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After more than 50 years of research and selective breeding, blight-resistant American chestnut
(Castanea dentata) trees will soon be available for planting into the species’ pre-blight range. Increased
understanding of the regeneration requirements of pure American chestnut (C. dentata [Marsh.] Borkh.)
will increase the success of future efforts to establish blight-resistant chestnut. We quantified survival
and initial growth of bare-root American chestnut seedlings at five locations in eastern Kentucky, USA.
We used a split-plot design to compare seedlings planted within adjacent mesic and xeric sites treated
with either a two-age shelterwood overstory treatment or a midstory removal treatment. The
silvicultural treatments and topographic settings allowed us to evaluate chestnut seedling performance
under four light and site productivity combinations. Seedling survival was 57% and seedling height
averaged 94 cm following two growing seasons. Seedling survival was negatively related to sand and
coarse fragment content, but was unrelated to silviculture treatment or topographic position. Chestnut
seedlings grew best in shelterwood overstory treatments areas on mesic sites. Seedlings growing in
shelterwood overstory treatment areas added 3- and 3.5-times more height and stem increment
compared to seedlings planted after midstory removal. Seedling leaf mass and foliar nitrogen (N) content
were also greatest in shelterwood plantings on mesic sites. The high-light environment created by
shelterwood overstory removal resulted in better initial seedling growth, but the moderate-light of the
midstory removal treatment may ultimately provide chestnut seedlings a greater advantage over
competing vegetation.
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1. Introduction

The former abundance of American chestnut (Castanea dentata
[Marsh.] Borkh.) in forests of eastern North America is well
documented by historic stand descriptions and land records
(Braun, 1950; Keever, 1953; Stephenson et al., 1991; Rhoades and
Park, 2001; McEwan et al., 2005). The loss of overstory chestnut
due to the chestnut blight (Cryphonectria parasitica Murr. Barr)
during the first half of the 20th century has had significant and
enduring effects on the species composition and successional
development of forests across its native range (Keever, 1953;
Paillet, 1984). After decades of tree breeding and pathology
research, the first blight-resistant chestnut hybrids will be
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available from The American Chestnut Foundation for planting
on U.S. Forest Service land in 2009. These seedlings are produced
through a backcross breeding technique that seeks to combine the
blight-resistance traits of Chinese chestnut (C. mollissima Blume)
with desired form, stature and nut characteristics of the American
chestnut (Burnham, 1981; Hebard, 2001; Jacobs, 2007). Increased
understanding of the regeneration requirements of native Amer-
ican chestnut will increase the success of future efforts to establish
the blight-resistant chestnuts.

The pre-blight range of American chestnut extended south from
New England through the Appalachian Mountains into northern
Alabama (Russell, 1987). In Kentucky, chestnut was common in
both mixed-mesophytic and western mesophytic forest types
(Braun, 1950; McEwan et al.,, 2005). The tree was abundant
throughout the Cumberland Plateau in the eastern portion of the
state, and reached its highest densities in the Cumberland
Mountains along Kentucky’s eastern border with the Ridge and
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Valley Region of Tennessee and Virginia (DeFriese, 1884; Braun,
1950; Rhoades and Park, 2001). Historically, chestnut was most
abundant on well-drained, acidic soils and rare on limestone-
derived soils (Saucier, 1973; Russell, 1987). In both eastern and
west-central Kentucky, chestnut was concentrated on ridge-top
and south-facing upper topographic positions with sandstone
parent material (Braun, 1935, 1950; Hussey, 1884; McEwan et al.,
2005). However, large-diameter chestnuts also occurred on mesic
lower slopes and coves on a variety of soil types (DeFriese, 1884;
Braun, 1935; Muller, 2003; Vandermast and Van Lear, 2002).
Experimental trials will help determine which portions of the
southern Appalachian landscape are best-suited for chestnut
reintroduction (Fei et al., 2007).

The rapid growth of American chestnut seedlings and sprouts
was well-recognized across the Appalachian Region prior to arrival
of the blight (Zon, 1904; Hawley and Hawes, 1912; Ronderos,
2000) and has been documented in controlled experiments
(Latham, 1992; Joesting et al., 2007). After clearing in pre-blight
forests, chestnut was reported to sprout vigorously, outgrow many
species and increase in relative abundance with successive
harvests (Hawley and Hawes, 1912; Wacker, 1964; Smith, 1977;
Griffin, 1989). Under controlled greenhouse conditions, chestnut
seedlings have been shown to outgrow a variety of eastern North
American forest species, including yellow-poplar (Liriodendron
tulipifera L.; Latham, 1992). In a recent study on fine-silty and
coarse-loamy soils in Wisconsin’s unglaciated Driftless Region,
direct-seeded American chestnut outgrew both black walnut
(Juglans nigra L.) and northern red oak (Quercus rubra L.) during an
eight-year study (Jacobs and Severeid, 2004).

