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Abstract

Components of a quantitative risk assessment wervduped by simulation of burn
probabilities and fire behavior variation for 13defplanning units (FPUs) across the
continental U.S. The system uses fire growth satnah of ignitions modeled from
relationships between large fire occurrence andfitteedanger index Energy Release
Component (ERC). Simulations of 10,000-50,000 yeeere performed using artificial
weather sequences generated by time-series analysecorded ERC values at local
weather stations. Also needed were monthly distions of wind speed and direction, as
well as spatial data on fuel and topography. Eingpression was represented by a model
of the probability of fire containment by suppressiorces, based on fire growth rates,
days since ignition, and fuel type. Simulated ealwf burn probability generally fell
within a factor of three of observed values. Ag¢ thixel level, burn probabilities vary
markedly based on differences in fuels, weathed ®&pography. The slope of the
frequency-magnitude distribution of simulated &iges was compared to historic records
in each region, demonstrating that the model preduae size distributions similar to
historic patterns. Because model parameters indlodéy a limited suite of weather, fuel,
and suppression variables, this result is integoreib mean that observed fire size
distributions are a function of the joint distritarts of spatial opportunities for fires to
grow to different sizes (dependent on fuels andti@mnlocation) and temporal variability
in the length of weather sequences conducive ® dimowth. A contribution of this
research is the practical aspect of performing &maulations at national scales for
operational planning and ecological research.
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1. Introduction
A national assessment of wildfire risk providesoagistent method for

understanding and comparing threats to highly \chhesources and for planning
management activities that mitigate those riskshis article we present a system that



employs fire growth simulation for estimating th@lpability of wildfire for the entire
continental U.S. on a 270m grid and evaluate itftopmance compared to historical
records.

The simulation system focuses on large fires siheg are responsible for the
majority of area burned, and thus heavily influebaen probabilities (Podur, Martest al.
2009; Strauss, Bednatral. 1989). We use the term “large” in a general waseter to fires
that escape initial attack. The probability of a@aaburning depends on its proximity to
ignitions as well as the spatial and temporal pgees that promote and restrict fire spread
across a landscape. Among these processes aressipprefforts, which presumably have
reduced burn probabilities during the past cenfLityell, McKenzieet al. 2009) compared
to previous centuries (Stephens, Madial. 2007). Burn probabilities vary across several
orders of magnitude in the continental U.S. duestgation in vegetation, climate, and
human activities (Parisien and Moritz 2009; Schiritiknakiset al. 2002; Schroeder and
Buck 1970). This variability in fuels, weather, aogpography, as well as different
suppression responses and the rarity of largefieats, contributes to difficulty in risk
modeling. The large-fire simulation system preseiere accounts for spatial and temporal
variation in weather and fuel moisture, and is tégaf running tens of thousands of years
of simulations in order to capture rare fire events

2. M ethods

The modules of the large-fire simulator, calledriRSare described in this section. The
modules include weather generation, fire ignitidite, suppression, and fire growth.

Weather Generation. Due to the paucity of large fires in our short mwodescord
and the brief length of weather records which tgjtycextend over only 10-50 years for
most weather stations, a practical method was weledeenerating artificial weather
sequences with the same statistical propertiesrasrt weather records. This simulated
weather stream enables generation of thousandsan$ wf daily weather scenarios in order
to produce moderately stable and repeatable estnaditourn probability. Weather data
were obtained from National Fire Danger Rating 8&ys(NFDRS) Remote Automated
Weather Stations (RAWS) located throughout the (Z&chariasson, Zellet al. 2003)
(www.fs.fed.us/raws).

The continental U.S. is divided into 134 Fire PlaignUnits (FPUs), and a single
weather station which represented local conditiwas chosen for each unit. The
environmental and weather variables required ferlsehaviour calculations (Rothermel
1972) consist of wind speed, wind direction, anel fanoistures by percentage of dry weight
for six fuel categories. Live fuels consist of ta@mponents, woody and herbaceous, while
dead fuels are divided by size into four time-l&gses: 1 hr, 10 hr, 100 hr, and 1000 hr,
with these numbers signifying the amount of timekes for fuels in these classes to
asymptotically approach equilibrium in fuel moigumder steady conditions (Fosberg and
Deeming 1971). Fuel moisture for these six categas calculated from daily weather
records: temperature, humidity, solar radiatiord precipitation (Andrews 1986; Deeming,
Burganet al. 1977; Fosberg and Deeming 1971). We used thédinger rating index the
Energy Release Component (ERC) of the U.S. NatibmalDanger Rating System



