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Abstract 
 
Components of a quantitative risk assessment were produced by simulation of burn 
probabilities and fire behavior variation for 134 fire planning units (FPUs) across the 
continental U.S.  The system uses fire growth simulation of ignitions modeled from 
relationships between large fire occurrence and the fire danger index Energy Release 
Component (ERC).  Simulations of 10,000-50,000 years were performed using artificial 
weather sequences generated by time-series analysis of recorded ERC values at local 
weather stations.  Also needed were monthly distributions of wind speed and direction, as 
well as spatial data on fuel and topography.  Fire suppression was represented by a model 
of the probability of fire containment by suppression forces, based on fire growth rates, 
days since ignition, and fuel type.  Simulated values of burn probability generally fell 
within a factor of three of observed values.  At the pixel level, burn probabilities vary 
markedly based on differences in fuels, weather, and topography.  The slope of the 
frequency-magnitude distribution of simulated fire sizes was compared to historic records 
in each region, demonstrating that the model produced fire size distributions similar to 
historic patterns. Because model parameters included only a limited suite of weather, fuel, 
and suppression variables, this result is interpreted to mean that observed fire size 
distributions are a function of the joint distributions of spatial opportunities for fires to 
grow to different sizes (dependent on fuels and ignition location) and temporal variability 
in the length of weather sequences conducive to fire growth. A contribution of this 
research is the practical aspect of performing fire simulations at national scales for 
operational planning and ecological research. 

 
Keywords: fire simulation, fire risk assessment 
 
 

1. Introduction 
 

A national assessment of wildfire risk provides a consistent method for 
understanding and comparing threats to highly valued resources and for planning 
management activities that mitigate those risks. In this article we present a system that 
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employs fire growth simulation for estimating the probability of wildfire for the entire 
continental U.S. on a 270m grid and evaluate its performance compared to historical 
records. 

The simulation system focuses on large fires since they are responsible for the 
majority of area burned, and thus heavily influence burn probabilities (Podur, Martell et al. 
2009; Strauss, Bednar et al. 1989). We use the term “large” in a general way to refer to fires 
that escape initial attack. The probability of an area burning depends on its proximity to 
ignitions as well as the spatial and temporal processes that promote and restrict fire spread 
across a landscape. Among these processes are suppression efforts, which presumably have 
reduced burn probabilities during the past century (Littell, McKenzie et al. 2009) compared 
to previous centuries (Stephens, Martin et al. 2007). Burn probabilities vary across several 
orders of magnitude in the continental U.S. due to variation in vegetation, climate, and 
human activities (Parisien and Moritz 2009; Schmidt, Menakis et al. 2002; Schroeder and 
Buck 1970). This variability in fuels, weather, and topography, as well as different 
suppression responses and the rarity of large fire events, contributes to difficulty in risk 
modeling. The large-fire simulation system presented here accounts for spatial and temporal 
variation in weather and fuel moisture, and is capable of running tens of thousands of years 
of simulations in order to capture rare fire events. 

 
 

2. Methods 
 

The modules of the large-fire simulator, called FSim, are described in this section. The 
modules include weather generation, fire ignitions, fire suppression, and fire growth. 

 
Weather Generation. Due to the paucity of large fires in our short modern record 

and the brief length of weather records which typically extend over only 10-50 years for 
most weather stations, a practical method was needed for generating artificial weather 
sequences with the same statistical properties as current weather records. This simulated 
weather stream enables generation of thousands of years of daily weather scenarios in order 
to produce moderately stable and repeatable estimates of burn probability. Weather data 
were obtained from National Fire Danger Rating System (NFDRS) Remote Automated 
Weather Stations (RAWS) located throughout the U.S. (Zachariasson, Zeller et al. 2003) 
(www.fs.fed.us/raws). 