The performance of American chestnut seedlings planted after
various overstory and midstory silvicultural manipulations has not
been widely tested (Jacobs, 2007). Based on physiological and
morphological parameters, American chestnut is characterized as
tolerant or intermediately-tolerant to shade (Wang et al., 2006;
Joesting et al., 2007, 2009). Field studies have noted greater
survival of chestnut sprouts and seedlings under moderate shade
compared to full-sun (Griffin, 1989; Anagnostakis, 2007), though
greater initial seedling growth is typically measured in high-light
environments (McNab, 2003; McCament and McCarthy, 2005). In
full-sun openings, competition with yellow-poplar reduces estab-
lishment success of another intermediate shade tolerant species,
northern red oak (Quercus rubra) (Loftis, 1990; Oswalt et al., 2006)
and yellow-poplar is likely to have a similar competitive influence
on chestnut seedlings (McNab, 2003; Jacobs, 2007). As has been
learned for northern red oak, successful artificial regeneration of
American chestnut may require silvicultural techniques that
combine the species’ tolerance of moderate-light with its rapid
growth in high-light environments.

A silvicultural method has been developed that is intended to
enhance growth of intermediate-shade-tolerant species, while
hindering establishment of shade-intolerant species (Loftis, 1993;
Smith, 1993; Buckley et al., 1998). The method is a two-stage
shelterwood in which the first step is a non-commercial removal of
the midstory canopy, resulting in a moderate (e.g., 10-15%)
increase in light reaching the forest floor. Removal of the overstory
is delayed until the desired naturally-regenerating or planted
seedlings gain a height advantage over shade-intolerant species
that establish and grow once the overstory is removed (i.e., 8-10
years for northern red oak). American chestnut seedlings have not
been planted in stands following midstory removal, and it is
unclear how the species will respond to the midstory light
environment or if this silvicultural technique can promote
chestnut establishment by restricting competition.

In anticipation of future efforts to restore chestnut to its native
range, this study evaluates initial establishment of seedlings
planted on two distinct topographic positions and a range of

conditions typical of forest ecosystems of the southern Appala-
chian ecoregion. Since back-crossed, blight-resistant hybrid chest-
nut share more than 93% of their genetic traits with pure American
chestnut (Burnham, 1981; Hebard, 2001), trials conducted using
native American chestnut provide a useful strategy to develop
guidelines for introduction of hybrid chestnut. Our specific
objectives were (1) to compare survival and physiological and
morphological growth of pure American chestnut seedlings
planted in two silvicultural treatments on productive, mesic sites
and on xeric sites of intermediate productivity; and (2) to
determine relationships between abiotic and biotic factors and
American chestnut seedling response.

2. Methods
2.1. Study areas

Chestnut seedlings were planted at five locations dispersed
throughout the Northern Cumberland Plateau Physiographic
Region (Braun, 1950; Smalley, 1986) of eastern Kentucky
(Table 1). The study areas support mixed-mesophytic overstory
species ranging from 80 to 100 years in age. Naturally-occurring
chestnut sprouts were present at each of the sites. Annual
precipitation and temperature for three weather stations dis-
tributed between the planting locations average 118 cm and
12.9 °C (Kentucky Climate Center, 2008; Grayson, Berea, Jackson
stations, 30 year record). Average monthly rainfall is the greatest in
May and July and the lowest during September and October.
Surface soils are silt loams, silty clay loams and sandy loams
formed from shale, siltstone and sandstone parent material
common throughout the Cumberland Plateau. Soils at the five
locations are classified as Typic Dystochrepts, Ultic Hapludalfs or
Typic Hapludults (Newton et al., 1973; Kelley et al., 1983; Hayes,
1998) with pH ranging from 4.3 to 5.6, 7 to 18% clay and 5 to 59%
sand in the upper 15 cm.