(NFDRS) as a proxy for the influence of fuel morston fire behaviour, as it reflects daily,
seasonal, and regional variability for differeméfclimates of the U.S. (Andrews,
Loftsgaarderet al. 2003) (Figure 1).
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Time series analysis was used to model seasonaranal variability in fuel
moisture using ERC as a proxy. The weather geeratiodule captures: 1) the historic
trend in ERC throughout the year, using a polynéfittad to daily values over the period
of record, 2) daily standard deviations in ERC, @hthe mean temporal autocorrelation in
ERC values, which captures how an ERC value isri#gr@ on the values of the preceding
days. ERC exhibits strong autocorrelation due édtitne lag of larger woody fuels such as
the 100-hr and 1000-hr categories, which take diay@ to equilibrate (Fosberg and
Deeming 1971). Using the three time-series compisrarove, thousands of years of
artificial ERC sequences were generated as inputeetignition and fire growth
modelling. Statistical methods are detailed in Einet al. (In review).

Fuel moistures were then derived from ERC valissgulook-up tables created for
each of the 134 weather stations using the avdratm@ric fuel moisture content for each
ERC percentile range. Because FSim was designgchtdate only large fires, which
typically burn under extreme weather conditionsCOEftegories were set at thé"8ed",
and 97" percentiles.

Variability in winds was characterized by joint pebility distributions of speed and
direction during the afternoon active burning hdoerseach month of the year. LFSim
randomly sampled these monthly distributions t@t@é¢he daily wind speed and direction
used for fire behaviour simulation. This methoduasss wind probabilities are
uncorrelated with fuel moistures and random from tdeday.

Included in each artificial “year” of weather datiagrefore, were 365 daily ERC
values based on historic trend and variability,dvpeed, wind direction, and the fuel
moisture values based on the simulated ERC trenakder to estimate burn probabilities in



areas with infrequent fire, which can have fireureences of more than 500 years, the
simulation used 10,000-50,000 years of simulateather streams.

Largefireignitions. The relationship of historic large fire ignitionstiwvERC was
characterized by logistic regression for each FRub(ews, Loftsgaardeet al. 2003;
Martell, Otukulet al. 1987; Preisler, Brillingeet al. 2004) (Figure 2a). This logistic
regression models the probability of at least @ngd fire starting on a particular day, given
the ERC. The threshold for determining what iargé fire is somewhat subjective, and
was assigned to each FPU based on historic fies sizgetation, and topography. Based
on the simulated ERC for each day, FSim makesdorardraw from the probability
distribution determined by the logistic regressiand if there is at least one large fire start,
a second draw is made from the empirical distrdyutif the number of historic large fire
starts per day for each FPU. Figure 2b showstt@recal distribution of fire starts for a
sample FPU. It is most common to have only onecléirg start on a given day, but in the
case of large lightning storms, 20 or more largesfmay start in an FPU on one day. The
location of fire ignitions was determined randoniypwever, future versions of FSim will
have spatially driven ignitions weighted towarddtions with higher historic large fire
occurrence.
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Figure 2. Examples of (a) logistic regression predicting pihebability of at least one large fire
starting on a given day as a function of ERC, \utictions plotted for four different minimum firg¢
sizes (fires greater than 4 ha, >120 ha, >250rith>a200 ha), and (b) an empirical distribution
function derived from observed fire starts. Thedsandicates the number of large fires starting Rd
a given day, and the y-axis indicates the numbdnmas this occurred in the historic record.
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Fire suppression. The effect of fire suppression efforts on large 8ize is not well
understood, but was represented in this systemsbgtiatical model of containment based
on large fire records from 2000-2005 (Finney, Geéiret al. 2009). Probability of
containment is higher: 1) in non-forested fuelsg@jing periods of slow growth, and 3)
with increasing fire duration. Fires are terminaséachastically based on these containment
probabilities.



Fire growth and behavior. FSim starts at the beginning of the calendar yaa,
determines on each day whether there are any mewtérts. Each fire grows from its
ignition point using as inputs the sequence ofydaalues of ERC, wind direction, and
wind speed generated by the simulated weathemstigiae growth is performed by a
minimum travel time (MTT) algorithm, which findsefshortest travel times along nodes of
a regular lattice (in this case, the corner of éat®m cell) overlain across a landscape
(Finney 2002). The MTT algorithm was enhanced tongevariations in burning
conditions and include spotting from torching tré&kbini 1979). A series of fire behavior
calculations (Finney 1998; Finney 2006) yield tpeead and intensity of surface fire
(Rothermel 1972) and crown fire (Rothermel 1991n Wdagner 1977). Fireline intensity in
units of kW/m is calculated at each node; intenisitiater used to estimate flame lengths
and thus fire effects (Byram 1959).

