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Abstract. Appropriate use of satellite data in predicting >1 year post-fire effects requires remote measurement of sur-
face properties that can be mechanistically related to ground measures of post-fire condition. The present study of burned
ponderosa pine (Pinus ponderosa) forests in the Black Hills of South Dakota evaluates whether immediate fractional cover
estimates of char, green vegetation and brown (non-photosynthetic) vegetation within a pixel are improved predictors of
1-year post-fire field measures, when compared with single-date and differenced Normalized Burn Ratio (NBR and dNBR)
indices. The modeled estimate of immediate char fraction either equaled or outperformed all other immediate metrics in
predicting 1-year post-fire effects. Brown cover fraction was a poor predictor of all effects (r2 < 0.30), and each remote
measure produced only poor predictions of crown scorch (r2 < 0.20).Application of dNBR (1 year post) provided a consid-
erable increase in regression performance for predicting tree survival. Immediate post-fire NBR or dNBR produced only
marginal differences in predictions of all the 1-year post-fire effects, perhaps limiting the need for prefire imagery.Although
further research is clearly warranted to evaluate fire effects data available 2–20 years after fire, char and green vegetation
fractions may be viable alternatives to dNBR and similar indices to predict longer-term post-fire ecological effects.

Additional keywords: burn severity, char, Landsat ETM+, ponderosa pine, subpixel, unmixing.

Introduction

The large size and, in many cases, remote nature of many
wildfires have made analysis of Earth observation imagery an
important and widely applied method for immediate and long-
term assessment of fire effects on ecosystems (Morgan et al.
2001; Lentile et al. 2006b). Appropriate use of remote sensing
tools and techniques in predicting these fire effects, such as veg-
etation recovery and successional processes, requires that we
investigate the mechanistic, biophysical relationships between
remotely sensed metrics of post-fire surface condition, such as
changes in reflectance, surface temperature, heights (e.g. using
laser altimetry data) or fractional cover; with field measures of
ecosystem condition (Key 2006; Lentile et al. 2006b). Defini-
tions and assessments of post-fire ecosystem condition often
use the word ‘severity’, which for the present paper will be
described as ‘burn severity’ and includes changes in both soil
and vegetation conditions as a result of fire (Lentile et al. 2006b).

Although early remote sensing research to infer the severity
of fires focussed on metrics that could be both measured on the
ground and inferred by the sensors, such as crown consumption
or subsequent tree mortality (Patterson and Yool 1998; Miller
and Yool 2002), recent research has predominantly focused on
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using the differenced Normalized Burn Ratio (dNBR: Key and
Benson 2006) spectral index or variants thereof (Holden et al.
2005; Miller and Thode 2007). This spectral index effectively
measures the relative degree of vegetation and soil char cover
change between pre- and post-fire conditions (Smith et al. 2005;
Lentile et al. 2006b). Within North American wildfires, these
values have been evaluated predominantly against an ocular field
assessment method termed the Composite Burn Index (CBI)
(van Wagtendonk et al. 2004; Brewer et al. 2005; Cocke et al.
2005) with only limited studies modeling or evaluating regres-
sions with specific biological or ecological measures of post-fire
effects (De Santis and Chuvieco 2007; Hudak et al. 2007b;
Robichaud et al. 2007; Smith et al. 2007b).

Although fundamentally an ocular measurement, CBI is
an integrative measure of post-fire effects across under- and
overstorey strata (Key and Benson 2006). Although it is not
ideal to compare singular-date field measurements with change-
detection indices (Dozier and Strahler 1983), the CBI method-
ology is often applied because the assessment of fire effects in
wildland fires typically occurs in an opportunistic or a rapid
response (Lentile et al. 2007a) fashion, which limits the likeli-
hood of available prefire data (Lentile et al. 2006b). Although
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widely applied by fire management in the production of burned
area reflectance classification (BARC) maps and within the
national Monitoring Trends in Burn Severity (MTBS) pro-
gram (e.g. Cocke et al. 2005; Epting et al. 2005; Miller and
Thode 2007), limitations in both the dNBR and CBI method-
ologies have been highlighted (Roy et al. 2006; Smith et al.
2007b):

(i) The CBI measure is calculated in a highly subjective and
qualitative manner, with evaluations often conducted with-
out explicit knowledge of prefire ecosystem condition (van
Wagtendonk et al. 2004) but rather with unburned adjacent
areas used as prefire surrogates (Lentile et al. 2006b).

(ii) dNBR often exhibits non-linear asymptotic relationships
with CBI (van Wagtendonk et al. 2004; Cocke et al. 2005;
Wimberly and Reilly 2007), which leads to scaling chal-
lenges. This effect further varies with ecosystem type
(Epting et al. 2005) and with the spatial resolution of the
satellite sensor (van Wagtendonk et al. 2004).

(iii) Contemporary remote sensing studies have shown that the
spectral bands used to calculate NBR are not optimal to
evaluate the degree of burning (Smith et al. 2005; Roy
et al. 2006).

(iv) dNBR and CBI have been shown to be suboptimal in wood-
land, shrub and grassland environments (Epting et al. 2005;
Roy et al. 2006; De Santis and Chuvieco 2007), resulting
in studies considering variants of both CBI (Epting et al.
2005; De Santis and Chuvieco 2007) and dNBR, such as
the relative dNBR (RdNBR), to assess post-fire effects
(Miller and Thode 2007). Although other investigations
show no improvement of RdNBR over dNBR when applied
in environments dissimilar to those for which RdNBR
was developed (Hudak et al. 2007b), it has the potential
to provide consistently interpretable results across multi-
ple environments (Miller and Thode 2007; Safford et al.
2007).

(v) The remote sensing literature has demonstrated the spectral
changes that dNBR highlights are due to differences in the
amount of vegetation, soil and char detected (Smith et al.
2005; Roy et al. 2006) and although it has been highlighted
that dNBR predominantly detects changes in vegetation
consumed (Hudak et al. 2007b) or killed (Miller andThode
2007), disagreement exists within the fire ecology com-
munity as to whether dNBR maps should be used to only
infer fire effects on soil and not on vegetation (Odion and
Hanson 2006, 2007; Safford et al. 2007).

(vi) Contemporary studies have questioned whether studies
should infer post-fire effects from the immediate post-
fire NBR, the immediate post-fire dNBR (NBRpre −
NBRimmediate post-fire), or the 1-year post-fire dNBR
(NBRpre − NBR1-year post-fire), which can lead to confusion
when selecting methods for assessment (Epting et al. 2005;
Hudak et al. 2007b). Specifically, some studies highlight
dNBR (Epting et al. 2005) or conversely NBR (Bobbe
et al. 2003; Hudak et al. 2007b) to be improved predic-
tors of post-fire effects. Motivation for using dNBR or
similar multitemporal imagery includes the potential to
minimize classification errors due to sun–sensor geometry,
atmospheric effects, phenology or areas that are spectrally

flat such as water or older burns (Bobbe et al. 2003; De
Santis and Chuvieco 2007).