At each study area, we located a pair of neighboring stands (i.e.,
<0.5 km of one another), each 2 ha in size, that differed in site
productivity based on topographic position, but had similar stand
age and disturbance history. Xeric stands were south- and west-
facing, along upper slope positions, and supported a mixture of oak
species (Quercus alba L., Q. coccinea Miinchh., Q. prinus L., Q. velutina
Lam.). Mesic stands were generally north- and east-facing, along
mid to lower slope positions, and were dominated by yellow-
poplar, sugar maple (Acer saccharum Marsh.), white ash (Fraxinus
americana L.), and a mixture of oaks (Q. alba, Q. prinus, Q. rubra, Q.
velutina). Each stand was divided in half and each half was
randomly selected to be treated with one of two silvicultural
procedures. Both treatments were even-aged, shelterwood meth-
ods used to regenerate hardwood stands. The two-age shelterwood
treatment was a commercial harvest that removed 65-70% of total
stand basal area (Loftis, 1990), and retained 2-4 dominant
overstory trees per hectare (Smith et al.,, 1997). Fresh cut tree
stumps were treated with herbicide to control sprouts. The
midstory removal treatment was the first step of a two-stage
shelterwood harvest designed to reduce stand basal area by
approximately 30% by mechanically removing suppressed and
intermediate canopy trees >3 cm in diameter at 1.7 m height
(Loftis, 1990, 1993). Removal of the overstory will occur if and
when planted chestnut seedlings add sufficient height to outgrow
the shade-intolerant species that establish after overstory removal.

Within each silvicultural treatment area, 49 chestnuts were
planted during March 2001 (2 sites) and 2002 (3 sites) at a
3 m x 3 mspacing; planting occurred within 2 months of the stand
manipulations. Planting stock consisted of 1-0 bare-root seedlings
grown from nuts collected from pure American mother trees in the
Mississippi Palisades region of Illinois (F. Hebard, American
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Table 1
Soil properties of eastern Kentucky chestnut planting locations (0-15 cm depth; n =5 per site type; SE in parentheses).
Location Site type  pH P(ng/g) Ca® (uglg) Mg* (pglg) K'(mglg) N (%) C(%) CN Sand (%) Silt (%) Clay (%)
Latitude, longitude, elevation
Bear Mountain Mesic 5.6 4.1 1252.4 230.5 93.2 0.2 2.2 11.7 10.8 71.2 18.0
Berea College Forest (0.2) (0.5) (180.1) (19.7) (10.5) (0.02) (0.3) (0.4) (2.3) (2.2) (2.0)
37°32/19"N, 84°14'51"W Xeric 4.6 2.3 56.5 25.8 66.4 0.1 2.0 24.5 5.1 78.2 16.8
335 m.as.l.” (0.1) (0.3) (7.0) (4.1) (7.5) (0.01) (0.2) (1.1) (0.5) (1.7) (2.0)
Carpenter Branch Mesic 5.0 16.0 408.2 971 107.2 0.3 3.5 13.5 27.1 66.2 6.7
Daniel Boone National Forest (0.1) (1.2) (57.4) (14.6) (10.8) (0.03) (0.4) (0.1) (1.5) (1.4) (0.2)
38° 20" 7"N, 83° 28'45" W Xeric 43 4.6 57.9 22.6 54.0 0.1 2.1 20.3 16.9 69.0 14.1
305 m.a.s.l. (0.1) (0.5) (5.3) (2.6) (2.8) (0.01) (0.3) (1.2) (0.9) (1.2) (1.3)
Cox Branch Mesic 4.7 5.9 177.2 65.2 77.3 0.2 1.8 11.8 12.7 75.0 12.2
Daniel Boone National Forest (0.1) (0.5) (19.1) (6.8) (4.0) (0.01) (0.1) (0.3) (0.5) (1.2) (0.8)
38° 20’ 46"N, 83° 28'29" W Xeric 4.5 28 44.6 14.3 55.5 0.1 2.1 22.2 119 77.4 10.7
305 m.as.l. (0.0) (0.2) (6.5) (1.5) (4.1) (0.01) (0.2) (1.3) (1.0) (1.1) (0.4)
Robinson Forest Mesic 5.5 5.6 909.8 1451 119.7 0.3 3.4 12.8 23.1 58.7 18.3
University of Kentucky (0.1) (0.2) (110.3) (17.5) (12.0) (0.03) (0.3) (0.4) (1.5) (1.2) (1.1)
37° 28 9"N, 83° 8'3"W Xeric 4.8 3.8 155.8 37.7 56.0 0.1 2.6 21.2 58.7 30.7 10.7
427 m.a.s.l. (0.1) (0.3) (28.4) (5.0) (3.8) (0.01) (0.4) (1.9) (1.9) (1.5) (0.5)
Tygart State Forest Mesic 52 11.1 731.4 52.3 87.3 0.2 2.8 13.7 39.2 51.0 9.7
Kentucky Division of Forestry (0.1) (1.1) (178.1) (9.7) (10.6) (0.04) (0.5) (0.4) (1.4) (1.3) (0.8)
38° 23 42N, 83° 9 3" W Xeric 43 7.4 44.2 12.6 52.9 0.1 24 27.0 42.2 459 12.0
305 m.a.s.l. (0.1) (1.6) (8.1) (1.8) (4.2) (0.01) (0.3) (0.6) (0.9) (0.7) (0.3)

