled remnants were tabulated 

and classified by the presence or absence of surface char. Species, DBH, diameter at sample 

height, and distance to plot center were determined for each sample tree. Increment cores were 

removed from live trees without fire scars at 10-20 cm above ground level.  Most cores typically 

did not intersect pith in which case individual trees were cored up to four times to secure samples 

with inner rings as near as possible to pith. Surface fire evidence was collected from fire-scarred 

trees with a chainsaw as one or more partial cross-sections cut so as to extend through fire-

scarred portions of the bole and pith (Arno and Sneck, 1977). Cross-sections were also cut from 

sound, non-scarred remnants at a point estimated to have been approximately10-20 cm above 

ground level. I searched for and sampled additional fire-scarred trees within a minimum search 

radius of 80 m of each plot center (2 ha). I further employed a targeted approach to find and 

sample fire-scarred trees between plots (Van Horne and Fulé, 2006) where one to four 

individuals expended 1 to 4 hrs per plot. Species, condition (live, snag, stump, log), UTM 

location, elevation, aspect, and slope position were determined for each non-plot sample tree. 

All cores and cross-sections were stabilized and surfaced using combinations of band 

saw, planer, belt sander, and hand sanding until cell structure became visible using a binocular 

microscope. Each sample was independently cross-dated by at least 2 analysts using a 

combination of locally-developed master ring-width chronologies (skeleton plots) and lists of 

marker (narrow) years (Stokes and Smiley, 1968). Samples that could not be dated with annual 

accuracy were excluded from further analysis. I estimated the recruitment date for each tree as its 

pith date at sample height. Although a conservative measure for germination year, I employed no 

correction factors to pith dates because of unknown and variable time lapses between 
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germination year and the year a tree reached sample height (10-20 cm). I estimated years to pith 

for samples in which pith was missing by matching sample ring curvature and spacing to that of 

concentrate rings in a transparent overlay.  

 Fire frequency analysis 

I assigned a calendar year to each fire scar. Fire scars that could not be dated to annual 

accuracy were not included in the analysis. Abrupt, multi-year changes in ring widths indicative 

of a sudden growth release or suppression and injuries of uncertain origin were treated as 

evidence of fire if at least one tree at the study site had a fire scar corresponding to the same 

year. I assigned an intra- ring (i.e. early, middle, or late early-wood or late-wood) or inter-ring 

(ring boundary) position to each fire scar when conditions permitted. Fire scars associated with 

very narrow rings or eroded ring structures were classified as unknown. Inter-ring (dormant 

season) scars result from fires that occur either late in the season after ring growth is complete or 

early the following year before ring growth is initiated. Typically, these scars are assigned to a 

calendar year based upon the predominant pattern of fire seasonality in modern or historic 

records. I assigned ring-boundary scars to pre-boundary years when one or more trees at the site 

had evidence (late early-wood or late-wood scars) of late season fire in the same year and to the 

post-boundary year when evidence (early or middle early-wood) suggested a fire had occurred in 

the following year. Based upon a pilot study that showed a greater number of early-season fires 

tha middle- or late-season fires (Kitchen and McArthur, 2003), fire was assigned to the post-

boundary year when these criteria proved inconclusive. I assigned fire event (year by site 

combination) seasonality as unknown, dormant, early, middle, late, and multi-season using 

criteria that assess, as a group, the ring positions of the complete set of fire scars associated with 

each event (see chapter 2).  
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I constructed composite fire chronologies (Dieterich, 1980) for plots using records from 

all fire-scarred trees located within 40 m of plot centers (0.5 ha; 0-16 trees) and for tree clusters 

outside of plots (two-five trees) with a maximum inter-tree distance of 80 m. A related study 

(Chapter 1) suggested that a sample area of ~0.5 ha provided an appropriate balance between the 

opposing risks for errors of omission and errors of false inclusion at small spatial scales. I 

calculated mean fire interval (MFI) estimates from composite and single-tree chronologies that 

included a minimum of three fire years (two intervals) using program FHX2 (Grissino-Mayer, 

2001). I treat composite MFI values as estimates of point mean fire interval (PMFI) when the 

composite was based upon the combined records of three or more trees. PMFI estimates were 

derived from single-tree and paired-tree records by multiplying MFI values by a correction factor 

of 0.8 to account for a higher probability of unrecorded fires (errors of omission). Topographic 

position and elevation values for PMFI estimates derived from two or more trees were based on 

plot center data or averaged single-tree values (non-plot trees). Single-tree and cluster 

chronologies were assigned alphanumeric labels based upon the nearest plot (Fig. 3.2).  I visually 

explored fire frequency spatial variation for both sites using 2-dimentional contour plots where 

contour lines demark hypothesized gradients in PMFI. 

 Fire size analysis 

Many of the fires recorded at these sites probably burned outside of the sampling grids 

and in irregular patterns inside the grids making quantification of historic burn area difficult. 

Within fire-sheds, fire-size estimation is further hampered by the low density and uneven 

distribution (spatial and temporal) of recording trees. In addition, temporally precise (tree-ring) 

evidence is spatially limited to locations where mature trees were present and fire intensity was 

conducive for at least some trees surviving with newly-formed fire-scar evidence. Evidence 
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based upon pulses in recruitment could not be used for fire-size estimation because it generally 

lacked sufficient temporal precision to link to specific fire events against a background of 

relatively high fire frequency. Acknowledging these limitations, I estimated two-dimensional 

relative burn area or fire size for all fires using UTM coordinates from fire-scarred trees. For 

simplicity, all scars assigned to a given year were treated as though caused by the same fire. I 

estimated that fire size was equal to the area of the smallest rectangle that could include all 

coordinates of recording-tree with its sides oriented along cardinal directions (minimum fire size 

= 1 ha). Although imperfect, this approach minimizes the effects of an unequal record through 

time and uneven distribution of fire record through space. The latter is particularly important at 

BMC where significant low and mid-elevation portions of the study area were not historically 

forested. Given the obvious lack of precision, fire size values are best treated as indices of 

relative fire size rather than as estimates of actual fire extent. I classified fires as small (<10 ha), 

medium (≥10 and <100 ha), large (≥100 ha), and landscape (≥200 ha) based on these criteria.  

In order to assess whether fire size varied spatially with fire frequency, I used a χ2 

goodness-of-fit test (α =0.05) to determine whether the proportion of fires in three size classes 

(small, medium and large) varied significantly among three groupings of PMFI estimates. 

Groupings were based upon PMFI estimates of:  ≤25 years; >25 and ≤50 years; and >50 years. 