(vii) Roy et al. (2006) highlighted that the original application of
the dNBR was for burned area mapping (López-García and
Caselles 1991), which relies on fundamentally opposite
assumptions to methods used to assess a range of biophysi-
cal variation within an area (Verstraete and Pinty 1996; Roy
et al. 2006), such as a range of ‘severity’ after a wildfire.

Specifically in terms of (vii), numerous authors have
remarked that the ultimate goal of any land-cover classification
approach is ideally to produce class histograms that are narrowly
peaked (low internal variability) but that have well-separated
means, such that the different class histograms are less likely
to overlap and therefore would exhibit higher spectral separa-
tion (Verstraete and Pinty 1996; Pereira 1999; Roy et al. 2006).
In contrast, when evaluating within-area effects, such as burn
severity, a large dynamic range of within-class values is desired
to provide detailed characterization of those effects. In essence,
although well-separated class means are still desired, the user
now needs the individual class histograms to be very wide, or
at least exhibit bi- or tri-modal properties, to enable splitting of
any particular class into distinct regimes, such as ‘low, moderate
and high’. When such bi- or tri-modal properties are not imme-
diately apparent, it is common to use statistical breaks, such
as those derived from training data (Pereira 1999; Hudak et al.
2007a).

As these are mutually exclusive objectives (Verstraete and
Pinty 1996; Pereira 1999), dNBR and any other similar spec-
tral index cannot be optimal for characterizing both burned area
and post-fire effects related to severity (Roy et al. 2006). Owing
to mixed results in the application of dNBR to severity assess-
ments in a range of fire types outside the area around Glacier
National Park, Montana, for which it was originally developed
(Key 2006), it remains apparent that more research is needed to
determine whether dNBR is better suited to the assessment of
burn area or burn severity.

These factors potentially limit the wide-scale applicability
of dNBR and similar spectral indices to infer post-fire ecosys-
tem condition and highlight the continued need for further
research to evaluate alternative and perhaps more appropriate
remote sensing methods (Roy et al. 2006). Recent research has
highlighted spectral mixture analysis (SMA) as one such alter-
native approach with potential to meet this need (Lentile et al.
2006b; Hudak et al. 2007b; Lewis et al. 2007; Smith et al.
2007a, 2007b). To date, SMA (common synonyms: linear spec-
tral unmixing, mixture modeling) has predominantly been used
to map the extent of the burned area (Wessman et al. 1997;
Cochrane and Souza 1998;Vafeidis and Drake 2005; Smith et al.
2007a). It also enables estimation of fractional cover components
with each multispectral image pixel, including unburned vege-
tation (green or senesced), soils and charred or fully combusted
vegetation (Smith and Hudak 2005; Smith et al. 2005; Lewis
et al. 2007; Robichaud et al. 2007). Although other subpixel
methods such as mixture tuned matched filtering (Robichaud
et al. 2007) and fuzzy classification methods exist (Foody 2000),
SMA has widely been applied to the analysis of ecological
data (Wessman et al. 1997) and its theory and limitations are
well documented in the literature (Drake et al. 1999; Theseira
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et al. 2003). SMA relies on the assumptions of linear spec-
tral mixing models (Drake et al. 1999) and thus the results are
inherently scalable across data of different spatial resolutions
(Settle and Drake 1993). SMA also can be applied to any type
of imagery with multiple reflectance channels in the visible and
near-infrared wavelength regions, without reliance on the avail-
ability of specific channels (e.g. bands 4 and 7 to calculate dNBR
from Landsat Thematic Mapper (TM) or Enhanced Thematic
Mapper Plus (ETM+)). Furthermore, it allows production of
measures that are directly analogous to traditional ‘field sever-
ity’assessments of % green, % brown and % black (Lentile et al.
2006b).

Smith et al. (2007b) observed in a recent preliminary study
that in comparison with the immediate post-fire metrics of dNBR
and fractional green cover, the estimate of fractional char cover
applied to a mixture of aspen and ponderosa pine plots produced
marginally improved predictions of two 1-year post-fire effect
measures (% live trees and organic litter weight). However, in
contrast, Hudak et al. (2007b) observed that green fractional
cover was an equal or improved correlate to multiple post-
fire effects when compared with immediate post-fire NBR and
dNBR. This conflicting result of Hudak et al. (2007b) could in
part be due to the ponderosa pine and aspen stands exhibiting
different spectral and fire effect characteristics, highlighting that
these data be revaluated for single-species stands. Moreover, the
apparent ability of a remote sensing method to reasonably pre-
dict a subcanopy post-fire effect offers considerable promise to
remotely assess ecological indicators of the fire intensity and
severity (Smith et al. 2007b). Therefore, further research is war-
ranted to assess whether similar fractional cover estimates of the
char, green vegetation and also senesced vegetation (or a mix-
ture thereof), can also predict a wider range of both canopy and
subcanopy post-fire effects, beyond the two 1-year post-fire mea-
sures previously evaluated. Therefore, following on from Smith
et al. (2007b) and Hudak et al. (2007b), the objectives of the
present study are:

(1) Evaluate whether SMA-derived estimates of fractional char,
green and brown vegetation covers immediately post-fire are
improved predictors, over immediate NBR and dNBR, for
a wide variety of both canopy (four) and subcanopy (nine)
ecological indictors measured in 66 ponderosa pine plots
1 year after fire;

(2) Evaluate whether these immediate fractional measures are
improved correlates of 1-year post-fire conditions when
compared with dNBR calculated from pre- and 1-year
post-fire imagery;

(3) Evaluate the degree of redundancy (if any) due to the differ-
ent fractional cover measures when predicting the 1-year
post-fire effects. This will enable us to evaluate whether
a combination approach based on several different cover
metrics has potential; and

(4) Evaluate whether any improvement in prediction perfor-
mance is achieved by using the immediate post-fire dNBR
over NBR. Although applications of dNBR are widely pre-
sented to managers via BARC maps, this analysis will
enable us to determine whether the prefire imagery provides
additional information in predicting longer-term post-fire
effects.

Methods
Study area
The current study focussed on the ∼33 800-ha Jasper Fire,
which occurred in 2000 in the Black Hills of western South
Dakota, USA. Within the fire, latitudes range from 43◦41′35′′
to 43◦55′48′′N and longitudes range from 103◦46′1′′ to
104◦0′47′′W. Elevations range from ∼1500 to 2100 m.The Black
Hills are an isolated mountain range on the Northern Great Plains
physiographic province in western South Dakota and north-
eastern Wyoming (Fig. 1). As the easternmost extension of the
Rocky Mountains, the Black Hills were formed by regional uplift
between ∼35 and 65 million years ago. This uplift produced
an elliptical dome with an older crystalline core surrounded by
younger, steeply dipping sedimentary deposits (Shepperd and
Battaglia 2002). The Limestone Plateau surrounds the core and
the area burned by the Jasper Fire is located on the south-western
extent of this fertile plateau. The area within the Jasper Fire
perimeter is characterized by relatively continuous ponderosa
pine (Pinus ponderosa) stands, although occasional quaking
aspen (Populus tremuloides Michx.) clones and grasslands also
exist. A complete description of the study area and fire regime
is provided in Lentile (2004) and Lentile et al. (2005).

