
Chapter 17

Landscape Genetics

Kevin S. McKelvey, Samuel A. Cushman, and Michael K. Schwartz

In reading this book, you have observed that the spatial data used in landscape ecology 

come from many sources and in many forms. For many organisms, these data take 

the form of presence or absence at a location, or numbers of individuals at that 

same location. For species such as trees, where huge size differences exist between 

individuals, indices such as basal area, metric tons per hectare, or canopy cover 

are more useful than counts. For any measured species that is handled (or sampled 

noninvasively; Taberlet et al. 1999; Kendall and McKelvey 2008; Schwartz and 

Monfort 2008), an additional data source is available: the genetic data stored in 

the organism’s tissue. If genetic samples are taken, then these data become another 

type of spatial data associated with the location where the organism was sampled. 

As such, genetic data can be analyzed with many of the same approaches used to 

analyze data of other types that vary spatially.

Genetic data, however, also have certain valuable properties that allow different 

sorts of analyses than are possible using many other data sources. Most data are 

representative of the present: where an organism is at the time of sampling, and 

what attributes are correlated with that presence. Genetic data allow us to look into 

the animal’s past and ask where it was born, and where its parents were born. They 

also allow us to determine the individual’s likely response to stressors such as heat, 

drought, or disease.

Landscape genetics has been viewed as a hybrid between population genetics 

and landscape ecology (Manel et al. 2003). Another way to view landscape genetics is 

as landscape ecology that uses spatial genetic patterns (e.g. genetic variation within 

or between individuals or groups). This is because landscape genetics treats the 

genetic patterns themselves as multivariate spatial data and seeks to infer ecological 

understandings by evaluating these patterns either in isolation or in conjunction 

with other spatial data. Because genetic data are very different from other data 

sources, we need to briefly discuss genetic data before we can explore their uses.
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17.1  A Brief Primer on Genetics as they Relate 

to Landscape Analysis

The first thing to note about genetic data is that they represent an enormously 

rich data source. Even a primitive bacterium will generally have over one million 

base pairs in its genome. For example, the Escherichia coli K-12 genome contains 

4,639,221-base pairs (Blattner et al. 1997). The human genome contains about 

3 billion base pairs (Venter et al. 2001). Understanding the different patterns in 

the sequence of these base pairs is the business of molecular biology. How these 

patterns are arranged in geographic space is the business of landscape genetics or, 

more broadly, molecular ecology (Beebee and Rowe 2007).

Geneticists refer to genes, loci, and alleles. Genes are areas of genetic code associated 

with some function, loci are simply locations of interest within the code (although they 

can be genes), and alleles are different base pair patterns at a specific locus. Genetic 

variation is generated by random mutations at the level of the individual base pair 

of nucleotides (e.g. from adenine [A] to thymine [T], cytosine [C], or guanine [G]). 

Mutations lead to new alleles at loci which may or may not lead to different behavior 

of genes. If a mutation occurs in an area that codes for a protein (dubbed an “exon”) 

and causes a different amino acid to be produced, most likely this mutation will prove 

detrimental, will therefore not persist, and will not be observed in samples from live 

individuals in a population. The removal of these mutations by natural selection 

conserves the original sequence, and therefore all individuals in a population will 

frequently have the same sequence (no variation at that locus). However, once in awhile 

a mutation in an exon will be beneficial. These mutations may persist transiently, with 

the new mutation being superior and the original allele will vanish or at least diminish 

in frequency (called directional selection). When either selection (or a process called 

genetic drift and discussed below) causes one allele to persist, this is called fixation. 

In some cases, both states will be maintained by selection (called diversifying selection or 

balanced polymorphisms). For example, it has been shown that the Human Leukocyte 

Antigen locus that recognizes antigens and thus allows the immune system to respond 

is under balancing selection, where there is an advantage for an individual to be hetero-

zygous, in that this allows greater protection from different pathogen species or strains. 