Observed values were the proportions of fires in each size class assigned to each of the fire 

frequency groupings. Expected values were the overall proportions of fires in each size class 

regardless of fire frequency group. I conducted separate analyses for each fire-shed. I also 

assessed whether the seasonality of large fires was significantly different than that of all fires 

using a χ2 goodness-of-fit test (α =0.05) in which the observed values were the proportion of 
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large fires classified as early, middle, and late and the expected values were derived from the 

proportions of fires assigned in each of these three seasonality classes regardless of fire size. 

 Tree recruitment analysis 

I created species-specific recruitment chronologies for all plots by grouping pith dates 

into 10-yr bins. Pith dates for fire-scarred trees from outside of plots were included with those of 

the closest plot. Ages for fire-scarred trees were typically older than many plot trees therefore 

including these non-plot trees in recruitment chronologies provided greater temporal depth in the 

recruitment record. Values from the latter part of each record to the present were truncated 

because only trees with a minimum DBH of 20 cm were sampled.   

I graphically compared temporal variations in fire-size and tree-recruitment chronologies 

for each fire-shed to two indices of climate variability derived from independent, tree-ring 

reconstructions of climate variability. The Palmer Drought Severity Index (PDSI) is a high 

frequency (annual) measure of June through August drought. I averaged values for four grid 

points closely associated with the study sites (grid points 71, 72, 86, and 87; Cook et al. 2004). 

The Pacific Decadal Oscillation (PDO) is a measure of variability in north Pacific temperature 

patterns that vary at decadal scales and have been shown to influence climate and fire patterns in 

western North America (Westerling and Swetnam 2003, Kitzberger et al. 2007). I selected the 

McDonald and Case (2005) reconstruction because its length allowed for a longer period of 

comparison than did other indices considered.  
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Results 

 Plot elevation ranged from 2,365 to 3,231 m at BMC and from 2,195 to 2,689 m at LAW 

(Fig 3.1). In-plot slope estimates varied from 19 to 57 % at BMC and from 12 to 58 % at LAW. 

Across both sites, plots were located primarily on upper (40%) and middle (33%) slope positions 

with lower (17%) and ridge top (10%) positions represented to a lesser extent. Plot aspect at 

BMC was limited to a north to southeast range in bearing (346-127˚) but was largely 

representative of the study area. Aspect for 14 of 24 plots at LAW had a northwest to northeast 

bearing (315-45˚) while aspect for the remaining 10 plots varied somewhat evenly across the 

remaining spectrum with the exception that no plot was oriented in a predominantly south-facing 

(135-225˚) direction. Plots at BMC were located in pinyon-juniper and mountain mahogany 

woodlands at lower elevations, shrubland-steppe (with young conifer and mountain mahogany) 

and dry mixed-conifer forests at mid elevations, and limber pine and Englemann spruce-

dominated subalpine forest with some Douglas-fir and quaking aspen at higher elevations. Plots 

at LAW were pinyon juniper woodland on west and south slopes across the range in elevation, 

ponderosa pine and dry mixed conifer forests on north and east aspects, and a bristlecone pine 

stand on one upper elevation plot. Charred remnants were not tallied on all plots but were found 

on 7 of 12 plots at BMC and 16 of 22 plots at LAW.  

I sampled 674 trees in 24 plots (28.1 plot mean) at the BMC study site. Of these, 79% 

were live trees and the rest were snags (11%), logs (8%), and stumps (2%). I successfully cross-

dated 507 (75%) trees and identified or estimated a pith date for 470 of these. Fire-scars were 

dated on 38 plot trees. I sampled 85 (40 live) additional fire-scarred trees near plot perimeters 

and in between plots, most of which were limber pine (45%) or ponderosa pine (30%). Of these, 

I cross-dated 72 and assigned a pith date to 70. I dated 378 fire scars for a mean of 3.4 per tree. I 
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treated an additional 46 abrupt ring changes or injuries of uncertain origins as evidence of fire. 

Most of the trees at BMC that were not cross-dated were either older mountain mahogany (live 

and dead) with dark heartwood in which ring structure was extremely difficult to decipher or 

high-elevation (>3,000 m) conifer remnants with complacent ring patterns (little ring-width 

variability). Of the 526 trees with post-1200 pith dates, most were white fir (35%), limber pine 

(19%), pinyon pine (18%), and Douglas fir (11%) with lesser numbers of ponderosa pine, 

Englemann spruce, mountain mahogany, and quaking aspen.  

I sampled 730 trees in 24 plots (30.4 plot mean) at the LAW study site. Of these, 74% 

were live trees and the rest were snags (9%), logs (16%), and stumps (1%). I successfully cross-

dated 610 (84%) trees and assigned pith dates to 576 of these. Fire scars were dated on 45 plot 

trees. I sampled 88 (34 live) additional fire-scarred trees outside of plot perimeters and between 

plots, cross-dated 84, and assigned pith dates to 80. Ponderosa pine was the most common 

species represented among sampled fire-scarred trees (74%). I assigned calendar years to 371 fire 

scars for a mean of 2.9 per tree. I treated an additional 71 abrupt ring-width changes or injuries 

of uncertain origin as evidence of fire at this site. Most trees not cross-dated were pinyon pine 

with tight ring structure and many missing rings and Utah juniper which has a tendency to 

produce abundant missing and false rings. Of the 616 trees with post-1200 pith dates most were 

white fir (49%), ponderosa pine (20%) , and pinyon pine (19%) with small numbers of juniper 

(Utah and Rocky Mountain combined), bristlecone pine, and Douglas fir. 

 Fire frequency 

Fire-scarred trees (1-16) were associated with 14 of 24 plots (40-m radius) at BMC 

representing the full range in plot elevation (Figs. 3.2). PMFI estimates ranged from 11.2 to 
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106.0 years for nine plots in which fire was recorded on ≥ three trees and ≥ three years. I 

identified four non-plot clusters of three to five trees for which composite MFI varied from 7.8 to 

109.5 years. MFI for six pairs and eight individual trees ranged from 11.9 to 125.5 years before, 

and from 9.5 to 100.4 years after correction, for a total of 27 PMFI estimates at BMC. Across the 

fire-shed, PMFI was shortest for mid-elevation (2,500-2,800 m) forest types and became 

gradually longer with increasing elevation (Fig. 3.3). On average, PMFI estimates were shorter 

for chronologies sampled from lower and middle slope positions (mean 22.9, range 7.8-43.6 

years) than for those taken from upper and ridge positions (mean 84.2, range 11.2-109.5 years). 

Frequent surface fires most evident at mid-elevation stands ended abruptly in the middle to late 

1800s (Fig. 3.2). Although I was not able to date fire-scars from five mountain mahogany trees I 

sampled from woodland and shrub-steppe communities, their presence provided direct evidence 

that periodic fire helped to shape these communities historically. I was also unable to assign 

years to multiple fire scars for eight high elevation limber pine remnants. 