The continental U.S. is divided into 134 Fire Planning Units (FPUs), and a single 
weather station which represented local conditions was chosen for each unit. The 
environmental and weather variables required for fire behaviour calculations (Rothermel 
1972) consist of wind speed, wind direction, and fuel moistures by percentage of dry weight 
for six fuel categories. Live fuels consist of two components, woody and herbaceous, while 
dead fuels are divided by size into four time-lag classes: 1 hr, 10 hr, 100 hr, and 1000 hr, 
with these numbers signifying the amount of time it takes for fuels in these classes to 
asymptotically approach equilibrium in fuel moisture under steady conditions (Fosberg and 
Deeming 1971). Fuel moisture for these six categories is calculated from daily weather 
records: temperature, humidity, solar radiation, and precipitation (Andrews 1986; Deeming, 
Burgan et al. 1977; Fosberg and Deeming 1971). We used the fire danger rating index the 
Energy Release Component (ERC) of the U.S. National Fire Danger Rating System 
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(NFDRS) as a proxy for the influence of fuel moisture on fire behaviour, as it reflects daily, 
seasonal, and regional variability for different fire climates of the U.S. (Andrews, 
Loftsgaarden et al. 2003) (Figure 1). 

 

 

 
Time series analysis was used to model seasonal and annual variability in fuel 

moisture using ERC as a proxy. The weather generation module captures: 1) the historic 
trend in ERC throughout the year, using a polynomial fitted to daily values over the period 
of record, 2) daily standard deviations in ERC, and 3) the mean temporal autocorrelation in 
ERC values, which captures how an ERC value is dependent on the values of the preceding 
days. ERC exhibits strong autocorrelation due to the time lag of larger woody fuels such as 
the 100-hr and 1000-hr categories, which take 4-40 days to equilibrate (Fosberg and 
Deeming 1971). Using the three time-series components above, thousands of years of 
artificial ERC sequences were generated as inputs to fire ignition and fire growth 
modelling. Statistical methods are detailed in Finney et al. (In review). 
 Fuel moistures were then derived from ERC values using look-up tables created for 
each of the 134 weather stations using the average historic fuel moisture content for each 
ERC percentile range. Because FSim was designed to simulate only large fires, which 
typically burn under extreme weather conditions, ERC categories were set at the 80th, 90th, 
and 97th percentiles.  

Variability in winds was characterized by joint probability distributions of speed and 
direction during the afternoon active burning hours for each month of the year. LFSim 
randomly sampled these monthly distributions to create the daily wind speed and direction 
used for fire behaviour simulation. This method assumes wind probabilities are 
uncorrelated with fuel moistures and random from day to day. 

Included in each artificial “year” of weather data, therefore, were 365 daily ERC 
values based on historic trend and variability, wind speed, wind direction, and the fuel 
moisture values based on the simulated ERC trend. In order to estimate burn probabilities in 

Figure 1. The average 
daily value of the Energy 
Release Component 
(ERC) for four weather 
stations in different 
climate regions of the 
western United States, 
demonstrating how ERC 
captures trends in timing, 
duration, and amplitude 
of seasonal moisture 
trends. Higher ERCs 
correspond to lower fuel 
moistures. 
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areas with infrequent fire, which can have fire recurrences of more than 500 years, the 
simulation used 10,000-50,000 years of simulated weather streams. 

 
Large fire ignitions. The relationship of historic large fire ignitions with ERC was 

characterized by logistic regression for each FPU (Andrews, Loftsgaarden et al. 2003; 
Martell, Otukul et al. 1987; Preisler, Brillinger et al. 2004) (Figure 2a). This logistic 
regression models the probability of at least one large fire starting on a particular day, given 
the ERC.  The threshold for determining what is a large fire is somewhat subjective, and 
was assigned to each FPU based on historic fire sizes, vegetation, and topography.  Based 
on the simulated ERC for each day, FSim makes a random draw from the probability 
distribution determined by the logistic regression, and if there is at least one large fire start, 
a second draw is made from the empirical distribution of the number of historic large fire 
starts per day for each FPU.  Figure 2b shows the empirical distribution of fire starts for a 
sample FPU. It is most common to have only one large fire start on a given day, but in the 
case of large lightning storms, 20 or more large fires may start in an FPU on one day.  The 
location of fire ignitions was determined randomly. However, future versions of FSim will 
have spatially driven ignitions weighted toward locations with higher historic large fire 
occurrence. 