Mutations that that are either removed or maintained by selection are not “neutral” but 

rather influence fitness and are therefore “adaptive”.

On the other extreme are areas of the genome which, as far as we can tell, do 

nothing at all, dubbed “introns” (within genes) or intergenic DNA (between genes). 

Because mutations in these areas generally have no known effect on the organism’s 

fitness, these areas are not conserved and therefore have the highest rates of observed 

mutations. In non-coding, or neutral areas, mutations build up at a predictable rate 

and therefore the number of mutations is related to time. In between these two 

extremes are non-coding sequences which are closely associated (physically linked 

by close proximity on a chromosome) with coding areas. Thus, there is likely some 

conservation within introns but they are variable enough to produce useful patterns. 

Further, their physical linkage to exons provides the potential to use intron patterns 

to track adaptive change.
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While mutation is the ultimate source for genetic variation, the buildup of these 

mutations is a slow process. The movement of alleles across space, however, can be 

a rapid process. It occurs through reproduction and migration. Thus, spatial patterns 

of neutral genetic variation tend to be dominated by gene flow and drift and be little 

influenced by mutation. Gene flow is defined as exchange of genetic information 

(alleles) between populations through migration (Allendorf and Luikart 2007). 

Gene flow across landscapes makes populations or geographic areas more similar 

genetically. On the contrary, genetic drift causes populations or geographic areas 

across landscapes to become genetically differentiated. Genetic drift is defined as 

random changes in allele frequencies in populations between generations due to 

binomial sampling of genes during meiosis (gamete production). Genetic drift 

is more pronounced in small populations. For example, imagine a population of 

two individuals with two different alleles; by pure chance we may lose alleles 

not due to selection but by drift if one allele happens to not get passed down in a 

single generation.

For landscape genetics, patterns in neutral DNA, introns, and exons, each have 

different meanings, and can be used to ask different questions. Because changes in 

an organism’s neutral DNA has no biological implications, these patterns are free to 

drift due to stochastic processes, and are free to flow due to organism movements. 

Patterns in neutral DNA, being free from natural selection, can be more easily 

interpreted, and a great deal of population and landscape genetics is based on ana-

lyzing these regions (Manel et al. 2003; Avise 2004; Allendorf and Luikart 2007). 

However, the evolution and movement of adaptive traits may be more pertinent for 

evaluating population status (e.g. long-tem adaptive potential or current extinction 

risk), with the observed neutral patterns providing a potential index of adaptive 

differentiation between populations. Populations that have been separated for long 

periods of time, and therefore have many differences in neutral DNA, will also 

tend to develop local adaptations (e.g., Storfer et al. 1999). While, in a broad sense, 

large inter-population differences in neutral markers indicate potential for large dif-

ferences in adaptive traits, the relationship is by no means constant. For example, 

Bromham and Woolfit (2004) found no consistent patterns in rates of molecular 

evolution based on neutral markers and rates of observed evolution of phenotypes. 

Using the degree of differentiation in neutral markers to infer the degree of adaptive 

change or divergence is therefore somewhat speculative.

In the future we will almost certainly evaluate both adaptive and neutral 

patterns (Luikart et al. 2003) with large amounts of information contained not only 

in the patterns themselves, but in the covariance patterns as well. This approach is 

the focus of the Landscape Genomics Chapter (Chapter 9, this volume; see also 

Gebremedhin et al. 2009).

17.1.1 Maternal and Paternal Inheritance

Almost all of the DNA in higher eukaryotes is nuclear, and therefore inherited from 

both parents. However, there are sequences that are inherited exclusively either 
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maternally or paternally. Exclusive maternally inherited DNA is associated with 

organelles (in animals mitochondria and in plants both mitochondria and chloro-

plasts) that contain their own DNA. They are largely not recombined with paternal 

DNA. In animals, the Y chromosome provides pure paternal inheritance in males; 

in plants, pollen contains extra-nuclear DNA providing richer data for tracking 

paternal lineages.