Fire-scarred trees (1-13) were sampled from 19 of 24 LAW plots of which 10 had ≥ three 

fire dates (Fig. 4). Uncorrected, composite MFI ranged from 25.9 to 125.3 years. After correction 

for three plots (tree number < three), plot-based, PMFI estimates ranged from 24.8 to 100.2 

years. I identified 10 non-plot clusters of three to four trees in which composite MFI varied from 

14.8 to 68.4 years. Mean fire interval for four pairs and 12 single trees ranged from 16.6 to 173.0 

years before correction and from 13.3 to 138.4 years after correction, for a total of 36 estimates 

of PMFI at LAW. Variation in PMFI estimates and elevation were not related (Fig. 3.3). 

Although average PMFI estimates were longer for chronologies sampled from lower and middle 

slope positions (mean 46.8, range 13.3-138.4 years) than for those taken from upper and ridge 

positions (mean 36.6, range 14.6-97.3 years), the relatively small difference and wide range 
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observed in both groups suggests that differences were also unrelated to slope position. Old tree 

ages and the lack of fire evidence in the form of fire scars or char for two low elevation pinyon-

juniper woodland plots (2C and 4D; Fig. 3.4) suggest that some stands of this landscape were 

largely unaffected by fire over very long (≥800 years) time periods.  For most point chronologies, 

evidence of surface fires ends in the late 1700s to early 1800s (Fig. 3.4).  

Contour plots (Fig. 3.5) in which lines reveal gradients in PMFI in comparison to 

topographic maps of fire-sheds (Fig. 3.1), allowed me to visually explore the integrated effects of 

topographic variables (elevation, aspect, slope) on fire-frequency spatial patterns. Although I 

expected that the relatively low density and uneven spatial distribution of MFI values would 

require caution in how this technique was used, I was pleased to see that the effects of 

topographic position were visually apparent for BMC as evidenced by the similarity between 

Figs. 3.1 and 3.5a, and to a lesser extent for LAW (Fig. 3.5b). Steep MFI gradients at BMC 

roughly correspond to steep north-facing slopes with longest MFI values associated with 

shallower soils on upper slopes. The 10-year contour line in the upper (west) end of the fire-shed 

(Fig. 3.5a) was an extrapolation effect created by the graphing software as there were no PMFI 

values from that part of the landscape below 20 years. The contour plot for LAW also shows 

regions of fire-frequency variation but does not account for stands (plots) with very long periods 

with no fire (e.g. plot 4D; 800+ years) because fire interval statistics could not be generated 

where fire scars were not sampled. Despite limitations, the contour plots suggest that point fire 

frequency changed abruptly over short distances and that those changes were related to variation 

in topography at moderate to fine scales. 

 Fire size 
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There were 99 years with fire at BMC and 124 at LAW. First to last fire dates span 640+ 

years at both sites (BMC 1267-1909; LAW 1294-1937; Figs. 3.2, 3.4). Most fires at both sites 

were relatively small. At BMC, 64% were classified as small (<10 ha) and 20% as medium-sized 

(≥10 and <100 ha). At LAW, 60% were classified as small and 16% as medium-sized (see 

examples Fig. 3.6). The earliest large (≥100 ha) and landscape (≥ 200 ha) fires at BMC were 

1538 (109 ha) and 1632 (366 ha), respectively. The largest fire was in 1835 (379 ha) with other 

landscape fires in 1691, 1709, 1751, 1782, 1794, and 1824 (Fig. 3.7). Seven additional years 

recorded large fires. The fire in 1824 was recorded in the highest number of point chronologies 

(11 of 27) for this site. Mean, minimum, and maximum intervals for large fires were 22, 1 and 67 

years. Mean, minimum, and maximum for landscape fires were 29, 11, and 59 years. The largest 

fire at LAW was in 1423 (Fig. 3.6; 447 ha). I classified 20 additional landscape fire years and 

eight large fire years (Fig. 7) the largest of which were in 1586 (384 ha), 1660 (307 ha), 1691 

(324 ha), 1707 (324 ha), 1765 (408 ha), and 1796 (353 ha). The fire in 1765 was recorded by 16 

of 38 point chronologies, the most for any fire at the LAW site. Mean, minimum, and maximum 

fire intervals for large fire years at LAW were 14, 1, 42 years. Mean, minimum, and maximum 

fire intervals for landscape fires were 20, 4, and 42 years. Last dates for large and landscape fires 

were respectively 1865 and 1835 at BMC and 1825 (both classes) at LAW.  

Fires of all size classes burned across the range of elevation at both fire-sheds. Mean 

proportions by fire-size classification for BMC sample points were 41% small, 27% medium, 

and 32% large. Results of the χ2 goodness-of-fit tests revealed that size-class proportions did not 

differ significantly from expected values for high (PMFI ≤25 years) and medium (PMFI >25 and 

≤50 years) fire-frequency groupings but did for the low (PMFI >50 years) fire-frequency 

grouping (α=0.05). In the latter case, fire-size proportions were 54% small, 26% medium, and 
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20% large, indicating that small fires had greater and large fires had lesser importance for stands 

that experienced longer fire intervals relative to stands in which fire intervals were shorter. Mean 

proportions by fire-size classification for LAW sample points were 30% small, 17% medium, 

and 53% large. Differences were not significant for any fire-frequency grouping indicating that 

fires of each size-class were proportionately distributed throughout the fire-shed irrespective of 

variation in fire frequency.  

Cumulative burn area for all fires at BMC was 4,507 ha, a total equal to more than seven 

times the approximate area of the fire-shed.  Of this total 3, 19, and 78% were attributed to small, 

medium, and large fires. Landscape fires accounted for 67% of the large-fire burn area. 

Cumulative burn area for all fires at LAW was 7,892 ha, a total equal to 15 times the area of the 

fire-shed. Of this, 1, 10, and 89% were attributed to small, medium, and large fires. Landscape 

fires accounted for 85% of the large-fire burn area for this fire-shed. Thus, even though small 

fires accounted for more than 60% of the total number of fires, they were responsible for only a 

small fraction of the area burned for both sites. Conversely, approximately one in five fires was 

classified as large fires which were in turn responsible for more than 80% of the area burned. 

Thus while years with relatively small fires were common in both fire-sheds, the majority of the 

area that burned did so during the less frequent years with large fires. 