Remote sensing data and methods
Three Landsat ETM+ images of the study area were acquired
(18 August 1999; 14 September 2000; 24 September 2001).
Each image was corrected to top-of-atmosphere reflectance
using the standard calibration equations. The Normalized Burn
Ratio (NBR), defined as the normalized difference of Land-
sat bands 4 and 7 (band4 − band7)/(band4 + band7), was then
determined for each image. Two forms of dNBR were applied,
namely the ‘immediate dNBR’, which used the prefire and
immediate post-fire image, and the ‘1-year post-fire dNBR’,
which, as the name suggests, used the prefire and 1-year post-
fire image in the dNBR calculation. Both the immediate dNBR
and 1-year post-fire dNBR were calculated by subtracting the
post-fire image from the prefire image. Rather than classifying
dNBR values using arbitrary thresholds, we used the continu-
ous dNBR values in subsequent regression analyses. Following
Cocke et al. (2005), each dNBR image was then scaled by mul-
tiplying each value by 1000. For this analysis, the immediate
post-fire Landsat ETM+ imagery was additionally converted
into ground-reflectance using the standard method of ‘dark-body
subtraction’using the minimum-band pixel values as selected by
the ITT Visual Information Systems for ENVI software package
(ITT Visual Information Solutions, Boulder, CO, USA).

The estimation of the fractional cover of char (Fig. 1), brown
vegetation and green vegetation within each Landsat pixel was
determined using spectral mixture analysis (Settle and Drake
1993). Although other linear and non-linear spectral unmixing
methods have been applied to the assessment of post-fire affected
surfaces (Smith et al. 2005; Robichaud et al. 2007), the accuracy
and ease of implementation of linear compared with the com-
plexity of non-linear models has led to the widespread adoption
of linear SMA in Earth observation studies (Drake et al. 1999;
Chen et al. 2004). Importantly, the principal assumption of linear
mixture models, namely that a mixture of 50% of A + 50% of B
will have a spectral reflectance of ((A + B)/2) over all analyzed
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Fig. 1. The location of the Jasper Fire, South Dakota (USA). The image insert is the fractional char cover image produced using the immediate post-fire
Landsat image.

wavelengths (e.g. 0.3–2.5 µm), has been shown to be broadly
valid when considering mixtures of unburned and burned sur-
face components (Cochrane and Souza 1998; Smith et al. 2005;
Vafeidis and Drake 2005). The classical linear spectral unmixing
model is defined by Theseira et al. (2002) as:

Rn =
n∑

c=1

(ancxc) + en (1)

where, Rn is the reflectance of the pixel in the nth spectral band,
xc is the proportion of the cth component in the pixel, anc is the
spectral endmember of the cth component for the nth spectral
band and en denotes the pixel noise term.

Generic spectra of senesced vegetation, green vegetation and
char (Fig. 2) were used as the authors of several past studies
have remarked that these spectral reflectance curves are broadly
similar across a wide range of environments (Elvidge 1990;

Landmann 2003; Smith et al. 2005, 2007a, 2007b; Hudak
et al. 2007b). As detailed by Smith et al. (2005), the spec-
tral reflectance functions for representative green vegetation,
senesced grasses and char (among other surfaces) were collected
with a GER-3700 spectroradiometer (Spectravista Corporation,
Poughkeepsie, NY). The GER-3700 was set up at a height of
0.75 m directly above (i.e. at nadir) the vegetation and char sam-
ples. Measurements were acquired in full sunlight within a 3◦
field of view; for each spectrum, eight spectral measurements
were acquired over a 5-s interval and the mean calculated. Fur-
thermore, for each sample of vegetation and char (five of each),
three such sets of measurements were acquired from different
vantage points to capture variability due to shading and increase
the signal-to-noise ratio of the resultant spectral reflectance
curves. The spectral radiance measurements were converted
into reflectance by normalizing the response against a Spec-
tralon reflectance panel (Labsphere, North Sutton, NH, USA),



598 Int. J. Wildland Fire L. B. Lentile et al.

0.30
0

10

20

R
ef

le
ct

an
ce

 (
%

)

30

40

50

60

0.50 0.70 0.90 1.10 1.30 1.50

Wavelength (µm)

Senesced vegetation (grass)

Green vegetation (leaves)

Char (black ash)

1.70 1.90 2.10 2.30 2.50

Fig. 2. Generic spectral reflectance curves of green vegetation, senesced vegetation, and char (black
ash). Spectra were acquired by Smith et al. (2005). The data gap ∼1.8 µm represents the dominant water
absorption feature where data quality is insufficient for analysis. The two shaded columns highlight
the general wavelength ranges of Landsat band 4 (0.76–0.90 µm) and band 7 (2.08–2.35 µm) for both
Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM).

which provides near 100% reflectance over all the 0.3–2.5-µm
wavelengths.

As outlined in Smith et al. (2007b), the spectral components
of green vegetation, senesced or non-photosynthetic vegetation
and charcoal were selected as they are ubiquitous surface charac-
teristics that are present in most global savanna-type fire-prone
environments. We acknowledge that application of non-site- and
species-specific spectral reflectance curves may not provide an
optimal unmixing result. However, these generic spectra were
applied as we sought to explore surface components that could
potentially be quickly applied to global savanna-type fires to
assess post-fire effects. A common spectral component used in
spectral mixture analysis is that of the dominant soil. However,
we deliberately sought non-soil components, as (1) soils types
are highly variable within individual fires, let alone across a
series of fires, and (2) soil spectra vary considerably between
different soil types and in soils with varying organic or moisture
characteristics (Huete and Escadafal 1991; Nagler et al. 2000).
In the present study, we did not consider shade as an endmember
as it does not have a unique spectral reflectance curve, but rather
exhibits a range of curves associated with ever-darkened versions
of the surface component being shaded. We acknowledge that in
future regional fires, using locally collected spectral data would
be most appropriate. For example, for a detailed comparison of
spectral endmembers from other wildfires, please refer to the Fire
Research and Management Exchange System (FRAMES) online
resource. FRAMES can be accessed at http://frames.nbii.gov/
(accessed 26 January 2008). The endmembers can be accessed
using keywords ‘Spectral Library’.

Linear spectral unmixing was applied using the IDL/ENVI
ver 4.2 module with the ‘sum to 1’ constraint applied (Drake
et al. 1999), which ensures that all component fractions within
a pixel sum to unity, although individual class fractions may be
negative or exceed 1. To input the spectral reflectance curves
for use in the ITT Visual Information Systems for the ENVI
software package, it was first necessary to interpolate the spec-
tral data to 1-m steps and then convolve the data with the band
spectral response functions of the Landsat 7 sensor (Smith et al.
2005).This provides ENVI with six values, where each value cor-
responds to the associated reflectance bands, rather than 2300
continuous values. The wavelength ranges associated with bands
4 and 7 (i.e. the NBR bands) of the Landsat sensors are shown
in Fig. 2.

Each individual band reflectance, dNBR and associated frac-
tional cover estimate was then extracted at each plot location
using the ARC software package (ESRI, Redlands, CA, USA).