Genes inherited exclusively from maternal or paternal sources produce useful 

patterns because, lacking recombination (which shuffles DNA sequences), these patterns 

are easier to analyze, because differences in sex-related behavior can be inferred, 

and because there is only one “type” per individual (as opposed to nuclear DNA 

where there are two copies of each locus – one from each of the paired autosomal 

chromosomes). For example, in a famous case, analyses of mitochondrial DNA 

(mtDNA) for bears on the Admiralty, Baranof, and Chichagof (ABC) islands off the 

coast of Alaska indicated that the bears were highly divergent from mainland bears. 

However, nuclear DNA indicated that they were similar (Paetkau et al. 1998). Male 

bears crossed the passage to the mainland frequently, but apparently females never 

did. By comparing the patterns associated with the mixing of both sexes (nuclear) 

with those exclusively associated with females (mitochondrial), the movement 

patterns and relative isolation of the islands was elucidated.

The case of the ABC bears is an application of traditional population genetics, but 

the issues, movement and isolation, are commonly addressed through landscape 

genetics (especially when working at fine spatial scales). Indeed, the boundary between 

population and landscape genetics is blurry and in many cases a problem can be 

investigated using either approach. For the remainder of the chapter we will discuss 

the branch of landscape genetics that evaluates differences between individuals (e.g., 

Cushman et al. 2006) and does not seek to assign individuals to known populations 

(Holderegger and Wagner 2008 and Balkenhol et al. 2009). These approaches treat 

genetic differences as spatial gradients rather than as discrete clusters with rela-

tively little internal pattern. In this simplified view, the difference between population 

and landscape genetics is analogous to the difference between ANOVA and regres-

sion. As with these statistical methods, the choice of approach should be dictated by 

the questions asked and the nature of the data; neither is uniformly superior. Similarly, 

just as regression using continuous variables and ANOVA represent two ends of a 

spectrum of models involving mixtures of categorical and continuous variables, 

landscape genetics can contain mixtures of gradients and groups.

17.2 The Nature of Genetic Data

As indicated above, genetics in general and landscape genetics in particular are 

huge fields; to avoid writing an entire book on it, we need to narrow down. For 

the remainder of the chapter, we will therefore discuss analyses of neutral nuclear 

DNA. For over a decade, the most common analyses of neutral DNA patterns 

have utilized “microsatellites”, thus we will only consider this type of genetic data 
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(Luikart and England 1999). Microsatellites are composed of simple sequence repeats 

of 1–6 base pairs. For example cytosine-adenine (CA) is a common (“dinucleotide”) 

repeat sequence found in genomes. In microsatellites, the same sequence of base 

pairs commonly will repeat 10–100 times (CA,CA,CA…CA) and mutations lead to 

variations in the number (n) of repeats (CA
n
). Therefore genetic variation in microsatel-

lites is scored in terms of the number of base pairs in the repeat (e.g. CA 
10

).

Microsatellite mutation occurs more frequently than single base pair mutations 

in sequences, and therefore microsatellite loci are often extremely variable. It is 

not uncommon to have ten or more lengths (alleles) of a particular microsatellite 

(locus) in a population (although some fish species have more than 45 alleles at a 

locus; Van Oppen et al. [1997]). They are also, as far as we can tell, truly neutral 

and different loci are often considered independent, although this can be tested 

with recent genome maps that are being produced. Because they are nuclear (and 

thus two alleles are contained in each individual at autosomal chromosomes), each 

locus can be either heterozygous (two different alleles) or homozygous (the same 

allele twice) increasing the between-individual variability. Because of the high 

number of potential combinations at any locus, we can often differentiate indi-

viduals (called DNA fingerprinting) in wild populations using 6–7 loci (Paetkau 

and Strobeck 1994).