I assigned unknown seasonality to 13 and 16% of BMC and LAW fire events, 

respectively. Ambiguous dormant season fires (inter-ring fire scars only) were the most common 

for both BMC (29%) and LAW (35%) sites. Of the remaining, I assigned fire seasonality as 28% 

early, 32% middle, 37% late, and 3% multi-season at BMC and 38% early, 21% middle, 36% 

late, and 5% multi-season at LAW. Results of the site-specific χ2 goodness-of-fit tests indicated 

that fire seasonality (early, middle and late seasons only) of large fires differed significantly 
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(α<0.05) from that of all fires at each site. The effect was only marginally significant (α=0.10), 

however, when the analysis was for both sites combined. The largest seasonal differences 

observed between all fires and large fires were: an increase of early-season fires (29 to 43%) and 

decrease in late-season fires (38 to 29%) at BMC and a decrease in middle-season fires (22 to 

11%) for LAW. Across both sites early-season fires increase from 35 to 44%, middle-season 

fires decreased from 27 to 19%, and late-season fires remained unchanged at 38%.  

 Tree recruitment 

I assigned a mean of 21.9 (range 4-36) post-1200 pith dates (plot and inter-plot trees 

combined) to plot recruitment chronologies at BMC.  There was a small pulse of recruitment for 

high elevation limber pine and Englemann spruce (plots 13C, 11C) in the late 1400s and early 

1500s (Figs. 3.7 and 3.8). There was no basis for making inferences regarding the role of fire 

during this period because the fire record lacks sufficient temporal and spatial depth; however, it 

appears that most of the plots associated with this sub-alpine association experienced sporadic, 

asynchronous tree recruitment for the 800 years of observation. In contrast, an easily recognized 

recruitment pulse occurred in the mid to late 1600s (Fig. 3.7) in which ponderosa and limber 

pines established early within an extended period of low fire activity that followed the landscape 

fire of 1632 (Figs. 3.6 and 3.7). The pulse is represented by recruitment in plots 13D, 11D, 14F, 

11E, 14G, 12F, and 13H (Fig. 3.8) and was the only event of its kind observed for ponderosa 

pine in the BMC record. The frequency and intensity of yearly drought during this period, as 

measured by annual PDSI fluctuations, was about average with the long-term record and 

contrasts with the ~30-year wet period that came immediately before. A multi-species 

recruitment pulse occurred in the early 1800s during a 30-year period bracketed by landscape 

fires in 1794 and 1824 and during a time when annual PDSI values were never strongly negative 
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indicating a lack of severe drought (Fig. 3.7). At the landscape scale, evidence is lacking of a 

recruitment response to a large-fire hiatus that occurred between 1752 and 1782. However, a 

strong recruitment surge in plot 14G suggests that the fire that was recorded in that plot in 1751 

and the fire-free interval that followed were important at the stand (plot) scale. Recruitment of 

white fir at BMC appears to have been asynchronous at the landscape scale with temporally 

distinct pulses occurring in different plots as illustrated for plots 13F, 14G, 14H, 12G, and 13I 

(Fig. 3.8). The strong post-1900 recruitment pulse of white fir and/or pinyon pine and the lack of 

evidence for conifer presence before the late 1800s (including remnants) for six plots (13G, 12G, 

12H, 13I, 11H, 11I) confirms that the mid-elevation, essentially treeless, shrub-steppe vegetation 

type was extensive until the late 1800s at BMC; a timing concurrent with the loss of frequent fire 

in forested stands of similar elevation (see plot 13H, Fig. 3.2). Similar early-1900s pinyon pine 

expansion into montane shrub-steppe communities was common throughout the Great Basin 

(Miller et al., 2008). Pinyon recruitment in plots located in persistent woodlands (12I, 12J, 11J) 

was mostly continuous to sporadic suggesting a lesser role for fire in structuring this type. 

Evidence of tree recruitment after the early 1900s is missing due to the 20-cm DBH minimum 

size imposed for inclusion in the study. 

I assigned a mean of 25.8 (range 5-39) post-1200 pith dates (plot and inter-plot trees 

combined) to plot recruitment chronologies at LAW. The tree recruitment record for LAW 

differs from that of BMC but with some parallels. Long-lived and remnant ponderosa, pinyon, 

and bristlecone pines and Douglas fir trees established throughout the 1200s (Fig. 3.7). Although 

numbers are relatively small they represent the survivors of what was likely a larger set of trees, 

most of which were not preserved as datable wood for the 700+ years that lapsed to the present. 

These trees provide a contrast to the almost complete void of recruitment dates for the 120 years 
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that followed starting at about the year 1300. This is contrary to what I expected based upon the 

climate proxies, both of which point to longer and deeper droughts during the 1200s than during 

the 1300s (Fig. 3.7). The fire record for this early period is inadequate to make inferences about 

its effects on recruitment. A pulse of recruitment (primarily ponderosa pine) began after the 

landscape fire in 1423 (see plots 6A, 4B, and 5C; Fig. 3.9) and persisted for perhaps 30-40 years. 

Recruitment overlapped a short drought-free period followed by long-term drought as indicated 

by the smoothed PDSI curve (Fig. 3.7). The record indicates a single relatively large fire in 1465 

interrupted an otherwise extended (83 years) fire quiescent period. A second pulse of primarily 

ponderosa pine recruitment occurs in the 1500s and is captured to some degree in the records of 

plots 6A, 6D, 5B, 5D, and especially 3B. During this time an 80-year (1506-1586) hiatus in 

landscape-scale fires was synchronized with what appears to have been a long period of 

favorable climate as indicated by lack of drought years (PDSI) and above average PDO (Fig. 

3.7). Ponderosa pine recruitment after that time has been sporadic with no pulses observed at 

either landscape or stand scales. Similar to BMC, recruitment of white fir at LAW was somewhat 

asynchronous at the landscape scale (with one major exception) with temporally distinct pulses 

occurring in separate plots in response to localized differences in timing of fire and fire-free 

periods (Fig 3.9). Probable mixed-species recruitment pulses started in the 1590s and persisted 

for several decades in plots 7B, 3A, 6D, and 4E and appear to be in response to a fire in 1586 

that chronologies show burned in the vicinity of each of these plots. Intermediate-sized fires in 

1607 (101 ha) and 1632 (181 ha) were exceptions to an otherwise long fire-quiescent period 

(1586-1660) during which time recruitment would have been somewhat favored by average 

climate conditions. The period between 1660 and 1730 included nine landscape fires and 

recruitment was largely flat at broad scales. A post-1700 recruitment pulse of white fir in plot 4B 
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appears to be a response to a fire in 1696 that burned in that plot (Fig. 3.8). No large fires were 

recorded and climate conditions were moderate between 1730 and 1763. Recruitment pulses 

during this period were of mixed species in plot 4A and of pinyon pine in plot 2A (Fig. 3.9). 