On days when ERC dropped below th& g@rcentile, fire spread was not
simulated. Daily fire spread calculations alscuiegd determining the length of the
afternoon “burning period” when fuel moistures En@est and fires are most active. The
burning period increases as fuels become drierl@rgths of these periods is uncertain,
but for FSim they were fixed at 1 hours, 3 hours| & hours for the &%) 90", and 97
percentile ERC conditions, respectively.

Fires are “extinguished” by the model by one of twethods: 1) ERC drops below
a threshold value, indicating the end of the feason, or 2) the suppression model
determines the fire is contained.

Model Validation. Output variables from each FSim run include: &)ltkirn probability

for each 270m cell, determined by counting the nemab times each cell burned and
dividing by the number of years in the simulati@hthe distribution of fire areas, by FPU,
and 3) the conditional probability distributionftdme length for each 270m cell. These
outputs were compared with historic fire recordstlie purposes of model validation. The
discussion below focuses on validation of burn philities; future work will focus on
validation of flame length outputs.

Historic fire records were obtained from feder#dte, and county agencies from
circa 1970-2008, although these dates vary somelwhBPU. Fortuitously, this time span
corresponds well with that of the weather statiatadised in the fire simulations. Fire
records suffer from some inconsistencies in repgretween jurisdictions as well as errors
of omission. Records were screened for obvioug®rath duplicate entries removed and
some location information corrected. Sources okuamty remain, especially errors of
omission, with the net effect being underestimatbthe number of large fires and area
burned. These errors are more likely in the casardil fires, which are not included in
this simulation.

Two metrics for comparing simulated and observeslgatterns were: 1) mean burn
probability for each FPU, and 2) the fire size rilsttions for each of eight Geographic
Areas (a regional collection of FPUs delineatedi@er purposes of fire suppression
activities). The first metric, mean burn probalilivas calculated for each FPU by
summing the area burned by all fires, and dividigghe total area in each FPU and the
number of years in the record.

Fire size distributions compiled from the simulataata were plotted on
logarithmic axes for each FPU along with the histdrstribution of fires for the



corresponding Geographic Area (GA). Historic fiees grouped by GA since too few large
fires exist in the record to plot them by FPU, hessathe historic records cover a much
shorter span of time than the simulation data weilends over thousands of years. The
slope parameter of each log-transformed fire siggilbution was calculated by means of
robust regression using Kendall’'s Tau statistian($868) which does not assume normality
of the residuals. The slope parameter of the fae distributions is the parameter of
interest since it characterizes the relative freqyef smaller versus larger fire events,
while the intercept parameter changes with rejoettte total number of fires. We utilized
the median frequency in each size category asdpertlent variable instead of the actual
frequencies which are sparse for the larger fzessiln order to compare the slope
parameters, the 95% confidence intervals for ebgreoefficient were calculated.

3. Results

Mean annual burn probabilities for each FPU werpped for the historic (Figure
4a) and simulated data (Figure 4b), with burn pbdhgs varying across four orders of
magnitude (1x18 to 1x10%). The observed and simulated burn probabilitiesespond
reasonably well with each other, as evidenced byaliinspection of these maps and a
scatterplot (Figure 4c), with burn probabilitiesxgeally higher in the west than in the east.
This pattern results primarily from lower fuel miie values in the west, as well as vast
expanses of unroaded wildlands. Burn probabilitiepped at the pixel level reveal more
complex fine-scale patterns driven by local vegeteand topography (Figure 4d).

The slopes of simulated fire size distributionsevalt reasonably linear and
negative when plotted in log-log space, characdtera$ power-law distributions (Figure
5b). The slopes of simulated fire sizes by FPU vgemreerally similar to those of historic
fire sizes by GA (Figures 5b and 5c), although sear@bility is expected since FPUs
within a GA vary in terms of fuels and weather.Ufigs 5a-c show results for the California
GA. Results for the seven other GAs are given iméyet al., In review. The slope of the
historic fire size distributions fell between apyiroately -1.4 and -1.6 for all GAs,
considering the 95% confidence interval. In theifGalia GA, Great Basin GA, Northwest
GA, and Rocky Mountain GA, the majority of configdenintervals of the slope parameters
of the FPUs overlapped with the value calculatedife GA. In the Eastern Area GA,
Northern Rockies GA, Southern GA, and Southwest tBA slope values of the majority of
FPUs were different from that of the GA as a whBlecause the total number of fires in
the 20-30 year historic record is almost alwaysdothan that of the 10,000-50,000 year
simulations, the historic data curve plots beloat thf the FPUs. The largest simulated fires
were larger than those in the historic record,wack likely driven by rare extreme
sequences of fire weather.