 
 

 

 
 
 
 
 
 

 

 
Fuels and topography. Raster maps of fuels and topography were obtained from 

the LANDFIRE project (http://www.landfire.gov) at 30m resolution; these were resampled 
to 270m to achieve practical simulation times. Data layers include surface fuel models 
(Scott and Burgan 2005) and canopy fuel inputs required by fire growth simulation 
software (Finney 1998; Finney 2006). Developed areas and agricultural land were assumed 
to be unburnable for the purposes of this simulation. 

 
Fire suppression. The effect of fire suppression efforts on large fire size is not well 

understood, but was represented in this system by a statistical model of containment based 
on large fire records from 2000-2005 (Finney, Grenfell et al. 2009). Probability of 
containment is higher: 1) in non-forested fuels, 2) during periods of slow growth, and 3) 
with increasing fire duration. Fires are terminated stochastically based on these containment 
probabilities. 

 

Figure 2. Example of logistic regression predicting the probability of at least one large 
fire starting on a given day as a function of ERC, with functions plotted for four 
different minimum fire sizes (fires greater than 4 ha, >120 ha, >250 ha, and >1200  ha) 
 

  
 

Figure 2. Examples of (a) logistic regression predicting the probability of at least one large fire 
starting on a given day as a function of ERC, with functions plotted for four different minimum fire 
sizes (fires greater than 4 ha, >120 ha, >250 ha, and >1200  ha), and (b) an empirical distribution 
function derived from observed fire starts. The x-axis indicates the number of large fires starting on 
a given day, and the y-axis indicates the number of times this occurred in the historic record. 
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Fire growth and behavior. FSim starts at the beginning of the calendar year, and 
determines on each day whether there are any new fire starts. Each fire grows from its 
ignition point using as inputs the sequence of daily values of ERC, wind direction, and 
wind speed generated by the simulated weather stream. Fire growth is performed by a 
minimum travel time (MTT) algorithm, which finds the shortest travel times along nodes of 
a regular lattice (in this case, the corner of each 270m cell) overlain across a landscape 
(Finney 2002). The MTT algorithm was enhanced to permit variations in burning 
conditions and include spotting from torching trees (Albini 1979). A series of fire behavior 
calculations (Finney 1998; Finney 2006) yield the spread and intensity of surface fire 
(Rothermel 1972) and crown fire (Rothermel 1991; Van Wagner 1977). Fireline intensity in 
units of kW/m is calculated at each node; intensity is later used to estimate flame lengths 
and thus fire effects (Byram 1959). 
 On days when ERC dropped below the 80th percentile, fire spread was not 
simulated.  Daily fire spread calculations also required determining the length of the 
afternoon “burning period” when fuel moistures are lowest and fires are most active. The 
burning period increases as fuels become drier. The lengths of these periods is uncertain, 
but for FSim they were fixed at 1 hours, 3 hours, and 5 hours for the 80th, 90th, and 97th 
percentile ERC conditions, respectively. 

Fires are “extinguished” by the model by one of two methods: 1) ERC drops below 
a threshold value, indicating the end of the fire season, or 2) the suppression model 
determines the fire is contained. 

 
Model Validation. Output variables from each FSim run include: 1) the burn probability 
for each 270m cell, determined by counting the number of times each cell burned and 
dividing by the number of years in the simulation, 2) the distribution of fire areas, by FPU, 
and 3) the conditional probability distribution of flame length for each 270m cell. These 
outputs were compared with historic fire records for the purposes of model validation. The 
discussion below focuses on validation of burn probabilities; future work will focus on 
validation of flame length outputs. 

Historic fire records were obtained from federal, state, and county agencies from 
circa 1970-2008, although these dates vary somewhat by FPU. Fortuitously, this time span 
corresponds well with that of the weather station data used in the fire simulations. Fire 
records suffer from some inconsistencies in reporting between jurisdictions as well as errors 
of omission. Records were screened for obvious errors, with duplicate entries removed and 
some location information corrected. Sources of uncertainty remain, especially errors of 
omission, with the net effect being underestimation of the number of large fires and area 
burned. These errors are more likely in the case of small fires, which are not included in 
this simulation. 