¢ m.a.s.l. = meters above sea level.

Chestnut Foundation, pers. comm.). Seedlings were propagated at
the Kentucky Division of Forestry’s Morgan County Nursery.
Nursery stock was planted within 2 weeks of lifting from the
planting beds. Diseased and poorly-formed individuals were
discarded, and the height, root collar diameter, and number of
first-order suberized lateral roots (>2 mm proximal diameter)
were recorded for each seedling selected for planting.

2.2. Seedling measurements

Total seedling height, basal stem diameter and annual height
increment were measured in mid-August after one and two
seasons of seedling growth using measuring tapes and digital
calipers. Visual indicators of seedling health, insect damage and
disease were documented annually. Ten undamaged leaves and
petioles were excised from the upper one-half of the canopy of 5-
10 randomly selected trees per planting block at the end of two
growing seasons. Excised leaves were flattened, transported to the
laboratory in coolers and the area of individual leaves was
measured within 24 h with a LICOR 3100 area meter (Lincoln, NE).
Leaf plane length was measured along the midrib and mass was
determined after drying samples at 60 °C for 48 h. Specific leaf area
was derived from projected leaf area per unit dry mass (Reich et al.,
1998). Leaf N was measured on dried, ground subsamples using dry
combustion (LECO 1000 CHN analyzer, LECO Corporation, St.
Joseph, MI) and used to report foliar N per unit leaf mass.

2.3. Site characterization

Photosynthetically active radiation (PAR: 400-700 nm wave-
lengths) was measured within each shelterwood and midstory
planting block and in an adjacent full-sun clearing. PAR was
measured 1 m above the ground using a quantum sensor (LICOR
191SA line quantum sensor, Lincoln NE) between 10:00 and
14:00 h on cloud-free days on three growing season dates (June-
August) per site. At each planting site, PAR was measured at 3-m
intervals along seven parallel transects in each planting block.
Percent of full sunlight was calculated from PAR measured in
planting sites and adjacent full-sun openings; full-sun PAR was
averaged from measurements collected <10 min before and after

PAR was measured in adjacent planting areas. We also compared
PAR in treated sites and full-sun openings to PAR measured in
adjacent mature hardwood forests with no recent sign of
harvesting or other canopy disturbances.

Soil analyses characterized differences in seedling nutrient
availability, soil chemistry and physical conditions across the
topographic site types and five study locations. For each planting
block, mineral soil from the 0-15 cm layer was composited from
five subsamples collected with a 5-cm diameter, slide-hammer
corer (Giddings Co., Ft. Collins, CO). Composited samples were
passed through a 2-mm sieve to separate fine and coarse soil
fractions. The coarse fraction and a 15-g subsample of the fine
fraction were dried at 105 °C for 24 h and weighed and used to
calculate percent coarse fraction. Soil texture was measured with
the Bouyoucos hydrometer method (Gee and Bauder, 1986).

Mineral soil total C and N were analyzed by Dumas dry
combustion (LECO CHN 2000; St. Joseph, MI). Soil pH was analyzed
in a 1:1 soil to de-ionized water slurry after 1 h of agitation
(Thomas, 1996). Exchangeable phosphorus and cations were
extracted with Mehlich-III reagents (0.2N CH3;COOH, 0.25N
NH,4NO;, 0.015N NH,4F, 0.13N HNO3, and 0.001 M EDTA; Mehlich,
1984) and analyzed by colorimetery for P and atomic absorption
for cations. To assess patterns of N availability we measured an
index of the production of plant available soil N (Waring and
Bremner, 1964; Bundy and Meisinger, 1994). For each soil sample,
one 10-g air-dried sample was incubated in 50 ml of de-ionized
water for seven days at 40 °C. After incubation, 50 ml of 2 M KCl
was added and samples extracted, filtered and analyzed for NH,".
Production of NH4" was calculated as the difference between
initial and incubated subsamples and reported per unit of oven-
dry soil.