Although charred remnants were present at plot 2A, I found no fire-scar samples in the 

immediate vicinity of this plot rendering difficult inferences about disturbance and recruitment 

patterns for this plot. However, six point chronologies associated with nearby plots 3A and 3B 

recorded a fire in 1706 that if it had also burned in plot 2A, could have induced the observed 

recruitment surge in this plot. A widespread recruitment pulse in the late 1700s to early 1800s in 

plots 9X, 7D, 6A, 6C, 7E, 5A, 5C, 5D, and 3C (Fig. 3.9) provides a notable exception to the 

pattern of among-plot asynchrony and appears to be in response to disturbances associated with a 

large fire in 1765 (and possibly with another in 1763) and to have not been affected by 

subsequent landscape fires in 1781, 1792, 1796, 1800, 1818, or 1825 (Fig. 3.7). Smaller pulses 

later in the 1800s found in plots 9B and 7E were likely due to smaller-scale disturbance. Most 

old Utah juniper trees that co-dominated on old growth pinyon-juniper plots could not be cross-

dated, however as many as 1,445 rings were counted per tree. Although exact ages could not be 

determined (due to the unknown effects of false and missing rings), these trees were clearly very 

old. The lack of recruitment evidence in the late 1800s and 1900s is largely due to the 20-cm 

DBH minimum size limit imposed for inclusion in the. Plots 7C, 6B, 4D, and 2C showed no 

evidence of episodic recruitment.  

 

Discussion 

How did fire frequency vary within each fire-shed in relation to topography? 
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At the landscape scale, fire was a frequent visitor to both fire-sheds for several centuries, 

however the spatial distribution of surface fire was highly uneven, resulting in more than 10-fold 

differences in PMFI estimates in both fire-sheds. Differences in PMFI were somewhat related to 

variation in elevation and slope position at BMC but not at LAW. I did not attempt an evaluation 

of the effects of aspect on fire frequency at BMC because fire-scarred trees were sampled almost 

exclusively from north and east-facing slopes. There were two reasons for this sampling bias. 

First, the general slope was to the east resulting in no west-facing slopes in the fire-shed. 

Secondly, south facing slopes were either not historically forested or were occupied by 

combinations of pinyon, juniper, and mountain mahogany, species not well suited for preserving 

datable fire scars. Longer fire-free intervals were located on steep slopes where soils would have 

been relatively shallow and thus less able to produce continuous fine fuels (Figs. 3.1 and 3.5a). 

Longer fire intervals have been associated with higher fire severity (Fulé et al., 2003; Margolis 

and Balmat, 2009). However, that was not the case in this fire-shed where evidence of higher fire 

severity in the form of episodic recruitment was most pronounced for mid-elevation plots where 

fire was also most frequent (Fig. 3.8) and essentially absent in subalpine stands where evidence 

of nonlethal surface fire in the form of fire-scarred trees was common. Some evidence of 

variable recruitment rates in two of the persistent pinyon-juniper plots (plots 11J, 12J) suggests a 

mixed-severity fire regime with intermediate to long fire intervals for this type. 

The effect of aspect on fire frequency was not assessed for LAW for reasons similar to 

those given for BMC. Although the magnitude of variation in fire frequency at the LAW fire-

shed was as great as that of BMC, there was no relationship to elevation. The lack of an elevation 

effect in fire frequency at LAW was likely due at least in part to the lower maximum elevation 

for this fire-shed which corresponds to a range in elevation at BMC where fire was most 
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frequent. PMFI values at LAW were shortest for locations near ridge-tops (3A-4, 6A-2, 6A-3, 

7B-2; mean 16.3 years) and near drainage bottoms (3C-2, 4E-2, 5D-2, 5D-4; mean 19.7 years). 

Stands with longer intervals were spread across the elevational gradient suggesting that fire 

frequency was under fine-scale topographic control. For example, intermittent long and short 

PMFI values associated with samples taken from near the escarpment that defines the western 

boundary of the LAW fire-shed likely segregate based upon fine-scaled differences in soil depth 

not apparent in the topographic map (Figs. 3.1 and 3.5b). In addition, evidence of higher fire 

severity in the form of episodic recruitment was abundant but mostly asynchronous (Fig. 3.9) 

supporting an interpretation of a fire regime that produced mixed effects across stand-level rather 

than landscape-level spatial scales. I inferred very long fire-free intervals (up to 800+ years) for 

some old growth pinyon-juniper stands based upon old tree ages and the lack of fire evidence in 

plots. These stands were unaffected by the many fires that burned on all sides over the course of 

several centuries confirming the effectiveness of the fine-scaled topographic control of fire on 

this fire-shed.  

With an average of 10.4 years, the shortest PMFI values at BMC were associated with 

plots 13H and 14G and two closely associated non-plot clusters located in the southern (Burnt 

Mill Canyon) fork of the fire-shed (Figs. 3.1 and 3.2). Average PMFI for plot 12F and five non-

plot clusters near plots 12D, 12E, 12F, and 13F (elev. range 2,682-2932 m) was 26.7 years and 

represent the highest fire frequency within the northern (Mill Creek Canyon) branch of the fire-

shed. Slopes and aspects are similar across much of each of these sub-drainages and there is 

considerable overlap in elevation. A significant portion of the landscape that separates mid-

elevation forest stands in the two branches was occupied by shrub-steppe vegetation before 1900, 

thus fuels matrices were not continuous, implying some degree of fuel discontinuity between 
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north and south sections of the fire-shed. However, I was unable to deduce a topographic 

explanation for the more than two-fold difference in minimum PMFI values associated with 

these similar landscape elements. Instead I suggest that the higher fire frequency observed for the 

south drainage may have been due to differential ignition rates related to Native American use. 

Although clearly speculative, a case could be developed to support the hypothesis based upon an 

interest in bighorn sheep (Ovis canadensis), though alternative motives are plausible (Williams, 

2004). Periodic burning would maintain vegetation in an open, park-like or treeless state that this 

mammal requires (Risenhoover and Bailey, 1985; Singer et al., 2000). It would also result in a 

freshening of grass growth providing an additional attractant for these large herbivores. Fire 

might also have been used to drive game during the hunt (Williams 2004). Bighorn sheep also 

require escape cover in close proximity (<300 m), usually in the form of rocky ledges (Singer et 

al., 2000; McKinney et al., 2003) such as those found immediately south of  Burnt Mill Canyon 

but only at greater distances from the Mill Creek branch of the fire-shed. Bighorn sheep are 

known to have inhabited the Snake Range before Euro-American settlement. Whether due to 

natural or anthropogenic ignitions, fire was likely important in the maintenance of sufficient 

suitable habitat in the past and the absence of substantial burning over the past century has 

almost certainly contributed to a shortage of suitable habitat on this and similar mountains today.  