17.2.1 Genetic Distance

Genetic distance is simply the degree to which genetic data between 2 individuals 

or populations vary. For individuals, it can be treated simply as the proportion of 

alleles different (e.g. Bray-Curtis, used in Cushman et al. 2006) or can be based 

on deviation from genetic expectations (e.g. a
r
, Rousset 2000). Various distance 

metrics tend to be highly correlated; Cushman et al. (2006) found that the correlation 

between distance measured using the Bray–Curtis percentage dissimilarity measure 

(Legendre and Legendre 1998) and a
r
 (Rousset 2000) was 0.97 for their bear data.

The expected genetic distance between individuals in a well mixed population 

will related to the frequency within the population of alleles at each sampled locus. 

However, if individuals within a geographic area are related, the frequency of 

genotypes and alleles will differ from their global expectations. For example, if we 

were to sample from a family where all offspring had the same parents, no more 

than four alleles would exist at each locus across the entire family group regardless 

of the global allelic frequencies (this could also be as little as one allele if both 

parents were homozygous for the same allele at this locus). Similarly, this family 

would have, overall, more alleles in common than random expectations. Because 

this group is closer genetically than expectation, by definition it has to be further 

apart genetically from other family groups than random expectation. Similarly, if 

two populations are separated for a long time, allele frequencies will diverge due to 

the random processes of drift and mutation, and samples from individuals between 

the two populations will be genetically more dissimilar than would be expected 
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if they were freely mixing. In landscape genetics, patterns of genetic distance are 

the spatial information of interest: mating behavior and movement patterns can be 

inferred by relating these patterns to the landscapes in which they occur.

A common spatial pattern of genetic distance in terrestrial organisms is that 

organisms that are spatially proximal will be more genetically similar than organisms 

that are distant. This is because, for animals, an organism is more likely to find a 

proximal organism than one that is distant, and the resulting offspring are more 

likely to settle nearby. For plants, pollen is more likely to be transferred to proximal 

plants (in some cases to other parts of the same plant), and seed densities likely are 

highest close to the parent plant. These types of patterns are referred to as “isolation 

by distance” (Wright 1943) and for many organisms can be considered the expecta-

tion distribution: on a completely featureless landscape, we would expect patterns 

to be associated with Euclidian distance. When population processes lead to isolation 

by distance, genetic distances will form gradients, and landscape genetic approaches 

are therefore appropriate. We can next consider what happens when landscape 

features interact with levels of gene flow and enhance or retard genetic exchange 

across the landscape.

17.3 Common Approaches in Landscape Genetics

As might be expected, early landscape genetic approaches sought to use spatial 

genetic patterns to define populations. Once genetic discontinuities (barriers) and 

populations were defined, standard population genetic approaches as well as indi-

vidual based approaches could be applied (Manel et al. 2003 and references therein). 

The fundamental idea was that genetic differences formed a gradient surface with 

areas of rapid change and “flat” areas. Steep slopes would be related to barriers to 

gene flow, and flat areas with freely mixed or “panmitic populations. Rather than 

assuming prior knowledge of where the steep areas were, the genetic patterns would 

allow determination of population boundaries (Barbujani et al. 1989; Barbujani 

and Sokal 1990; Stenico et al. 1998; Simoni et al. 1999). While an excellent idea in 

theory, in practice genetic data are very noisy when used in this manner and are likely 

highly influenced by sampling scheme (Novembre and Stephens 2008; Schwartz 

and McKelvey 2009; Frantz et al. 2009). Thus early methods such as the Monmonier 

algorithm (Monmonier 1973) tended to get stuck in local minima and failed to 

reliably reproduce simulated populations. Of the various approaches to determining 

minima simulated annealing is the most robust and Dupanloup et al. (2002) were 

able to improve results using these methods. However, this approach has not become 

widespread. Instead, a posteriori grouping of genetic data into populations is largely 

done using non spatial (e.g. STRUCTURE; Prichard et al. (2000) ) or semi-spatial 

(e. g. Geneland; Guillot et al. [2005]) clustering algorithms.