2.4. Statistical analysis

The study was analyzed as a randomized block design with a
split-plot treatment arrangement. Each study location represented
a block, site type (xeric vs. mesic) represented the whole-plot
treatment factor, and silvicultural treatment (shelterwood vs.
midstory removal), represented the sub-plot treatment factor.
Each tree represented a sample.
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Seedling response was analyzed using a mixed model analysis
of variance to determine significant effects of study locations site
type, silviculture treatment and their interactions on two-year
survival, seedling growth and foliar characteristics at o =0.05
(PROC GLIMMIX, SAS version 9.1, SAS Institute, Cary, NC).
Silvicultural treatment, site type and their interaction were
analyzed as fixed effects and study location was treated as a
random effect. Silvicultural treatment and site type were nested
within study locations. Data were checked for homogeneity of
variance with Levene’s test and normality using the Shapiro-Wilks
statistic prior to analysis. Where significant differences (p < 0.05)
occurred, the Tukey’s LSD procedure was used to compare specific
means (PROC GLIMMIX). Spearman’s Rho was used to assess non-
parameteric correlations between initial nursery seedling growth
parameters and two-year height and diameter growth. Relations
between soil resources and light with seedling growth were
evaluated by multiple regression. Mean second year seedling
measures for each plot (n = 20; planting location by site/aspect by
silvicultural treatment combinations) were treated as dependent
variables and compared with plot-level means for soil and light as
independent variables.

3. Results and discussion

Differences in soil conditions between mesic and xeric site
types were consistent across the five Kentucky planting locations
(Table 1). Overall, soils on mesic sites have higher pH (up to 1 pH
unit) and contain on average twice the extractable P, 70% more K",
and four and nine times more extractable Mg?* and Ca?*,
respectively than xeric sites. The three assays of soil N availability
all document higher N fertility on mesic sites; total N was 150%
higher, the anaerobic N index was 1.8-fold higher and C:N was 45%
lower on mesic compared to xeric sites. At most locations soils
were classified as silt loams or silty clay loams and with the
exception of one location, soil texture differed little between site
types. At that study location (Robinson Forest), the xeric site was
twice as sandy as its mesic pair and was the only site classified as a
sandy loam.

3.1. Seedling survival

Chestnut seedling survival averaged 57% after two growing
seasons across the five locations. Canopy treatment had no effect
on seedling mortality (oneway ANOVA; p=0.905), although
average survival differed widely (26-90%) among the five study
locations. Mortality was highest in the midstory (92%) and
shelterwood (88%) plantings on the Robinson Forest xeric site.
Seedling mortality was also high at a second location (Carpenter
Branch xeric site) that underwent extensive canopy breakage
during a severe windstorm (Fig. 1).

Basal phloem cankers associated with chestnut blight were
present on 23% of the dead seedlings; canker incidence was nearly
two-fold higher on xeric compared to mesic sites (31% vs. 16%,
respectively). Visible symptoms of root disease (i.e., root collar
necrosis or root detachment in the absence of blight cankers)
occurred on 11% of dead seedlings and were twice as common on
deceased seedlings found in shelterwood (15%) compared to
midstory (7%) sites. Eighty percent of all seedlings suffered mild
insect herbivory; severe defoliation that removed the majority of
the photosynthetic surface affected 4% of the seedlings.

Across all sites and aspects, chestnut survival was negatively
related to both sand and coarse fragment content (Spearman’s rho:
—0.54, and —0.68 for percent sand and coarse fragment respec-
tively; p <0.01). Excluding the midstory and shelterwood sites
affected by severe canopy damage, coarse fragment and sand
content explained 46 and 31% of the variability in seedling survival,
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Fig. 1. Linear relationship between chestnut seedling survival after two growing
seasons and (a) coarse fragments (>2 mm) and (b) sand content in the upper 15 cm
at five planting sites in eastern Kentucky. Regression results exclude a xeric
shelterwood and a midstory site (Carpenter Branch site; gray shaded symbols) that
suffered heavy mortality due to mechanical damage from a severe wind storm.

respectively (Fig. 1). Survival exceeded 80% in sites with <13% sand
and 17% coarse fragments. The Robinson Forest xeric plantings,
where only 10% of the seedlings survived, had 57% sand and 45%
coarse fragments.