When did historic fire patterns change in these fire-sheds and what were the possible 

causes of change? 

The abrupt loss of frequent surface fire at BMC was more or less synchronous with Euro-

American settlement suggesting that the probable change was due to livestock-related removal of 

the fine fuels necessary for fire spread, disruption of Native American burning practices, or some 

combination of these factors (Pyne, 1982; Mandany and West, 1983; Covington and Moore, 
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1994; Kay, 1995). A similar change in fire regime occurred approximately 50 years earlier at 

LAW than at BMC and several decades before the introduction of large numbers of domestic 

sheep to the area. This pre-settlement change was similar to that observed for other (but not all) 

sites in a regional fire history study suggesting an alternate cause or causes given the timing of 

the change was not synchronous across sites (Chapter 2). Numerous studies report multi-decade 

reductions in either local or regional fire occurrence in the early 1800s (for examples see 

Swetnam and Baisan, 1996; Heyerdahl et al.; 2001; Brown and Wu, 2005; Skinner et al, 2008; 

Iniguez et al. 2009). This hiatus in fire activity corresponds to an extended cool period with 

reduced amplitude in inter-annual wet-dry oscillations, conditions favorable for reduced fire 

activity (Kitzberger et al., 2001). Thus climate might be invoked to explain the multi-decadal gap 

between fire regime change and livestock-induced changes in fuels for the LAW fire-shed and 

similar sites. However, a simple climate-based explanation fails to account for the inter-site 

variation in the timing of fire regime change observed in the regional study, nor does it clarify 

why the phenomenon was not observed at BMC or at other eastern Great Basin sites (Chapter 2). 

Here I offer an alternate hypothesis for the asynchronous truncation of fire regimes observed 

among BMC and LAW and the other regional sites. I propose that the observed asynchrony 

could be evidence of differential disruption of human ignition patterns in response to a major 

perturbation in the regional human population. Although a late-1700s arrival for Euro-American 

diseases to the region might be considered a bit overdue given much earlier spread in other parts 

of the continent (Thornton, 1987; Reff, 1991; Butzer, 1992), a delayed, disease-induced 

depopulation event is plausible given the low population densities of the hunter-gatherer 

inhabitants that occupied the Great Basin prior to Euro-American settlement (Simms, 2008). A 

spatially uneven reduction in anthropogenic burning would be expected as survivors repeatedly 
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adjusted occupation patterns on the heterogeneous landscape. Of course it is possible that 

changes in both climate and human ignition patterns interacted to produce the observed patterns.  

How did fire size vary within fire-sheds and through time?  

The apparent differences in the number of large and landscape fires between BMC and 

LAW are at least in part an artifact of differences in the distribution of fire-scarred trees within 

the two fire-sheds. The five eastern plots and associated inter-plot landscape at BMC collectively 

yielded few datable fire scars including just two that corresponded to years that matched fire-

years identified for points further west (upslope) in the fire-shed. This and the somewhat narrow 

shape of this fire-shed effectively reduced the area that could possibly be included in fire-size 

estimates. In contrast, fire-scarred trees at LAW are spread throughout the fire-shed, including 

much of the perimeter, and its shape is less narrow than that of BMC. Consequently 

proportionally fewer estimates of large and landscape fires should have been expected for BMC.  

Inferences regarding the spatial distribution of fires by size class have important 

implications regarding spatial heterogeneity of fire frequency. Iniguez et al. (2008) observed in 

the Santa Catalina Mountain of southeastern Arizona that study area differences in plot-level fire 

frequency were due primarily to the relative size and not frequency of widespread fires and 

implied a somewhat equal contribution from small fires. In that study local fire frequency was 

subject to the homogeneity and continuity of landscape-level fuels matrices as controlled by the 

surrounding topography. Though perhaps expressed at a finer spatial scale, I observed a similar 

pattern at BMC where the importance of small fires increased and large fires decreased in stands 

where fire intervals were longest. I inferred that this shift in relative importance for small and 

large fires applies primarily to upper slopes at higher elevations because that was where longer 
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fire intervals were concentrated. By extension, I also infer that the relatively higher fire 

frequency experienced on some parts of the landscape was not the product of a disproportionate 

number of small fires but instead resulted from proportional increases in fire numbers within 

each fire-size grouping. No such pattern emerged at LAW in spite of a wide range in point MFI 

estimates and an abundance of both large and small fires. At this site, differences in point MFI 

reflected parallel and somewhat equal differences in fire occurrence within each fire size class. 

Thus, it appears that fire frequency at LAW varied independently of fire size, suggesting strong 

fine-scale control of fire occurrence and spread. This was likely due to the combined effects of 

the broken topography and the vegetative heterogeneity that characterized this fire-shed.   

Fire seasonality analysis revealed that middle-season fires were not only less numerous 

than early and late season fires (most apparent after dormant season fires are divided between 

early and late season classes) but that they were proportionately less important when only large 

fires are considered. This result is counterintuitive for at least two reasons. First, without a strong 

monsoon which is atypical in the eastern Great Basin, fuel flammability should correlate with 

ambient temperature maximizing conditions for fire spread at or just after the hottest period of 

mid-summer. Second, lightning strike densities are less frequent in the early and late parts of 

summer, thus conditions for natural fire ignitions and fire spread should reach an optimum 

sometime in mid-season (Griffin, 2002; Schmidt et al., 2002; Westerling et al., 2003). A bimodal 

pattern in fire seasonality was therefore unexpected (see Chapter 2) and might be interpreted as 

indirect evidence for anthropogenic ignitions (Allen, 2002; Williams, 2004). An explanation for 

the direction of seasonal shifts associated with large fires from mid and late-season toward early-

season fire remains difficult to explain. 
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How did species-specific tree recruitment vary through time and space in relation to fire, fire-

quiescent periods, and climate? 

I observed evidence of episodic patterns of recruitment for conifer species both tolerant 

(i.e. white fir, Douglas-fir, Englemann spruce) and intolerant (i.e. limber pine, bristlecone pine, 

ponderosa pine, pinyon pine) to shade at both fire-sheds. Recruitment pulses were often 

synchronized with fire-quiescent periods manifest at stand to landscape scales. The composition 

of recruitment pulses, as recovered in the sampled record, varied through time and has likely 

been modified through differential rates of decay among species. Thus the record for fast-

decaying species (i.e. white fir, Englemann spruce) is primarily limited to later centuries. 