Where an FPU’s mean annual burn probability wasentfzain an order of magnitude
or 1%l/year different from historic values, onelwé following adjustments was made to the
model parameters: 1) the weather station was sedtth a station with ERCs, wind speeds
and directions more typical of the region, 2) theimum large fire size was altered to
better convey the size of fires relative to neigimgp FPUSs, or 3) the rate of spread was
adjusted in one or more fuel models (this occumedt commonly in grass and shrub
models with extremely high rates of spread, whi@ymmave over-estimated the true rate of
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spread given fuel conditions on the ground). Adnesits were made to approximately one-
third of the FPUs.

Simulations were also run without the fire suppi@sslgorithm which, as
predicted, caused most fires to grow to largerssared flattened the fire size distribution.
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Figure 3. Comparison of burn probabilities for the contirid.S.: a) annual historic burn
probabilities by FPU, b) annual simulated burn piulities by FPU, ¢) modeled vs. historic burn
probabilities for all 134 FPUs, d) map of burn gbHity outputs at 270m resolution.
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4. Discussion

This project demonstrates that continental-scaddiasimulation of wildfire burn
probabilities, a task not previously attempted@soming practical in terms of data
availability, computing requirements, and modellaomponents. While this project was
motivated by a need for risk assessment, the segrdsent the opportunity for research on
fire patterns and their causes over eco-regioresc&bllowing adjustments in model
parameters in approximately one-third of the FFR&m captured the historic trends in
burn probability and fire size distributions, aas$éto the standards of precision of historic
fire records. The consistency, reliability, andehspan of fire records currently limit the
accuracy of modelling for areas as large and hgésreous as the continental U.S.

The most common adjustment to model parametersedagtion in the rate of
spread for two grass and shrub fuel types mappadAbiDFIRE, which were found to
produce excessive fire sizes and spread ratedinited need for such adjustments in a
minority of FPUs suggests that the root issueduslespecific or region-specific; otherwise
adjustments would be necessary for most FPUs. gbeegated spatial resolution
(LANDFIRE data was resampled from 30m to 270m dellsrder to achieve practical
simulation times) or temporal resolution (only avied direction and speed was assigned
for each day) could have produced over-predictiothése fuel types. Conversely, variation
in fuels at the sub-270m scale, such as streamsoand, can impede fire growth but is not
represented in the model (Reed and McKelvey 20@&tR, Aveneet al. 1999; Yang, He



et al. 2008). In addition, the use of weather data frasingle station per FPU may have
contributed to disparities between observed andigied burn probabilities.

Close correspondence between simulated and obsimeaize distributions
suggests that LFSim captures the spatial and teahfamtors that both contribute to and
limit fire growth. Specifically, these results ingghat the observed power-law distribution
of fire sizes is governed by the joint distributioinspatial and temporal opportunities for
fire growth and extinguishment (Malamud, Moretral. 1998). In the simulations,
extinguishment and growth opportunities resultednifthe combination of: 1) ignition
location relative to spatial patterns in fuels &mgbgraphy, 2) fire weather sequences
subsequent to the ignitions, and 3) the statispioatbability of containment dependent on
weather. Reed and McKelvey (2002) proposed the ggmeral argument: that competing
probabilities of growth and extinguishment could/érthe distribution of fire sizes, but not
the observed power-law behavior. We found powerfleavsize distributions in both
historical and simulated data over a wide rang&@®fizes across the U.S. The fuel layers
are not updated yearly to reflect burning, andsmnulation does not allow for spatial
interference from burned patches as proposed bypggnized criticality (Bak, Cheet al.
1990; Bak, Tangt al. 1988; Malamud, Moreiet al. 1998; Moritz, Moraist al. 2005).
Thus, our findings suggest there are probably alb@urof explanations for power-law
distributions of fire sizes.

5. Conclusions

Continental-scale assessment of wildland fire bgkepeated fire simulations was
shown to be practical. Simulated burn probabilided fire size distributions showed
reasonable correspondence to historical valuepatterns, as well as the results of
previous studies (Littell, McKenzig al. 2009; Malamud, Millingtoret al. 2005; Martell
and Sun 2008; Moritz, Moragt al. 2005). LFSim provides for the first time a methlodyy
for evaluating: 1) fire management options, through of alternative suppression
algorithms or no suppression, and 2) land manageopions, by analysis of alternative
landscape inputs including stands with fuel treatinseich as prescribed fire. Properly
implemented fuel treatments can achieve the goato$ystem restoration, while also
reducing flame lengths and slowing rates of spredut;h in turn may reduce burn
probabilities of the adjacent landscape (Ager, Eyret al. 2007). Risk mitigation to highly
valued resources could be achieved by carefulligded fuel treatments (Calkin, Ager
al. 2010). Much work remains to be done by naturaluese specialists and economists
concerning the responses of highly valued resouccéses of various severities.
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