3.2. Seedling growth

After two growing seasons, seedlings averaged 94 cm in height
and 10 mm in stem caliper diameter; the largest seedling was
261 cm tall (Table 2). Chestnut seedling growth responded
consistently to silvicultural treatment and occasionally to site
type (Table 2). Growth was significantly highest on mesic sites
treated with a shelterwood treatment. Overall, seedlings growing
in shelterwood openings added 3- and 3.5-times more height and
stem increment compared to midstory seedlings. On mesic sites,
seedling height and caliper growth were 3.4-fold and 5.3-fold
greater in shelterwood as compared to midstory plots. On xeric
sites, seedlings growing in shelterwood openings added 2-fold
more height and stem increment compared to midstory seedlings.
Significant interactions between silvicultural treatment and site
type indicated that seedling height growth was similar in midstory
removal areas on mesic and xeric sites, but that it differed between
mesic and xeric shelterwood sites.

Similar to seedling growth, leaf N mass was significantly higher
on mesic shelterwood opening compared to the other three
treatment combinations, leaf mass was greater on mesic shelter-
woods compared to xeric or mesic midstory sites, and foliar N
concentration was higher on mesic shelterwoods compared to
either treatment on Xxeric sites (Table 3). Silvicultural treatment



C. Rhoades et al./Forest Ecology and Management 258 (2009) 1211-1218

Table 2

1215

Silvicultural treatment and site type (aspect) effects on chestnut seedlings after two growing seasons at five eastern Kentucky. Within columns, similar letters indicate that
silviculture treatment and site type combination means are not significantly different based on Tukey’s means separation test (« = 0.5).

Site type Canopy treatment Height cm Caliper mm Height-year 2 Caliper-year 2
Annual Increment Relative Annual Increment Relative
cmyr ! Growth % mm yr! Growth %
Mesic Shelterwood Mean 118.1 a 121 a 37.0a 29.7 a 36a 432 a
SE 3.7 0.4 21 1.5 0.3 4.0
Max 261 28 116 82 16 282
Midstory Mean 86.1 bc 9.0 c 109 ¢ 112 ¢ 0.7 ¢ 10.1 ¢
SE 3.0 0.3 1.2 1.1 0.3 3.2
Max 200 25 70 80 10 126
Xeric Shelterwood Mean 90.9 b 10.1 b 19.5 b 20.8 b 19b 26.6 b
SE 2.6 0.3 1.7 1.6 0.3 3.7
Max 201 22 112 92 16 272
Midstory Mean 81.0 ¢ 89 c 9.7 c 109 c 0.5 ¢ 94 c
SE 2.8 0.3 1.0 1.0 0.3 3.5
Max 175 19 75 92 13 198
Fixed effects F test
Silviculture treatment 9.0” 73 1227 103" 9.7" 19.0"
Site type 3.3 2.1 72" 5.4 2.0 1.1
Silviculture x Site Type 9.7" 5.3 1427 737 3.8 3.6
" p<o0.1.
" p<0.05.
™ p<0.01.

significantly affected leaf morphology, although the effect of site
type was only marginally significant (i.e.,, p <0.1) and limited to
foliar N attributes. In contrast to seedling height and diameter
growth (Table 2), the lack of interactions between the fixed effects
for foliar characteristics showed a consistent influence of
silvicultural treatments on both site types.

3.3. Controls on seedling performance

Chestnut seedling growth was related to the initial size of
transplanted seedlings for some silvicultural treatments. Height
growth of two-year-old seedlings grown in shelterwood areas, for
example, related positively (p < 0.01 for two-tailed correlation) to
initial seedling height and stem caliper (Spearman Correlations:
0.24 and 0.26, respectively). In contrast, initial seedling size and
growth were unrelated for the midstory plantings. The number of
first-order lateral roots was closely related to initial seedling
height and stem caliper (Spearman Pearson Correlations: 0.14 and
0.47, respectively; p <0.001), but were unrelated to seedling
growth. For a number of other hardwood species, seedling growth
has been shown to be highly correlated to both root collar diameter
and the number of first-order lateral roots (Clark et al., 2000;
Ruehle and Kormanik, 1986).