Field measurements
Lentile (2004) and Keyser (2007) sampled three ∼800-ha study
areas that contained a mosaic of fire effects in the north, cen-
tral and southern portions of the Jasper Fire perimeter. In
June 2001, before the fall of fire-scorched needles, 66 0.28-ha
(30-m radius) permanent study sites were established in pon-
derosa pine stands within the study areas. Within these burned
stands, nine sites were located in areas exhibiting evidence of
surface fire behavior with low initial post-fire tree mortality; 24
sites were located in ponderosa pine stands exhibiting moderate

http://frames.nbii.gov/(accessed 26 January 2008)
http://frames.nbii.gov/(accessed 26 January 2008)
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Table 1. Direct fire effects measured on the boles and in crowns of trees after the Jasper Fire
All values are mean ± standard error (n = 66). All were significant at the 99% confidence interval

Burn severity (%) Crown scorch (%) Crown consumption (%) Bole scorch at 1 m (%) Bole scorch (%) Basal scorch (%) Basal char (%)

Low 19.5 (3.3) 0.1 (0.1) 15.2 (2.1) 35.3 (7.6) 80.2 (4.1) 8.7 (3.6)
Moderate 69.7 (4.3) 4.9 (2.2) 41.9 (3.2) 87.1 (2.6) 79.3 (6.2) 19.2 (6.2)
High 8.8 (7.3) 90.6 (7.3) 99.7 (0.2) 99.9 (0.1) 48.2 (9.3) 51.8 (9.3)

fire behavior, consisting of surface fire with individual tree torch-
ing resulting in moderate initial post-fire tree mortality; and 33
were located in severely burned ponderosa pine stands where all
trees were killed. Each site consisted of three 0.031-ha (10-m
radius) plots. Plots were located at bearings 0◦, 135◦ and 225◦
azimuth 20 m from the site center. Study sites were similar in
respect to preburn species composition, aspect, slope (5–13%),
elevation and soil type (Lentile 2004; Keyser et al. 2006; Lentile
et al. 2006a; Keyser 2007). These data were recently presented
in combination with 14 additional aspen study sites within a
preliminary assessment of char fraction measures (Smith et al.
2007b). Prior studies have observed that pine and aspen plots dif-
fer in their spectral properties and response to fire (Brown and
Smith 2000; Keyser et al. 2005), so the present study excluded
the aspen plots from the analysis.

On these plots, data on the fire effects on the canopy, boles
and around the bases of individual trees >5 cm diameter at
breast height (DBH) (1.4 m above soil surface) were collected
(Table 1). Tree survival was calculated based on the propor-
tion of trees surviving the fire compared with trees alive before
the fire on each plot (% live tree). Trees with no green foliage
were considered dead. Bark thickness was sampled at breast
height at two different locations on the bole to compute an aver-
age bark thickness per tree. In addition, we measured total tree
height and prefire crown base height. Crown base height was
measured at the point of branch-bole attachment of the low-
est prefire live whorl. We identified prefire crown base height
from the position of scorched needles in the case where no
foliage consumption occurred and fine branch structure in the
case where consumption of needles occurred. Scorched needles
were easily distinguishable from non-scorched needles as they
were brown or orange in color. Crown injury was measured on
individual trees and included the proportion of the prefire live
crown that was affected by crown scorch (% crown scorch) or
crown consumption (% crown consumption). The cumulative
effects of crown scorch and consumption are represented by
the total crown fire effects. We measured the percentage of the
bole circumference scorched below 30 cm above the soil to the
nearest 5% as an indicator of stem damage (basal scorch %).
We measured the percentage of the bole circumference charred
below 30 cm to the nearest 5% as an indicator of stem and cam-
bial damage (basal char %). Charred bark was distinguished
from scorched bark as it was metallic black in color (similar to
the color and texture of charcoal) and was eroded to the point
that the bark no longer contained grooves or furrows, whereas
scorched bark was completely intact and black or gray in color.
We measured the percentage of the bole circumference scorched
at 100 cm to the nearest 5% as an indicator of stem damage (bole
scorch at 1 m %). For further details, see Lentile (2004), Keyser

et al. (2006) and Keyser (2007). A typical ponderosa pine stand
1 year following the Jasper Fire is shown in Fig. 3.

Following Ryan and Noste (1985), the percentage low, mod-
erate and high ground char in a 1-m radius area around the base
of each tree was measured. Line transects (30 m) were laid at 90◦
and 270◦ bearings with the site center as the midpoint. Depths
of forest floor litter and duff and the percentage low, moderate
and high ground char (Ryan and Noste 1985) for a 0.025-m2

surface area were measured at 30 points at 2-m intervals along
these transects. An index of burn severity (BI) was defined as a
weighted sum of the product of the proportion of the ground area
charred, with the degree of char scaled from low (1) to high (3).
Within each of the individual tree plots, we characterized the
forest floor and soil effects. As these measurements were not
originally intended for the purposes of a char or remote sensing
analysis, we assigned a proportion low, moderate and high burn
severity based on widely applied descriptions of field severity
(Ryan and Noste 1985). To calculate the Burn Index, we multi-
plied the % low times 100; the % moderate times 200; and the
% high times 300; and then summed these scores. BI was cal-
culated within a 1-m radius area around the base of each tree
within plots (Total BI 1 m tree), and for each of the 30 forest-
floor points located at 2-m intervals along the transect (Floor
BI). At six additional points offset from the transect, samples
were collected, and later oven-dried and weighed to estimate
forest floor biomass (litter organic weight). This same suite of
measurements was conducted at nine adjacent, unburned sites
in order to provide an estimate of fire-induced changes on the
forest floor.

Statistical analysis
Simple linear regressions were applied to assess the predictive
ability of the fractions and NBR indices to predict the 1-year
post-fire effects. The regressions were tested for significance at
the 95% level and the standard error calculated (Tables 2–4).
Linear regressions were also determined to assess the ability
of 1-year post-fire dNBR to indicate 1-year post-fire effects.
Furthermore, both single and multiple linear regressions were
applied within the SPSS software package (SPSS Inc., Chicago,
IL) to assess the degree of redundancy in the information pro-
vided by each of the fractional cover measures in predicting the
1-year post-fire effect measures (Table 5).

General limitations of pixel-based remote sensing
methods and SMA
Two main limitations exist when relating pixel-based remotely
sensed data to ecological effects, namely assumed independence
of neighboring pixels and that the observed signal only represents
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Fig. 3. Left image shows a 1-year post-fire view of a ponderosa pine forest burned by non-stand replacing fire. Right image highlights a typical scorched
bole, as measured in the field.