Two metrics for comparing simulated and observed fire patterns were: 1) mean burn 
probability for each FPU, and 2) the fire size distributions for each of eight Geographic 
Areas (a regional collection of FPUs delineated for the purposes of fire suppression 
activities). The first metric, mean burn probability, was calculated for each FPU by 
summing the area burned by all fires, and dividing by the total area in each FPU and the 
number of years in the record.  

Fire size distributions compiled from the simulation data were plotted on 
logarithmic axes for each FPU along with the historic distribution of fires for the 
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corresponding Geographic Area (GA). Historic fires are grouped by GA since too few large 
fires exist in the record to plot them by FPU, because the historic records cover a much 
shorter span of time than the simulation data which extends over thousands of years. The 
slope parameter of each log-transformed fire size distribution was calculated by means of 
robust regression using Kendall’s Tau statistic (Sen 1968) which does not assume normality 
of the residuals. The slope parameter of the fire size distributions is the parameter of 
interest since it characterizes the relative frequency of smaller versus larger fire events, 
while the intercept parameter changes with respect to the total number of fires. We utilized 
the median frequency in each size category as the dependent variable instead of the actual 
frequencies which are sparse for the larger fire sizes. In order to compare the slope 
parameters, the 95% confidence intervals for each slope coefficient were calculated. 

 
 

3. Results 
 

Mean annual burn probabilities for each FPU were mapped for the historic (Figure 
4a) and simulated data (Figure 4b), with burn probabilities varying across four orders of 
magnitude (1x10-5 to 1x10-2). The observed and simulated burn probabilities correspond 
reasonably well with each other, as evidenced by visual inspection of these maps and a 
scatterplot (Figure 4c), with burn probabilities generally higher in the west than in the east. 
This pattern results primarily from lower fuel moisture values in the west, as well as vast 
expanses of unroaded wildlands. Burn probabilities mapped at the pixel level reveal more 
complex fine-scale patterns driven by local vegetation and topography (Figure 4d). 

The slopes of simulated fire size distributions were all reasonably linear and 
negative when plotted in log-log space, characteristic of power-law distributions (Figure 
5b). The slopes of simulated fire sizes by FPU were generally similar to those of historic 
fire sizes by GA (Figures 5b and 5c), although some variability is expected since FPUs 
within a GA vary in terms of fuels and weather. Figures 5a-c show results for the California 
GA. Results for the seven other GAs are given in Finney et al., In review. The slope of the 
historic fire size distributions fell between approximately -1.4 and -1.6 for all GAs, 
considering the 95% confidence interval. In the California GA, Great Basin GA, Northwest 
GA, and Rocky Mountain GA, the majority of confidence intervals of the slope parameters 
of the FPUs overlapped with the value calculated for the GA. In the Eastern Area GA, 
Northern Rockies GA, Southern GA, and Southwest GA, the slope values of the majority of 
FPUs were different from that of the GA as a whole. Because the total number of fires in 
the 20-30 year historic record is almost always lower than that of the 10,000-50,000 year 
simulations, the historic data curve plots below that of the FPUs. The largest simulated fires 
were larger than those in the historic record, and were likely driven by rare extreme 
sequences of fire weather. 

Where an FPU’s mean annual burn probability was more than an order of magnitude 
or 1%/year different from historic values, one of the following adjustments was made to the 
model parameters: 1) the weather station was switched to a station with ERCs, wind speeds 
and directions more typical of the region, 2) the minimum large fire size was altered to 
better convey the size of fires relative to neighboring FPUs, or 3) the rate of spread was 
adjusted in one or more fuel models (this occurred most commonly in grass and shrub 
models with extremely high rates of spread, which may have over-estimated the true rate of 
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spread given fuel conditions on the ground). Adjustments were made to approximately one-
third of the FPUs. 

Simulations were also run without the fire suppression algorithm which, as 
predicted, caused most fires to grow to larger sizes and flattened the fire size distribution. 
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Figure 3. Comparison of burn probabilities for the continental U.S.: a) annual historic burn 
probabilities by FPU, b) annual simulated burn probabilities by FPU, c) modeled vs. historic burn 
probabilities for all 134 FPUs, d) map of burn probability outputs at 270m resolution. 
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and modeled fire sizes in California FPUs
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4.  Discussion 
 

This project demonstrates that continental-scale spatial simulation of wildfire burn 
probabilities, a task not previously attempted, is becoming practical in terms of data 
availability, computing requirements, and modelling components. While this project was 
motivated by a need for risk assessment, the results present the opportunity for research on 
fire patterns and their causes over eco-region scales. Following adjustments in model 
parameters in approximately one-third of the FPUs, FSim captured the historic trends in 
burn probability and fire size distributions, at least to the standards of precision of historic 
fire records. The consistency, reliability, and time-span of fire records currently limit the 
accuracy of modelling for areas as large and heterogeneous as the continental U.S.  