The large difference in growth between the shelterwood and
midstory treatments resulted primarily from the influence of the

Table 3

canopy manipulations on the forest floor light environment.
Seedlings planted in shelterwood openings received 47% of the PAR
measured in full-sun openings on average, compared to 27% in the
midstory plantings (Fig. 2). For comparison, only 7% of the PAR
measured in full-sun openings reached the forest floor in adjacent
undisturbed forest stands. Site type had no consistent influence on
PAR. However, for the midstory plantings, light transmittance
explained 52% of the variability in seedling height increment
(Height Increment = 55.6 + 0.5X; p = 0.018; Fig. 2a) and 33% of the
seedling stem increment (Stem Increment = 87.8 + 0.9X; p = 0.082;
not shown). Site differences in light penetration within the
midstory plantings relate to residual canopy, topographic position
and at one site the formation of an overstory canopy gap following
plantation establishment. In contrast, seedling height growth was
unrelated to light transmittance within the high-light, shelter-
wood openings.

The leaf area produced per unit leaf mass (e.g., specific leaf
area—SLA) was significantly lower in the high-light shelterwood
planting areas (Table 3; Fig. 2b). Specific leaf area (SLA) declined
linearly with increasing light transmittance for seedlings planted
in both silvicultural treatments (SLA =196 — 1.38X; p < 0.001;
R?=0.75; for both treatments; Fig. 2b). Our findings match the
relationship between foliar morphology and incident light
documented for deciduous and conifer species that span a range
of shade tolerance categories (Walters and Reich, 2000). Similarly,

American chestnut foliage characteristics. Means and SE calculated from leaf samples from 10 seedlings per planting site. Within columns, similar letters indicate that
silviculture treatment and site type combination means are not significantly different based on Tukey’s means separation test (o = 0.05).

Site type Canopy treatment Mass g leaf ! Leaf length cm Specific leaf area cm? g ! N % Leaf N mass mg N leaf !
Mesic Shelterwood 0.59 (0.03) a 18.99 (0.4) a 12521 (2.5) b 1.88 (0.03) a 11.27 (0.75) a

Midstory 0.43 (0.02) bc 17.48 (0.4) a 167.69 (6.7) a 1.72 (0.06) ab 7.84 (0.63) b
Xeric Shelterwood 0.49 (0.03) ab 17.61 (0.5) ab 132.92 (3.7) b 1.72 (0.04) b 8.69 (0.61) b

Midstory 0.35(0.02) c 15.85(0.5) b 166.48 (3.8) a 1.50 (0.01) ¢ 5.26 (0.33) c
Fixed Effects F D F D F p F D F D
Silviculture treatment 53 0.039 14.7 0.000 10.2 0.006 54.9 0.000 6.2 0.029
Site type 0.2 0.196 3.0 0.158 0.1 0.788 4.5 0.100 3.5 0.086
Silviculture x site type 0.0 0.921 0.1 0.768 0.1 0.714 1.3 0.262 0.0 0.998
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Fig. 2. Relationship between PAR transmittance and (a) second year height growth
and (b) specific leaf area of chestnut seedlings.

a study using direct-seeded chestnut seedlings also measured
lower SLA in thinned and burned areas that received greater light
transmittance compared to untreated areas (McCament and
McCarthy, 2005).

Higher soil fertility and moisture probably also contribute to
better seedling performance in the mesic shelterwood openings
(Table 2). Similar relations between soil productivity and topo-
graphic aspect and slope position are common in temperate
deciduous forests (Muller, 1982; Newman et al., 2006; Fabio et al.,
2009). Species composition, microenvironment and geologic
substrate often combine to influence soil resources, nutrient
dynamics and ecosystem productivity (Newman et al., 2006; Fabio
et al., 2009). The relation we measured between soil N availability
and chestnut seedling growth and foliar nutrition (Fig. 3) indicates
that seedling height growth responded positively to increased soil
fertility for the shelterwood light environment and foliar N
responded to soil N fertility in the midstory treatment areas.
Specific leaf area did not differ between xeric and mesic site types

Table 4
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Fig. 3. Linear relationship between an index of plant available nitrogen and the (a)
second-year height growth and (b) leaf N content of chestnut seedlings in eastern
Kentucky.