Coulon et al. (2004) correlated pair-wise genetic distance between samples with 

landscape features viewed as having different resistances to gene flow. Least cost 
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resistance paths were created between all individuals and correlations between path 

resistances and genetic distance higher than those between Euclidian and genetic 

distance were viewed as supportive of the putative resistance model. More recently 

McRae (2006) conceived landscape resistance as a series of parallel circuits 

connected by resistors. Gene flow was viewed as analogous to electron flow, and, 

as this approach had been used in engineering to determine electron flow through 

metal plates, numerical approaches were available. The advantage of the circuit 

analogy is that gene flow would be altered not only by the minimum resistance 

between points, but also by the width and therefore number of alternative routes 

available. Recently, Garroway et al. (2008) utilized graph theoretic approaches 

similar to those that have been used to analyze social networks to evaluate genetic 

data. This approach allows the macro-scale characteristics of the network to be 

determined, potentially allowing deeper insights into the biology driving genetic 

interchange than are possible through evaluations of resistance to travel.

Once factors controlling (or at least correlating with) gene flow have been 

identified, the model can be applied to a landscape to determine likely areas for 

both corridors and barriers to flow. For many animals, the advent of GPS tracking 

should, in turn, allow the direct confirmation of the genetically derived connectivity 

rules, although genetics may reflect more historical gene flow integrated across 

many individuals, whereas GPS tracking could reflect more recent gene flow for 

a few select individuals as well as movements not related to mating, reproductive 

success, and gene flow.

17.4 Examples of Connectivity Modeling

In the remainder of this chapter we illustrate some of the potentials associated 

with landscape genetics with examples taken from our own work. The organisms 

involved are black bears (Ursus americanus) and wolverines (Gulo gulo) and in both 

cases our research group has used resistance modeling to infer corridors and barriers, 

and subsequently utilized these models to develop putative corridor structures. 

In the case of the wolverine, we had a coherent a priori habitat use model test. In the 

case of the black bear, we explored multiple models, but used “causal modeling” 

(Legendre and Troussellier 1988; Legendre 1993) to separate spurious correlations 

and identify biologically relevant factors.

17.4.1 Wolverine Example

Wolverine populations, at their southern extent are limited to high elevation areas. 

Not only do they need to den in snow (Magoun and Copeland 1998), but year-around 

habitat use is limited to high elevation areas, possibly due to aversion to summer 

heat (Hornocker and Hash 1981). Wolverines have large home ranges, on the order 
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of 100 km2 for females (Copeland et al. 2007). Hence, the mountainous areas where 

they live contain relatively few individuals (Squires et al. 2007) and continued 

presence therefore requires movement between the mountainous islands.

Aubry et al. (2007) suggest that wolverine range is limited by areas covered by 

persistent snow through the end of the denning period in mid May. In 8 radio-telemetry 

studies in the conterminous US and in British Columbia, Canada, areas characterized 

by persistent spring snow through the denning period (hereafter “snow layer”) 

contained all recorded dens and 89% of all telemetry relocations (J. Copeland pers. 

Comm). Therefore, from a practical standpoint the snow layer defined the areas 

where wolverines both reproduced and utilized on a daily basis.

Based on their size, these islands are, from the standpoint of population stability, 

extremely small. Many likely contain a single family consisting of a mature male, several 

mature females and their progeny. For population stability, likely the single most 

important attribute is the ability to provide demographic and genetic rescue, and 

to rapidly recolonize areas when local extinctions occur (see Squires et al. 2007). 

We therefore needed to determine the dispersal rules and likely travel routes used 

by wolverines.

A spatially distributed sample of tissues from 210 wolverines existed for Montana, 

Idaho, and northern Wyoming. These data were derived from various studies and from 

trapping in Montana (Schwartz et al. in press). These samples have been analyzed 

in several papers (Kyle and Strobeck 2002; Cegelski et al. 2003, 2006; Guillot 

et al. 2005) and clustering algorithms have been used to define sub-populations. 