The most common adjustment to model parameters was reduction in the rate of 
spread for two grass and shrub fuel types mapped by LANDFIRE, which were found to 
produce excessive fire sizes and spread rates. The limited need for such adjustments in a 
minority of FPUs suggests that the root issues are fuel-specific or region-specific; otherwise 
adjustments would be necessary for most FPUs. The aggregated spatial resolution 
(LANDFIRE data was resampled from 30m to 270m cells in order to achieve practical 
simulation times) or temporal resolution (only one wind direction and speed was assigned 
for each day) could have produced over-prediction in these fuel types. Conversely, variation 
in fuels at the sub-270m scale, such as streams and roads, can impede fire growth but is not 
represented in the model (Reed and McKelvey 2002; Ricotta, Avena et al. 1999; Yang, He 

a) c) 

Figure 4. Comparison of burn probabilities for California GA. a) Burn probabilities from each 
FPU at 270m output resolution. b) Fire size distributions, simulated data for each FPU and 
historic data for the California GA. c) Slope and 95% confidence interval for each FPU in 
comparison to the 95% CI for the historical distribution for the GA (red lines). 
 

b) 
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et al. 2008). In addition, the use of weather data from a single station per FPU may have 
contributed to disparities between observed and predicted burn probabilities.  

Close correspondence between simulated and observed fire size distributions 
suggests that LFSim captures the spatial and temporal factors that both contribute to and 
limit fire growth. Specifically, these results imply that the observed power-law distribution 
of fire sizes is governed by the joint distribution of spatial and temporal opportunities for 
fire growth and extinguishment (Malamud, Morein et al. 1998). In the simulations, 
extinguishment and growth opportunities resulted from the combination of:  1) ignition 
location relative to spatial patterns in fuels and topography, 2) fire weather sequences 
subsequent to the ignitions, and 3) the statistical probability of containment dependent on 
weather. Reed and McKelvey (2002) proposed the same general argument: that competing 
probabilities of growth and extinguishment could drive the distribution of fire sizes, but not 
the observed power-law behavior. We found power-law fire size distributions in both 
historical and simulated data over a wide range of fire sizes across the U.S.  The fuel layers 
are not updated yearly to reflect burning, and our simulation does not allow for spatial 
interference from burned patches as proposed by self-organized criticality (Bak, Chen et al. 
1990; Bak, Tang et al. 1988; Malamud, Morein et al. 1998; Moritz, Morais et al. 2005).   
Thus, our findings suggest there are probably a number of explanations for power-law 
distributions of fire sizes. 
 

 
5. Conclusions 
 

Continental-scale assessment of wildland fire risk by repeated fire simulations was 
shown to be practical. Simulated burn probabilities and fire size distributions showed 
reasonable correspondence to historical values and patterns, as well as the results of 
previous studies (Littell, McKenzie et al. 2009; Malamud, Millington et al. 2005; Martell 
and Sun 2008; Moritz, Morais et al. 2005). LFSim provides for the first time a methodology 
for evaluating: 1) fire management options, through use of alternative suppression 
algorithms or no suppression, and 2) land management options, by analysis of alternative 
landscape inputs including stands with fuel treatment such as prescribed fire. Properly 
implemented fuel treatments can achieve the goal of ecosystem restoration, while also 
reducing flame lengths and slowing rates of spread, which in turn may reduce burn 
probabilities of the adjacent landscape (Ager, Finney et al. 2007). Risk mitigation to highly 
valued resources could be achieved by carefully designed fuel treatments (Calkin, Ager et 
al. 2010). Much work remains to be done by natural resource specialists and economists 
concerning the responses of highly valued resources to fires of various severities. 
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