Multiple, temporally-distinct pulses of white fir are evident at the plot scale from the 1700s to 

early 1900s at BMC and from the 1600s to 1800s at LAW. The older ages at LAW may be due 

to slower decay and growth rates at this drier site. The asynchronous timing suggests that 

recruitment occurred during fire-quiescent periods that varied at fine spatial scales and that 

climate was not a primary factor. The result was a landscape mosaic of different-aged and multi-

aged patches of trees and treeless (recently burned) elements. An exception to this pattern was 

the widespread recruitment synchronization at LAW in the late 1700s and early 1800s, decades 

before the demise of large fires and about a century before the introduction of large numbers of 

domestic livestock by Euro-American settlers. This white fir-dominated surge of tree 

establishment followed a large fire in 1765 (408 ha) suggesting that this fire caused sufficient 

disturbance to promote new tree establishment across a wide area. A series of six landscape-scale 

fires over the next 60 years produced no observable negative impact on the young recruits of this 

fire sensitive species. Thus, knowledge of widespread fire or the lack thereof, is not sufficient to 

predict tree recruitment events without better understanding of how fire severity varied across 
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the landscape. Climate likely played a secondary role in regulating the timing of tree 

establishment as evidenced by the early 1900 recruitment pulse at BMC, a period of above 

average precipitation and no significant drought.   

Identifiable recruitment pulses for ponderosa, limber, and bristlecone pines were few in 

the 800-year record, all of which occurred prior to 1700 during fire quiescent periods. The most 

pronounced recruitment episodes for ponderosa pine were in the mid-1600s at BMC and early to 

mid-1500s at LAW. Both episodes appear to have been influenced by large fires that probably 

burned at high intensity at the locations where recruitment was most pronounced such as in plot 

13H at BMC and plot 3B at LAW. Although numerous fires were recorded at both of these plots 

after initial stand establishment, all appear to have been of low severity (in the plot), suggesting 

that crown fires were rare events once plots were dominated by this species. Similarly, there 

were few recruitment pulses in pinyon pine dominated stands though their timing was more 

recent reflecting a more rapid decay rate for this species on most sites.  

A rapid decline in the cumulative area of recent burns began in early-1800s at both fire-

sheds and ended in an almost complete loss of fire by 1825 at LAW and 1865 at BMC. 

Subsequently, stand densities and associated fuel loads have increased and forest composition 

and structure has become more homogenized at the landscape scale. The impact is greatest for 

the mid-elevation forests where fire-free intervals were shortest. In addition, historically non-

forested shrub-steppe landscapes at BMC that previously provided natural fire breaks are now 

largely stocked with young conifer and mountain mahogany trees. The higher-elevation sub-

alpine forests where historic fire intervals were longest have been the least affected by the altered 

disturbance regime. Loss in heterogeneity at both fire-sheds will result in a shift from fine-scale 

to landscape-level controls of fire increasing risks for catastrophic crown fire across landscapes 
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including old-growth stands that were previously low risk for severe fire. A recent example of 

such an event was the Phillips Ranch fire that burned ~670 ha on the west slope of the South 

Snake Range in 2000. Ignited by lightning in pinyon-juniper woodland, this fire became an 

active crown fire and raced upslope stopping near tree-line (3,350 m). Intensity was high 

resulting in near complete tree mortality within the perimeter including a major portion of what 

was the largest bristlecone pine-Englemann spruce stand on the mountain.  

What can be inferred about fire severity from tree recruitment patterns? 

The abundance of fire-scarred trees and recruitment pulses at both fire-sheds strongly 

favors an interpretation of a mixed-severity fire regime except for old growth pinyon-juniper 

stands at LAW in which fire had little impact for 800+ years. Fire severity varied spatially within 

individual fires and among fires that burned the same landscape at different times. Locally, 

severity was low enough through repeated fires to allow white fir, a fire-sensitive species, to 

survive. Conversely, at infrequent intervals, fires were severe enough to prompt regeneration of 

entirely new stands of fire-resilient ponderosa and limber pines. The possibility of uniformly 

severe fires exists but these would have been spatially-limited given the wide distribution of old-

aged trees and fire scars. It is also possible, perhaps likely that some fires, including some large 

fires burned in an entirely low severity, non-lethal manner. What is clear is that fire severity 

varied sufficiently through time and space to create and maintain mosaics of different-aged and 

multi-aged forest stands and in the case of BMC non-forested shrub-grass steppes at middle 

elevations and that the pattern differed at higher and some lower elevations by being more stable 

resulting in old-age stands.   
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Conclusions and management implications 

In this study I document multi-century variation in fire regime and tree recruitment at two 

eastern Great Basin fire-sheds. Topographic control of fire frequency was manifest at somewhat 

broader spatial scales at BMC where elevation and slope position had influence, than at LAW 

where they did not. This difference is likely due to the drier conditions and more broken 

topography associated with the LAW fire-shed. I observed no evidence of differences in fire 

severity associated with high-elevation stands and longer fire intervals. Fire frequency in 

persistent pinyon-juniper woodland was more difficult to ascertain but clearly ranged from 

moderate to very long intervals associated with old-growth stands on some fire protected sites at 

LAW. Differences in mid-elevation fire frequency between north and south branches of the 

BMC fire-shed are difficult to explain without invoking the possibility of unequal ignitions of 

human origin. A majority of fires were small but the overall impact of the less-frequent large 

fires was much greater based upon their larger cumulative burn area. The spatial distribution of 

fires by size was largely independent of fire frequency except on BMC stands with long fire 

intervals where small fires became more important relative to large fires. Tree recruitment was 

mostly continuous in high (BMC) and low (LAW) elevation old-growth stands (plots) but was 

highly episodic through a broad range of middle elevations where fires were most frequent. 

Recruitment pulses were usually synchronized at the stand scale by multi-decade, fire-quiescent 

periods and often followed large fires. Climate likely played a secondary role in moderating 

disturbance-induced recruitment. The spatial scale and somewhat asynchronous nature of those 

pulses created vegetation mosaics that were compositionally and structurally dynamic. Few trees 

were able to establish or persist in the mid-elevation sections of shrub-steppe at BMC prior to 

1900. Changes in fire regime that began during the early (LAW) to mid-1800s (BMC) in concert 
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with selective logging (BMC) and other management practices resulted in a shift in mid-

elevation forest composition to one dominated by the shade-tolerant and fire-sensitive white fire. 

Shrub-steppe communities are in various stages of invasion by white fir, pinyon pine, and 

mountain mahogany at BMC. Consequently, vegetation is currently more homogeneous and 

fuels more continuous than any time for at least the past several centuries.  