Additionally, autocorrelation analysis (Smouse and Peakall 1999) indicates a positive 

gradient of correlation extending approximately 180 km (Schwartz et al. in press). 

While both the clustering analyses and autocorrelation demonstrate that genetic 

data are spatially structured, the presence of strong gradients coupled with irregular 

sampling procedures likely lead to artificial clusters not indicative of actual movement 

and isolation patterns (Schwartz and McKelvey 2009). Gradient approaches, however, 

are appropriate for these types of genetic patterns and samples.

Using the approach of comparing pair-wise genetic distance with putative land-

scape resistance maps (Coulon et al. 2004, 2006; Cushman et al. 2006), Schwartz et al. 

tested the hypothesis that wolverines dispersed by keeping as much as possible 

within the mountainous areas where they both were born and to which they limited 

their daily movements. Because of the concordance between the snow layer, 

denning and daily movement, Schwartz et al. constructed resistance surfaces 

in which movements exterior to the areas of snow had higher resistance than 

movements staying within snow areas. Following Coulon et al. (2004, 2006) and 

Cushman et al. (2006) Schwartz et al. used least cost paths to construct the minimum 

resistance paths between each pair of individuals and used Mantel tests to measure 

the correlation between least cost path resistances and genetic distance. 

These correlations were tested against a Mantel test comparing genetic distance 

to Euclidian distance. Lastly, partial Mantel tests were used to separate the effects 

of the snow layer from the effects of Euclidian distance, and determine which was 

likely the primary cause of the observed correlations.
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For wolverines, rather extreme models, in which least cost resistance paths 

were maximally within the snow layer performed best, and all models with less 

resistance through snow areas were significantly better than the Euclidian distance 

model (Fig. 17.1).

The major goal of the analysis was to quantify the degree of population con-

nectivity across a large portion of the Northern Rocky Mountains and identify 

important potential corridors or barriers to movement. As the identified resistance 

map only provides point-wise information and connectivity is mediated through 

movement, Schwartz et al. utilized the source–destination least path approach 

introduced by Cushman et al. (2008) to map broad scale landscape connectivity. 

Because wolverines were well distributed within the mountain islands and because 

all dens were within these areas, Schwartz et al. placed theoretical start locations 

in all snow areas large enough to hold a female wolverine home range (and hence 

a den). Using the best resistance model identified above, they built pairwise least 

cost paths between all theoretical start locations to determine the optimal routes 

from any area where a wolverine might be born to any area where a wolverine 

might breed and leave its genes behind. Kernels were draped across each path and 

the kernels added to produce a visualization of theoretical path densities across the 

landscape (Fig. 17.2).

Fig. 17.1 Correlations against cost for various models testing whether areas characterized by 
persistent spring snow facilitated wolverine dispersal. Costs are the relative cost of moving 
through non-snow rasters (snow rasters always have Cost = 1)
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17.4.2 Bear Example

The second example is an effort to predict landscape resistance as experienced by 

American black bear as a function of elevation, slope, roads, land-use and forest 

cover. The study area consisted of an approximately 3,000-km2 area of the Selkirk 

and Purcell mountain ranges in the extreme northern tip of Idaho State, USA 

(Cushman et al. 2006) and to apply this model to predict movement corridors and 

Fig. 17.2 (a) Map of the northern US Rockies with cumulative least-cost paths between 
systematically placed locations (circles) in spring snow cover cells. Areas in red are predicted to 
be used more often than those in cooler colors. The color of the circle corresponds to the average 
cost distance between that location and all other locations, based on modeling. (b) Cumulative plot 
of the average cost distance (in millions of cost units) between each systematically placed location 
and all other locations. The graph was divided into four modes (three within the northern US 
Rockies, and 1 between the Greater Yellowstone Area and Colorado). The yellow mode has the 
lowest average cost distances (within the Northern US Rockies), the blue bars the next lowest, the 
pink bars (Crazy and Little Belt Mountains) have the greatest average cost distances in the 
Northern US Rockies, and the green bars show the distances between all points from Colorado to 
the Greater Yellowstone Area
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identify potential barriers for gene flow between Yellowstone National Park and the 

Canadian Border in the Montana, USA. (Cushman et al. 2008).