Table 2. Prediction statistics (n = 66) between immediate post-fire char and green (live vegetation) fractions with 1-year post-fire field measures
All regressions, except those denoted by **, were significant at the 95% level. s.e. denotes the standard error of the estimate. Prediction statistics are between

immediate post-fire remote fractional measures (char fraction, green vegetation fraction) with 1-year post-fire field measures. BI, Burn Severity Index

Ground predictor (y) Remote measures (x)

Fraction char cover Fraction green cover

r2 s.e. Equation r2 s.e. Equation

Canopy variables
% Live tree 0.69 23.17 −483 × x + 487 0.59 25.65 254 × x − 15
Crown scorch 0.17 31.73 −201 × x + 224 **
Crown consumption 0.65 26.25 499 × x − 422 0.42 33.83 −227 × x + 89
Total crown fire effects 0.57 18.88 298 × x − 197 0.55 19.16 −168 × x + 114

Subcanopy variables
Bole scorch 0.72 18.27 411 × x − 318 0.60 22.12 −212 × x + 108
Basal char 0.33 28.77 277 × x − 206 0.32 28.82 −157 × x + 84
Basal scorch 0.21 4.81 35 × x + 65 0.16 4.97 −17 × x + 101
Average bark thickness 0.48 0.28 −3.6 × x + 4.3 0.35 0.32 1.8 × x + 0.51
Bole scorch at 1 m 0.43 20.29 243 × x − 144 0.44 20.02 −141 × x + 112
Total BI 1 m tree 0.64 36.96 289 × x − 396 0.56 41.12 −365 × x + 320
Floor BI 0.44 49.37 607 × x − 339 0.31 55.04 −277 × x + 284
Litter depth 0.49 0.24 −3.4 × x + 3.5 0.39 0.27 1.7 × x + 0.04
Litter organic weight 0.71 3.99 −80 × x + 82 0.64 4.40 44 × x − 1.70

the spectral contributions of the components that occupy that
specific pixel (Cracknell 1998; Townshend et al. 2000). These

problems arise from the arbitrary definition of a pixel: a typi-
cally square unit somewhat related to the circular field of view
of the optical sensor that will likely not have edges matching
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Table 3. Prediction statistics (n = 66) between immediate post-fire brown (senesced vegetation) fraction and immediate post-fire Normalized Burn
Ratio (NBR) with 1-year post-fire field measures

All regressions, except those denoted by **, were significant at the 95% level. s.e. denotes the standard error of the estimate. BI, Burn Severity Index

Ground predictor (y) Remote measures (x)

Fraction brown cover Immediate post-fire NBR

r2 s.e. Equation r2 s.e. Equation

Canopy variables
% Live tree 0.24 36.37 −270 × x + 0.6 0.54 28.44 0.11 × x + 52.69
Crown scorch ** 0.07 33.71 0.03 × x + 41.95
Crown consumption 0.1 42.22 13 × x + 39 0.43 33.67 −0.10 × x + 27.79
Total crown fire effects 0.28 24.36 196 × x + 107 0.50 20.25 −0.71 × x + 69.74

Subcanopy variables
Bole scorch 0.23 30.56 218 × x + 94 0.53 23.81 −0.09 × x + 52.05
Basal char 0.16 32.12 186 × x + 77 0.31 29.11 −0.07 × x + 42.30
Basal scorch ** 0.17 4.952 −0.01 × x + 96.82
Average bark thickness 0.11 0.37 −1.6 × x + 0.7 0.40 0.31 0.001 × x + 0.99
Bole scorch at 1 m 0.24 23.43 171 × x + 106 0.31 22.27 −0.53 × x + 75.53
Total BI 1 m tree 0.23 54.16 392 × x + 299 0.54 41.89 −0.16 × x + 223.21
Floor BI 0.09 63.25 250 × x + 259 0.34 53.72 −0.14 × x + 206.05
Litter depth 0.14 0.32 −1.7 × x + 0.2 0.39 0.27 0.001 × x + 0.50
Litter organic weight 0.28 6.23 −48 × x + 1 0.57 4.83 0.02 × x + 10.06

Table 4. Prediction statistics (n = 66) between immediate and 1-year post-fire differenced Normalized Burn Ratio (dNBR) with 1-year post-fire
field measures

All models were significant at the 95% confidence level. s.e. denotes the standard error of the estimate. BI, Burn Severity Index

Ground predictor (y) Remote measures (x)

Immediate post-fire dNBR 1-year post-fire dNBR

r2 s.e. Equation r2 s.e. Equation

Canopy variables
% Live tree 0.53 28.65 −0.10 × x + 105 0.74 21.24 −0.13 × x + 97
Crown scorch 0.07 33.58 −0.03 × x + 58 0.16 31.98 −0.05 × x + 61
Crown consumption 0.44 33.46 0.10 × x − 23 0.62 27.42 0.12 × x − 16
Total crown fire effects 0.49 20.51 −0.07 × x + 35 0.55 19.27 0.07 × x + 44

Subcanopy variables
Bole scorch 0.50 24.50 0.08 × x + 10 0.68 19.58 0.10 × x + 17
Basal char 0.28 29.77 0.06 × x + 11 0.34 28.36 0.07 × x + 18
Basal scorch 0.19 4.88 0.01 × x + 93 0.22 4.78 0.01 × x + 94
Average bark thickness 0.43 0.30 −0.001 × x + 1 0.48 0.28 −0.001 × x + 1.3
Bole scorch at 1 m 0.31 22.37 0.05 × x + 50 0.43 20.17 0.06 − x + 56
Total BI 1 m tree 0.53 42.46 0.15 × x + 146 0.63 37.48 0.17 × x + 164
Floor BI 0.40 51.29 0.14 × x + 132 0.50 46.73 0.16 × x + 148
Litter depth 0.42 0.26 −0.001 × x + 1 0.36 0.28 −0.001 × x + 0.74
Litter organic weight 0.59 4.71 −0.02 × x + 19 0.63 4.47 −0.02 × x + 16

up with actual ecological or physical boundaries (Foody et al.
1997; Cracknell 1998). As a result, unless the relative contri-
butions of surface components are inferred, assumption of a
homogeneous pixel can lead to classification and subsequent
model propagation errors (Foody et al. 1997).

The principal assumption specific to spectral mixture anal-
ysis is that the combined reflectance of the pixel is a ‘linear
combination’ of the reflectances of the individual pixel compo-
nents, weighted by the relative proportion they occupy in the
pixel (Drake and White 1991; Settle and Drake 1993; Foody
et al. 1997). In general, the linear mixing assumption is valid

when the surface components exist as sufficiently large discrete
areas that are optically thick (i.e. no light is transmitted through
to a lower land-cover type), such that the photons only interact
with a single land-cover type (Drake et al. 1999; Qin and Gerstl
2000). However, non-linear mixing does occur in environmental
applications (Borel and Gerstl 1994), but can be minimized by
using visible and short-wave infrared wavelengths (0.3–2.5 µm)
associated with low canopy transmissions (Drake et al. 1999).