The challenge for managers is to restore fire resilient vegetation to these and similar fire-

sheds on comparable landscapes using an appropriate combination of natural processes and 

active management. A passive management strategy is not recommended given the degree of 

departure in both fire regime and vegetation composition and structure. Priority should be given 

to restoring structural heterogeneity at mid-elevations where the fire regime and vegetation 

(fuels) are furthest removed from historical conditions. Objectives and strategies should be 

developed for both mixed-conifer forests and shrub-steppe types where they apply. I recommend 

incorporation of appropriate combinations of spatially-limited fire and fire-surrogate treatments 

that over time recreate a mosaic of vegetation conditions. Treatment severity should be mixed 

with care taken to preserve individuals of fire-resilient species (i.e. ponderosa pine) that have 

declined over the recent past. Early and late-season fires would mimic the historic seasonality 

pattern and have the added advantage of ease of control. A reduction in the risk for extreme fire 

events resulting from high fuel loads and landscape homogenization over the past 150 years will 

require sustained active management by those charged with stewardship of these lands. 
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Figure 3.1. Grids of plots (500 m spacing) for fire-sheds located on the South Snake (BMC) and Wah 

Wah (LAW) Mountain Ranges. Plots are distinguished as squares (fire scars present) or diamonds (fire 

scars absent). Triangles designate locations for non-plot, fire-scarred sample trees or tree clusters (max 

area = 0.5 ha). Contour lines indicate elevation changes at 40-m intervals. Approximate area for each fire-

shed is BMC 600 ha and LAW 525 ha. 
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Figure 3.2. Fire history chronologies for the Burnt Mill Canyon (BMC) fire-shed located on the South 

Snake Range, Nevada. Bottom axis designates calendar year (1200-2000). Horizontal lines represent plot 

composite chronologies (top group), cluster composite chronologies ( ≥3 trees; middle group), and paired 

and single-tree chronologies (bottom group). Within groups, chronologies are arranged by elevation with 

highest elevation plots or trees at the top. Alphanumeric codes on the right indicate plot or cluster 

identity. Solid lines indicate chronologies are in recording status. Solid vertical lines are years with fire 

scars and open vertical lines designate injuries or abrupt changes in ring-widths. 
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Figure 3.3. Relationship between elevation and PMFI estimates for two fire-sheds in the South 

Snake Range, Nevada (BMC) and the Wah Wah Mountain Range, Utah (LAW) fire-sheds. 
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Figure 3.4. Fire history chronologies for the Lawson Cove (LAW) fire-shed located on the Wah Wah 

Mountain Range, Utah. Bottom axis designates calendar year (1200-2000). Horizontal lines represent plot 

composite chronologies (top group), cluster composite chronologies ( ≥3 trees; middle group), and paired 

and single-tree chronologies (bottom group). Within groups, chronologies are arranged by elevation with 

highest elevation plots or trees at the top. Alphanumeric codes on the right indicate plot or cluster 

identity. Solid lines indicate chronologies are in recording status. Solid vertical lines are years with fire 

scars and open vertical lines designate injuries or abrupt changes in ring-widths. 
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Figure 3.5. Two-dimensional contour plots of fire frequency for BMC (a) and LAW (b) fire-sheds. 

Contour lines designate gradients in MFI (10-year increments) based upon UTM coordinates for 27 

(BMC) and 36 (LAW) PMFI estimates determined from fire-scar-based fire chronologies. 
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Figure 3.6. Examples of fire size (burn area) estimates from BMC and LAW fire-sheds where size is 

equal to the area of the smallest rectangle that is able to include all coordinates of trees recording fire for 

the year with sides oriented in cardinal directions. Fire-shed, year, and estimated burn area (ha) are given 

for each example. Contour lines indicate elevation changes at 40-m intervals. 
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Figure 3.7. Fire size (burn area) estimates and tree recruitment for BMC and LAW fire-sheds (1200-

2000). Tree recruitment is in 10-year bins. For BMC, red = single-needle pinyon pine, green = white fir, 

yellow = ponderosa pine, dark blue = quaking aspen and curlleaf mountain mahogany, rose = Douglas fir, 

light blue = Englemann spruce, and grey = limber pine. For LAW, black = Utah and Rocky Mountain 

juniper and grey = Great Basin bristlecone pine. Annual variation in Palmer Drought Severity Index 

(PDSI) and Pacific Decadal Oscillation (PDO) are plotted for visual comparison. Negative PDSI indicates 

drought where the degree of departure from the mean (center line) infers drought intensity. In the 

southwest USA, negative (positive) PDO is associated with drought (pluvials). Decadal-scale variation in 

PDSI and PDO is shown by line smoothed with a cubic spline that retains 50% of variation over segments 

of 25 years.  
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Figure 3.8. Individual panels show tree recruitment by plot (1200-2000) at the BMC fire-shed with plots 

arranged from top to bottom in order of decreasing elevation. Alphanumeric codes indicate plot locations. 

Recruitment dates are based on pith dates placed in 10-year bins. Tree species are as follows: red = 

single- needle pinyon pine, green = white fir, yellow = ponderosa pine, dark blue = quaking aspen and 

curlleaf mountain mahogany, rose = Douglas fir, light blue = Englemann spruce, and grey = limber pine. 
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Figure 3.9. Individual panels show tree recruitment by plot (1200-2000) at the LAW fire-shed with plots 

arranged from top to bottom in order of decreasing elevation. Alphanumeric codes indicate plot locations. 

Recruitment dates are based on pith dates placed in 10-year bins. Tree species are as follows: black = 

Utah and Rocky Mountain juniper, red = single-needle pinyon pine, green = white fir, yellow = ponderosa 

pine, rose = Douglas fir, and grey = Great Basin bristlecone pine. 


	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature Cited

	Chapter 1 – Composite and Single-Tree Fire Chronologies From Heterogeneous Landscapes: Strategies for Estimating Point Mean Fire Interval
	Abstract
	Introduction
	Study Sites
	Field Methods
	Laboratory Methods
	Results
	Discussion
	Acknowledgements
	References

	Chapter 2 – Climate and Human Influences on Historical Fires (1400-1900) in the Eastern Great Basin (USA)
	Abstract
	Introduction
	Study Area
	Biogeographic setting
	Human occupation

	Methods
	Historical surface fire chronologies
	Fire seasonality
	Climate effects on fire occurrence

	Results
	Fire seasonality
	Climate effects on fire occurrence

	Discussion
	Fire seasonality
	Climate effects on fire occurrence

	Conclusions
	Acknowledgements
	Literature Cited

	Chapter 3 – Historic fire regime and forest variability on two eastern Great Basin fire-sheds (USA)
	Abstract
	Introduction
	Study Fire-sheds

	Methods
	Field sampling and sample preparation and analysis
	Fire frequency analysis
	Fire size analysis
	Tree recruitment analysis

	Results
	Fire frequency
	Fire size
	Tree recruitment

	Discussion
	Conclusions and management implications
	Acknowledgements
	Literature Cited