The topography in the Cushman et al. (2006) study area is mountainous, with 

elevation ranging from approximately 700–2,400 m. The Kootenai River trench 

bisects the study area, separating the Selkirk Mountains on the west from the Purcell 

Mountains on the east with a 5–8-km-wide unforested, agricultural valley and a 

broad, deep river. Mountains outside the valley are heavily forested, with Abies 

lasiocarpa (subalpine fir) and Picea engelmannii (Engelmann spruce) codominant 

above 1,300 m and a diverse mixed conifer forest dominating below 1,300 m.

We used noninvasive hair snaring to obtain genetic samples, following the proto-

cols of Proctor et al. (2005). Sampling stations were set at 266 plots distributed on 

a 1.6-km grid. We detected no deviations from Hardy–Weinberg proportions, found 

no evidence of gametic disequilibrium, and expected heterozygosity in the Purcell and 

Selkirk mountain ranges were 0.78 and 0.80, respectively, while observed heterozy-

gosity was 0.76 and 0.80 for each range, respectively (Schwartz et al. 2006).

A priori, we identified three potential drivers of genetic structure in this black 

bear population, including isolation by the Kootenai River valley as a barrier, isola-

tion by geographic distance, and isolation by landscape-resistance gradients. Our 

goal was to determine the relative support for isolation by distance and barriers in 

comparison to isolation by gradients of landscape resistance.

In addition, there are many possible alternative models for landscape effects 

on population connectivity of this species. A priori, we proposed elevation, roads, 

topographical slope, land-use and land-cover as factors hypothesized to affect gene 

flow in this species. In addition, each of these factors could influence bear gene flow 

in a number of potential ways. Therefore, we constructed a factorial of multiple levels 

of each of these factors, totaling 108 alternative landscape resistance hypotheses 

(Cushman et al. 2006).

We used the Bray–Curtis percentage dissimilarity measure to calculate genetic 

distance among individuals (Legendre and Legendre 1998), producing a matrix 

containing the genetic distances among all pairs of sampled bears. We used the 

ArcGIS to produce cost distance matrices that correspond to each of the 110 

alternative models (108 landscape models, isolation by distance, and isolation 

by the Kootenai River barrier). The cost distance matrices corresponding to each 

landscape resistance hypotheses were created using the COSTDISTANCE function 

(ESRI 2003). This entailed creating cost matrices reflecting the least-cost distance 

from the location at which each bear’s DNA sample was recorded to every other 

bear’s location across each of the 108 resistance surfaces.

We next identified which of the seven models had the strongest support. All 110 

resistance hypotheses were significantly related to the pattern of genetic difference 

among bears. The barrier hypothesis was ranked 102 out of 110 in terms of the 

magnitude of the Mantel correlation coefficient. The isolation-by-distance hypothesis 

was more strongly supported and was ranked 35 out of the 110 total models. The most 

supported model predicts that gene flow in this population is influenced predominantly 

by landscape-resistance gradients with no significant independent relationships 

with the Kootenai River barrier or geographical distance.
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After the effects of distance are partialed out, ranking the ten significant partial 

models by the Monte Carlo permuted p-value value provided a means to determine 

which hypotheses have the greatest support and to identify the combination of 

landscape factors most related to the genetic structure of this population. The ten 

significant partial models were all concentrated in one small area of a four-dimensional 

factorial space (roads, elevation, forest cover, slope), indicating a unimodal peak 

of support. Within this small area of concentration, the best-supported models 

were associated with minimum resistance to movement at middle elevations, high 

resistance of nonforested habitat to movement, no relationship with slope, and 

equivocal support for the different levels of road resistance. A map extrapolating 

the understanding from the most highly supported model across the entire study 

area is shown in Fig. 17.3 .