Clark and Lucey (1984) observed that mixtures containing
dark and light components mix non-linearly owing to the multi-
ple scatters being preferentially reflected by lighter surfaces and
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Table 5. Prediction statistics (n = 66) between immediate post-fire
remote fractional measures (char fraction, green vegetation fraction)

with 1-year post-fire field measures
All regressions, except those denoted by **, were significant at the 95%
level. s.e. denotes the standard error of the estimate. BI, Burn Severity Index

Ground predictor (y) Fraction char cover and fraction green cover
r2 s.e. Significance

Char fraction Green fraction

Canopy variables
% Live tree 0.71 22.75 0.00 **
Crown scorch 0.23 30.82 0.00 0.03
Crown consumption 0.66 26.32 0.00 **
Total crown fire effects 0.61 18.13 0.01 0.02

Subcanopy variables
Bole scorch 0.74 18.09 0.00 **
Basal charring 0.35 28.44 ** **
Basal scorch 0.22 4.85 0.049 **
Average bark thickness 0.48 0.29 0.001 **
Bole scorch at 1 m 0.47 19.65 ** 0.03
Total BI 1 m tree 0.66 36.36 0.00 **
Floor BI 0.44 49.78 0.00 **
Litter depth 0.50 0.25 0.001 **
Litter organic weight 0.73 3.83 0.00 0.03

absorbed by darker surfaces. Such examples lead to the appear-
ance of greater proportions of darker components within a pixel
than actually exist (Foody et al. 1997). However, as noted earlier
in the text, post-fire mixtures including the extreme ‘real’ eco-
logical examples of white mineral ash (>70% reflectance) and
black char (<20% reflectance) have been shown to be approx-
imated to a generally linear mixture model (Smith et al. 2005).
A further limitation of spectral mixture analysis is that unique
spectral endmembers are required for each land cover class and
the results are highly sensitive to how those endmembers are
selected (Atkinson et al. 1997; Theseira et al. 2003). Errors can
also arise when endmember spectra are missing or incorrectly
defined.

Results
General description of post-fire effects
The direct and cumulative effects of fire on ponderosa pine trees
were much greater on high-severity than on low- or moderate-
severity sites (Table 1). Approximately 1, 22 and 100% of
trees that were alive before the fire were killed in pine stands
burned by low-, moderate- and high-severity fire. The entire
bole was scorched, and canopy foliage and small branches were
completely consumed in areas of high-severity fire. Bole and
crown scorch was more extensive on moderate- than on low-
severity sites. Approximately 75% of the crown was scorched or
consumed on moderate-severity compared with ∼20% on low-
severity sites. On average, 80% of the base of each tree bole was
scorched on low- and moderate-severity sites, and 2.2 times more
char was found on the base of each tree on moderate-severity
sites relative to low-severity sites. Post-fire bark thickness (s.e.)
was 1.5 (0.1), 1.2 (0.1) and 0.7 (0.1) cm in low-, moderate- and
high-severity sites.

Fire effects on the forest floor were most substantial in areas
of high burn severity where litter and duff were almost com-
pletely consumed. Total ‘BI 1 m tree’ was 141 on low-, 223 on
moderate- and 290 on high-severity sites on a BI scale of 100
to 300. Floor BI was 119 on low-, 186 on moderate- and 246
on high-severity sites on the same BI scale. Average litter depths
(s.e.) were 1.2 (0.3), 0.5 (0.2) and 0.2 (0.1) cm on low-, moderate-
and high-severity compared with 4.8 (0.5) cm on unburned sites.
Fire reduced litter depths by ∼76, 91 and 97% on low-, moderate-
and high-severity sites 1 year after fire. On average, there were
2.3 and 6.6 times more duff on unburned sites than on sites
burned with low and moderate severity. No duff remained 1 year
after fire on high-severity sites. Litter organic weights (s.e.) were
1266 (264), 684 (173), 459 (93) and 82 (45) g m−2 in unburned,
low-, moderate- and high-severity sites.

Prediction of 1-year post-fire effects
Fractional char cover either equaled or outperformed all other
remote metrics as a predictor of 1-year post-fire effects, except
for the relation between 1-year post-fire dNBR and percentage
live tree (r2 = 0.74) (Tables 2–4). Each remote metric poorly
characterized crown scorch, with the char fraction and dNBR
methods producing statistically significant but poor relation-
ships (r2 < 0.17, P < 0.031). The 1-year post-fire crown scorch
on trees will likely be similar to scorch measured immediately
post-fire. The results illustrate that fractional char cover is a rea-
sonable predictor of several canopy and subcanopy measures
(but not all: Tables 2, 3). In terms of canopy measures, frac-
tional char cover produced reasonable predictions of % live
trees (r2 = 0.69) and % crown consumption (r2 = 0.65), and
was comparable with the results obtained using the 1-year post-
fire dNBR measure. However, the improved performance of the
1-year post-fire dNBR measure might be expected because
both the imagery and field measures are effectively coincident
measures of the same condition. In terms of subcanopy mea-
sures, fractional char cover strongly predicted % bole scorch
(r2 = 0.72) and weight of organic litter (r2 = 0.71), while frac-
tional green cover produced weaker but reasonable predictions
(r2 = 0.60 and r2 = 0.64 respectively). Both the char and green
cover fraction predictions surpassed the immediate post-fire
dNBR predictions of these 1-year post-fire effects.

When we compared the immediate post-fire NBR with
immediate post-fire dNBR, inclusion of the prefire data did
not improve the prediction of the 1-year post-fire measures,
except for marginal improvements in predicting % bole scorch
(r2 = 0.53). As it is not possible for any spectral ratio like dNBR
to outperform a regression containing both of the two com-
ponent bands (Lawrence and Ripple 1998), which in this case
are NBRpre and NBRimmediate post-fire, we think that the major-
ity of the useful predictive information is contained within the
NBRimmediate post-fire data, thus potentially limiting the need for
using NBRpre to predict post-fire effects. These results concur
with prior studies that relate both NBR and dNBR with CBI in
forest and woodland environments (Epting et al. 2005) and are
further supported by the correlation between the dNBRimmediate
data and each of NBRpre (r = 0.93) and NBRimmediate (r = 0.34)
data.
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Table 6. Pearson correlation coefficient (r) and Signal to Noise Ratio (SNR) analysis for bands 4 and 7

Variable 1 Variable 2 r Significance

Prefire and immediate post-fire Band 4 difference Band 7 difference −0.52 0.00
Prefire and 1 year post-fire Band 4 difference Band 7 difference −0.33 0.01
SNR calculations using pre- and immediate post-fire imagery SNRband 4(immediate) = 3.2

SNRband 7(immediate) = 0.75
SNR calculations using pre and 1-year post-fire imagery SNRband 4(1-year) = 1.4

SNRband 7(1-year) = 0.47

Immediate dNBR was a reasonable predictor of % live trees
(r2 = 0.53), % bole scorch (r2 = 0.50) and weight of organic lit-
ter (r2 = 0.59). Although 1-year post-fire dNBR outperformed
immediate post-fire dNBR for most of the post-fire effects,
the immediate measure did produce a marginally improved pre-
diction, in terms of the coefficient of determination, of the depth
of the 1-year post-fire litter.Again, these general results of higher
coefficient of determination in using the 1-year post-fire dNBR
are as we expected, as this index incorporates data that are
effectively coincident with the 1-year post-fire field measures.
Furthermore, in a comparison with the preliminary data pre-
sented in Smith et al. (2007b), we did observe that removal of
the 14 aspen plots from the regressions considerably improved
the r2 values and reduced the variability in the results. These
results confirm our premise that coniferous cover types should be
separately evaluated from deciduous cover types. For instance,
the example of char fraction v. litter organic weight improved
from r2 = 0.55 (s.e. = 4.78) (Smith et al. 2007b) to r2 = 0.71
(s.e. = 3.99) (present study). Similar improvement was observed
using immediate dNBR data (Smith et al. 2007b).