(Table 3), but it declined linearly with increasing foliar N
(SLA=185 — 4.8X; p=0.001; R?>=0.44) confirming the relation-
ship between leaf structure and N that is known to influence net
photosynthetic capacity (Reich et al, 1998). Similar to our
Kentucky study, the growth of direct-seeded chestnut seedlings
responded positively to higher soil nitrogen availability in Ohio
forest sites and SLA was related to soil nitrate (McCament and
McCarthy, 2005).

Our initial results indicate that the performance of bare-root
chestnut seedlings compares favorably to other economically
important hardwood species and that chestnut seedlings respond
well to a range of site conditions typical of the Cumberland
Plateau. For example, northern red oak added 34 cm of height over
two growing seasons in Tennessee shelterwood openings (Oswalt
et al.,, 2006), compared to similar height growth for chestnut

Density of hardwood seedlings within chestnut planting blocks at five locations in eastern Kentucky.

2 2

Site Type Canopy Treatment Species Mean trees m 2 SE trees m— Maximum trees m—
Mesic Shelterwood Liriodendron tulipifera 2.4 2.3 11.7
Acer rubrum 1.6 0.5 34
Total 5.5 2.7 15.8
Midstory Acer rubrum 1.3 0.5 2.9
Acer saccharum 0.7 0.7 33
Total 3.0 0.5 4.1
Xeric Shelterwood Sassafras albidum 1.2 0.6 3.7
Acer rubrum 0.6 0.2 1.3
Total 3.5 0.5 5.1
Midstory Acer rubrum 1.8 1.1 6.2
Quercus prinus 1.7 1.6 8.0
Total 5.4 1.5 10.2
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seedlings (e.g.,20-37 cmin year 2; Table 2) during a single season
in Kentucky shelterwood openings. Poor seedling survival on
rocky, sandy sites, and better height growth and foliar nutrition on
more fertile, mesic sites provide guidance for plantation site
selection.

The blight-resistant chestnut seedlings intended for outplant-
ing during the coming years will be less susceptible to blight
disease than the native chestnuts planted in our study, but risks
from other pathogens and pests are less certain. For example,
gypsy moth (Lymantria dispar L.) herbivory was higher on blight-
resistant American x Chinese backcrossed hybrids compared to
pure American chestnut seedlings in one greenhouse study (Rieske
et al., 2003). Another concern, the common root rot fungus,
Phytophthora cinnamomi, responsible for significant pre-blight
American chestnut mortality (Crandall et al., 1945; Anagnostakis,
1995) was a likely contributor to mortality in the current study. A
greenhouse trial using soils from our planting locations docu-
mented high susceptibility of pure American chestnut to P.
cinnamomi, even under moderate levels of soil compaction and
moisture (Rhoades et al., 2003); soil baiting techniques combined
with molecular approaches (i.e., PCR amplification with DNA
sequencing) confirmed the presence of P. cinnamomi at these sites
(Adank et al., 2008). Asian chestnuts (C. mollissima and C. crenata
Siebold & Zucc.) are known to resist Phytophthora root rot
(Crandall, et al., 1945), but Phytophthora resistance traits are not
selected by chestnut-blight breeding efforts and are not likely to be
inherited by blight-resistant chestnut hybrids (F. Hebard, Amer-
ican Chestnut Foundation, pers. comm.).

It is uncertain how performance during the initial two years
following planting will predict long-term establishment success
under the different silvicultural treatments and site types. For
northern red oak, competition with fast-growing tree species is
known to reduce long-term success of plantings on mesic sites
(Loftis, 1993; Povak et al., 2008). For our Cumberland Plateau study
locations, chestnut transplants grew best in the high-light mesic
shelterwood openings (Table 2), where the density of potential
hardwood competitors was highest (Table 4). Yellow-poplar
seedlings were abundant in mesic shelterwood sites and red
maple (Acer rubrum L.), another fast-growing species that is
becoming increasingly abundant in eastern North American forests
(Abrams, 1998; McDonald et al., 2002), was common in all our
study locations (Table 4). Where left untreated, competition from
stump sprouts could present an even greater obstacle for planted
chestnut (Loftis, 1985). In high-productivity sites where compe-
titors are well-stocked, chestnut plantation success may require a
period of initial growth in the moderate-light environment of the
midstory removal treatment. Future plantation resurvey will allow
us to evaluate both the potential for chestnut to achieve
dominance in high-light shelterwood openings and to maintain
itself in the moderate-light environment of the midstory removal
treatment.
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