Similar to the approach used to model wolverine corridors (above), we modeled 

movement from source locations distributed at 2-km intervals along the forested 

portion of the Canadian border between the Idaho–Washington state border and the 

eastern edge of Glacier National Park (160 locations) to 160 destination locations 

along the northern boundary of Yellowstone National Park (Cushman et al. 2008). 

We then computed the least-cost paths across the best-supported resistance surface 

developed by Cushman et al. (2006) for all combinations of the 160 northern and 

160 southern points (25,600 paths).

Despite the large number of combinations, all least-cost paths followed only three 

major routes (Fig. 17.4 ). The most important route, in terms of the number of source–

destination paths it contained, followed the eastern edge of the mountainous terrain 

along the Bridger and Belt mountains and crossed into the Bob Marshall Wilderness 

Fig. 17.3 Predicted landscape resistance to black bear gene flow in Idaho Study Area, inferred 
from causal modeling, Cushman et al. (2006). Color ramp ranges from low resistance (relative 
resistance 1) in black to high resistance (relative resistance maximum 62) in white
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and then into Glacier National Park. The second major route proceeded north through 

the Gravelly and Tobacco Root ranges and then proceeded north roughly following 

the foothills along the east side of the Swan and North Fork Flathead rivers. The 

final route was much smaller, in terms of the number of source–destination paths it 

contained, but was important for connectivity between the northwestern part of the 

study area and the GYA. This route followed the Clark Fork River and continued 

northward though the Cabinet and Selkirk mountains to Canada. The majority of the 

length of the major paths fell within federal ownership (US Forest Service [USFS] 

and National Park Service [NPS]). Nevertheless, only 24% of the major paths length 

fell within designated wilderness or national park, and less than half were in wilder-

ness, park, or designated roadless areas (Cushman et al. 2008).

17.5 Conclusions

Landscape genetics is still a nascent science. While we continue to be amazed 

both by the power and flexibility of these data, we are just beginning to scratch the 

surface. The strength and consistency of the results associated with the wolverine 

Fig. 17.4 Map of expected importance of least cost routes from Yellowstone National Park to 
the Canadian border based on the best resistance map identified in Cushman et al. 2006. The relative 
strength of the predicted route is shown in a color ramp from red (very highly important) to blue 
(relatively less important) based on the number of source–destination paths crossing that location
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and bear examples in this chapter greatly exceeded our expectations. As new 

approaches emerge and, with the cost of genetic analyses halving every 2 years 

(Hauser and Seeb 2008), these approaches will likely become pervasive in the next 

decade (see Chapter 9, this volume). There are already strong movements to augment 

ongoing traditional monitoring efforts with genetic sampling. In many cases, the 

additional cost of collecting genetic material is trivial. This trend will lead to spatial 

genetic datasets that are much more regular and extensive than are currently available. 

In short, we expect one of the most commonly analyzed types of spatial datasets 

in the near future will be genetic datasets, as they provide powerful questions to 

long standing ecological and conservation questions. However, this rapid advance 

in availability of large genomic data sets will present major computational and 

database challenges. The size of genomic datasets is vast, which poses a major 

challenge for storage, organization and file access. In addition, analyzing these 

large data sets to extract meaningful information in the form of neutral markers, 

introns and exons is a massive datamining challenge. For the potential of landscape 

genetics to be realized there must be simultaneous advances in ecological informat-

ics (Chapter 8, this volume), database architecture (Chapter 12, this volume), and 

major improvements in statistical data mining approaches to associate genetic 

patterns with landscape and environmental features (Chapter 16, this volume).
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