Discussion
Remote prediction of post-fire effects
To predict implies to ‘forecast a situation that is yet to occur’.
Therefore, it is not appropriate to predict field measures of post-
fire effects with 1-year post-fire dNBR, as this is effectively
measured concurrently with the 1-year post-fire field measures.
Thus, the regressions herein were presented solely for the pur-
pose of determining the ‘potential inference ability’of the 1-year
post-fire dNBR, not to forecast conditions 2, 5 or 10 years after
fire (Table 4).Timely prediction of field-based ecological indica-
tors of 1-year post-fire effects must instead be achieved through
the use of methods applied either during or immediately fol-
lowing the fire event, as it is not practical to wait a year before
making a 1-year post-fire prediction.

These results demonstrate that immediate dNBR was a poorer
indicator of 1-year post-fire ecological effects than char cover
fraction. Furthermore, immediate dNBR was in many cases a
poorer indicator of 1-year post-fire ecological effects.The ability
of immediate dNBR to reasonably predict 1-year post-fire % live
crown is because the index is sensitive to the quantity of green
and senesced vegetation (highlighted by Landsat band 4 values),
and to a lesser extent, the quantity (and moisture content) of
exposed soil or char cover (highlighted by Landsat band 7 values)
present within the immediate post-fire pixel (Eva and Lambin
1998a, 1998b; Stroppiana et al. 2002; Smith et al. 2005; Key
2006; Lentile et al. 2006b). In instances where either the canopy

component is relatively untouched or completely consumed (e.g.
in a stand-replacing fire), the 1-year post-fire canopy conditions
may still represent the same relative amount of green vegetation.
In contrast, the understorey immediately following the fire will
be dominated by char and mineral ash, which 1 year later will
have been removed by wind and water or occluded by vegetation
regrowth or scorched needlecast (Smith and Hudak 2005). As
such, the contribution of band 7 to the 1-year post-fire dNBR
might simply be adding noise to the predictions of the subcanopy
fire effects.

The majority of spectral indices are designed to highlight
complementary changes in two or more bands. For NBR-based
indices, we expect a lowering of reflectance in band 4 between
the pre- and post-fire dates to correspond to a complementary
increase in the value of band 7. Therefore, we would expect
a significant correlation between these band differences: i.e.
(b4post − b4pre) and (b7post − b7pre). To test this assumption,
correlations between the differences in band value pairs were
calculated and are presented inTable 6.Although the correlations
of both band 4 and band 7 differences were both significant at
the 95% confidence interval, the correlation between the band 4
difference and the band 7 difference was noticeably lower when
using the 1-year post-fire image value.

We further calculated a measure of the signal to noise ratio
(SNR) for each of the band 4 and band 7 difference pairs
(Table 6). This measure was determined by calculating both the
mean and standard deviations of the band 4 and band 7 values
of all the 66 plots for each image. In a similar manner to the
SNR-based M-statistic (Pereira 1999), SNR was calculated by:

SNRband(int) = |µf − µi|
σf + σi

(2)

where band(int) denotes the temporal interval between the pre-
fire condition and either the immediate or 1-year post values for
the band of interest (in this case band 4 or 7); µ and σ denote the
mean and standard deviations of all the 66 fire-affected plots for
the band of interest; and i denotes the prefire data, and f denotes
the post-fire image values.

The SNRband 4(immediate) = 3.2, whereas the SNRband 4(1-year) =
1.4. The SNR for band 7 changed in a similar manner, with
SNRband 7(immediate) = 0.75 and SNRband 7(1-year) = 0.47. It is
clear that both the band 4 and band 7 values have notable
decreases in their SNR when using the 1-year post-fire image val-
ues compared with the usage of the immediate post-fire imagery.
These results lend support to the proposition that the application
of 1-year post-fire band values may not be optimal for assessing
post-fire effects.
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Fig. 4. Correlation of fractional cover measures where dark lines depict the main linear trend. Scatter
plot of fractional green and senesced vegetation cover (r = −0.86) and scatter plot of fractional char
cover with green vegetation (r = −0.85).

These effects would be less pronounced where canopy clo-
sure remains high (unburned or low degree of fire effects) or
in stand-replacing fires where the understorey vegetation could
be replaced by bare soil. The unexpected ability of the immedi-
ate NBR and dNBR to predict the 1-year post-fire measure of
organic litter weight could be an indirect effect of the combined
impact of scorched canopies with extensive surface fires. In such
fires, we would expect the surface material to be consumed and
scorched needles to fall as new litter for the 1-year post-fire
measurement, as highlighted in several studies (Robichaud and
Brown 2000; Pannkuk and Robichaud 2003; Robichaud 2004).
In contrast, low-severity fires and stand-replacing fires would
result in high and low organic litter weights respectively.

Measures of both the immediate post-fire char and green veg-
etation fractions are good predictors of several 1-year post-fire
canopy and several subcanopy measures. Most notable, several
of these 1-year post-fire measures appear to be potential surro-
gates of fire intensity. Specifically, % bole scorch can be consid-
ered a proxy for flame length, while scorch to 1 m and organic
litter weight might each relate to rate of spread, and average
bark thickness might similarly relate to fire duration. Therefore,
these fractional measures have the potential to inform managers
regarding tree mortality (via canopy condition and average bark
thickness) and may provide viable proxies of fire intensity to
Burned Area Emergency Response (BAER) teams tasked with
deciding where post-fire mitigation efforts are needed.

Of the fractions considered, char fraction was marginally
better over green fraction for predicting several metrics of fire
severity 1 year after fire.This leads to the question, ‘Are these two
fractions providing redundant or complimentary information?’

This is an important distinction, as the degree to which the infor-
mation is unique to each fraction would indicate whether or not a
composite metric of the two fractions could be used to produce
an improved burn severity remote sensing method. To answer
this question, we first assessed the correlation between the
component fractions (Fig. 4), and second assessed the variability
that each fraction term accounted for in the predictions of each
of the 1-year post-fire field measures (Table 5).

The correlations of the green fraction with both the char
and the senesced vegetation fractions were significant and high
(r = ∼0.85); however, the char and brown fractions were only
poorly correlated (r = 0.46) (Fig. 4). Although the fractions are
relative, the brown (senesced) component produced ‘negative’
fractions, suggesting that this term is not optimal and perhaps
is accounting for the lack of a specific soil endmember. How-
ever, without detailed soil maps and spectral reflectance curves
for each soil type, it would be difficult to replace the brown
endmember with representative soil endmembers.

In multiple linear regressions of the component fractions
against the organic litter weight, only the char fraction and the
combination of the char with the green fraction produced signif-
icant results at the 95% confidence level. In the example of the
organic litter weight measure, the char fraction alone accounted
for 71% of the variance, with the addition of the green fraction
only accounting for an additional 2% of the variability. In each
of the two cases of bole scorch and percentage live tree, addition
of the green fraction within the regression was not significant
and only accounted for an additional 2% variance explained over
the char fraction. These results limit the likelihood that a combi-
nation index using both the char and green vegetation fractions
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Table 7. Relation between % cover measures of burn severity and carbon (C) and water (H2O) cycles
ET denotes evapotranspiration

Ecological metrics Fire-effects reference(s) Linkages to C and H2O cycles

Tree survival or mortality Miller and Yool (2002) C accumulation, ET rates
Litton et al. (2003); Trumbore (2006)

Bare soil Goforth et al. (2005) Plant establishment, soil respiration rates
Reddened soil Doerr and Cerda (2005) Infiltration, water repellency and erosion
Exposed litter Lewis et al. (2006) Plant establishment, water repellency

Crockford and Richardson (2000) Surface evaporation
White ash Smith et al. (2005) C volatilization, water repellency
Coarse woody debris Smith and Hudak (2005) C volatilization, erosion

would provide significantly improved predictions over just the
char fraction alone.

Management and science implications
Immediate post-fire assessments, particularly those that utilize
only immediate post-fire dNBR techniques, can be misleading.
The post-fire environment will change greatly within 1 year,
some aspects of which may be predictable whereas others may be
related to local and regional climate. Char fractional cover may
be a viable alternative to dNBR to predict longer-term post-fire
ecological effects, especially when the prediction is needed in a
timely manner. For instance, BAER teams must make post-fire
rehabilitation treatment recommendations within 7 days follow-
ing fire containment. Second, post-fire response generally is
more rapid in less severely burned areas. However, commonly
applied dNBR techniques provide very little information about
the effects of fire on the forest floor and soil. As such, char frac-
tion is particularly useful in fire regimes where some, but not
all, of the overstorey tree and shrub canopy is consumed. The
mosaic of relatively small patches of severely burned forests
interspersed within less severely burned forests, a common sig-
nature of surface fires and mixed-severity fire regimes, exerts a
strong influence on post-fire landscape heterogeneity and rates
of response. In some extensive areas of high-severity fire, post-
fire vegetation dynamics may not follow the same trajectory as
less severely burned areas, and a cover type conversion from
forests to shrubs or meadows may occur.

From a management perspective, streamlined assessment of
fire effects on overstorey, understorey and forest floor environ-
ments can be used to predict areas likely to develop vegetation
structure different from prefire conditions, and will facilitate
post-fire monitoring and mitigation (Lentile et al. 2007b). Iden-
tification of desirable attributes of fire behavior and positive
post-fire effects may improve restoration strategies. For exam-
ple, recognition of initial fire effects likely to result in tree death
may facilitate selection of which trees to salvage-harvest or leave
as potential seed sources. In some burned areas, reforestation or
seeding are probably unnecessary and could interfere with natu-
ral successional dynamics. Furthermore, severely burned areas
with post-fire vegetation regrowth may indicate areas that require
immediate attention for erosion control or are highly vulnerable
to displacement of native flora by invasive species. If a cover
type conversion from ponderosa pine to shrub-dominated com-
munities is desirable for wildlife habitat diversity, then large

patches of high severity may lend themselves to this objective.
Longer-interval, large fire events, such as the Jasper Fire, may
be critical in maintaining landscape heterogeneity and diver-
sity. Openings in a previously dense, closed-canopy forest may
represent a desirable departure from prefire conditions and a
return of some attributes of historical landscape function. Rapid
landscape characterization that can be mechanistically related
to ground measures of post-fire ecosystem condition may pro-
vide much needed management guidance and decision support
following large fire events.

The post-fire effects measured in the field typically reflect
fine-scale processes, but also impact coarse spatial (watershed
to regional) and temporal (decadal) scales. For such measures
to be applicable in describing ecosystem recovery and condition
across a range of scales and ecosystems, they should physically
relate to pools and fluxes of biophysical variables (e.g. the carbon
and water cycles). Although the mechanistic relations between
fire effects and the carbon and water cycles are not currently well
defined, the results of the present study support the argument
that cover fractions are potentially versatile measures of post-
fire ecological impact that also influence the terrestrial carbon
and water cycles (Table 7).

Conclusions

The previous study of Smith et al. (2007b) reported for the Jasper
Fire that the modeled estimate of the % char was a slightly
improved predictor over immediate dNBR of two 1-year post-
fire field measures, namely the % live tree and the organic litter
weight. However, given the conflicting findings of Hudak et al.
(2007b) with respect to fractional green cover estimates and the
recognition that the initial study incorrectly analyzed both pon-
derosa pine and aspen stands together, further analysis of this
dataset was warranted. Specifically, assessment to investigate
whether the char and other modeled estimates of the immedi-
ate post-fire fractional covers (green and senesced vegetation)
could also predict an expanded variety of both canopy (four) and
subcanopy (nine) post-fire effects. These field measures were
selected based on whether they could provide a reasonable bridge
between the fire intensity and the fractional cover estimates. An
investigation was also included of whether a combination of
different fractional cover estimates could act as improved pre-
dictor of the post-fire effects, or whether the different fractional
cover estimates account for the same variability. For the sake
of completeness with contemporary remote sensing post-fire
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effects research, the present study further investigated whether
the dNBR indices, both immediate and 1-year post-fire, were
improved predictors when compared with the fractional cover
estimates.

The results demonstrated that although the char cover fraction
either equaled or outperformed all other immediate measures
in predicting 1-year post-fire effects, the green fractional cover
was a reasonable predictor for several of the post-fire measures.
Although the char and green cover fractions provided improved
predictions of the 1-year post-fire effects over the immediate
post-fire NBR and dNBR measures, predictions incorporating
both the char and green fractional covers only accounted for
∼2% more variability than that achieved using the char fraction
cover alone. This result combined with the ineffectiveness of the
brown fractional cover highlight the limited utility for a com-
bination approach based on several different cover metrics. The
comparison of immediate post-fire NBR with dNBR showed that
the inclusion of the prefire NBR data did not provide any notable
improvement in the predictions of the 1-year post-fire measures.
Therefore, perhaps future studies may not need to consider pre-
fire imagery in order to predict several 1-year post-fire canopy
and subcanopy effects.

Although in the present study, application of the char and
green fractional covers to predict 1-year post-fire effects were
an improvement over NBR and dNBR, we do not suggest that
this approach or that of any other spectral index currently
existing will be a panacea for evaluating burn severity in all
fire-affected environments (e.g. savannah grasslands, temper-
ate forests, boreal forests, woodlands, chaparral, scrublands).
In contrast, it is more likely that a suite of methods will need
to be identified, where each separate method in this suite will
be optimal for predicting >1 year post-fire effects in a single
environment. To enable robust national and global burn severity
products, further research is warranted to identify and evaluate
these methods.

The principal limitation of the current study is that it only
represents information from a single wildfire at one point in
time. Research is clearly warranted to repeat this analysis on data
collected from fires 5, 10 or even 20 years post-fire, to evalu-
ate the potential for inferences from immediate post-fire remote
sensing data to predict long-term ecological responses to fire,
such as succession processes and carbon accumulation. Future
research should also evaluate how changes in surface cover frac-
tions relate to both these differenced indices and to changes in
remotely sensed fractional cover. This could be achieved via
the analysis of prescribed fires, where it is possible to collect
information on the prefire fractional cover of flammable and
non-flammable materials.
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