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Chapter 6.—Use of Airborne Near-Infrared LiDAR for 
Determining Channel Cross-Section Characteristics and 
Monitoring Aquatic Habitat in Pacific Northwest Rivers:  
A Preliminary Analysis

Russell N. Faux1, John M. Buffington2, M. German Whitley1, Steve H. Lanigan3, Brett B. Roper4

Abstract
Aquatic habitat monitoring is being conducted by 

numerous organizations in many parts of the Pacific 
Northwest to document physical and biological conditions 
of stream reaches as part of legal- and policy-mandated 
environmental assessments. Remote sensing using discrete-
return, near-infrared, airborne LiDAR (Light Detection and 
Ranging) and high-resolution digital imagery may provide an 
alternative basis for measuring physical stream attributes that 
are traditionally recorded by field crews in these monitoring 
efforts. Here, we compare physical channel characteristics 
determined from airborne LiDAR versus those measured from 
field surveys using a total station. Study sites representing 
three different channel types (plane-bed, pool-riffle, and 
step-pool) with bankfull widths ranging from 2.5 to 18.6 m 
were examined in the upper John Day River basin, Oregon. 
LiDAR was flown on each study reach at a native pulse 
density of  about 4 pulses/m2, with up to four returns per pulse. 
Channel cross sections and stream gradient were determined 
from LiDAR-derived digital elevation models (DEMs) and 
directly compared to total station measurements. The ability 
to remotely sense bankfull elevations and associated channel 
geometry was of particular interest in this study. Because 
bankfull mapping from LiDAR depends on topographic 
indicators (breaks in streambank slope), bankfull elevation 
was determined objectively from plots of hydraulic depth 
(flow area divided by width) as a function of flow height at 
each cross section, with bankfull defined as the maximum 
value of this function, or as the first plateau in the hydraulic 
depth function in channels with multiple terraces. The latter 
definition allows a blind test of remote sensing capabilities 
for cases where no field observations of bankfull elevation are 
available. 

Preliminary results show that, with the exception of one 
outlier, the first-terrace elevations determined from LiDAR 
DEMs differed from those of the total station by 0–40 cm 
(15 cm RMSE), corresponding channel widths differed by 
0.23–5.23 m, and reach-average water-surface slopes differed 
by 0.0–0.0018 m/m. Furthermore, the LiDAR-derived cross-
sectional profiles generally corresponded with those of the 
total station measurements above the water-surface elevation. 
However, first-terrace elevations frequently differed from 
field observations of bankfull stage, indicating that successful 
remote sensing of bankfull geometry using airborne LiDAR 
requires field observations to train identification of bankfull 
topography in LiDAR DEMs. When properly applied, remote 
sensing using airborne LiDAR has the potential to extend 
the spatial coverage, speed, consistency, and precision of 
physical stream measurements compared to existing field 
based techniques, and can be used to quantify higher-
order topographic metrics (e.g., areas, volumes, curvature, 
and topology) beyond the point and line metrics currently 
measured by channel monitoring programs.

Introduction
Each year hundreds of personnel are fielded by 

monitoring programs to collect data on aquatic and riparian 
conditions of streams in the western United States. The 
organizations participating in these programs are tasked with 
determining the status and trend of aquatic ecosystems across 
large areas. For example, the Aquatic Riparian Effectiveness 
Monitoring Program (Reeves et al., 2004) is an interagency 
group organized to evaluate the success of the Northwest 
Forest Plan (U.S. Department of Agriculture, Forest Service; 
U.S. Department of Interior, Bureau of Land Management, 
1994) and is responsible for monitoring aquatic and riparian 
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conditions across three States and 57 million acres (Reeves 
et al., 2004). Similarly, the PACFISH/INFISH Biological 
Opinion Program is focused on monitoring federal lands 
in the Upper Columbia River Basin, a region that covers 
subwatersheds in six States (Kershner et al., 2004). In many 
cases, these monitoring programs do not directly measure 
biological parameters, but infer habitat and ecosystem 
condition from physical surrogates. For example, channel 
characteristics (e.g., width, depth, residual pool depth) are 
used to assess availability and quality of habitat for aquatic 
organisms. 

As one might expect, there are challenges associated with 
long-term monitoring over large areas, given typically limited 
resources. The number of sites sampled per year is relatively 
low, hindering spatial and temporal detection of differences 
in ecosystem condition and trends (Roper et al., 2002). In 
addition, while observer consistency and repeatability is 
critical for successful monitoring of watershed trends, recent 
studies show that observer variability in these monitoring 
efforts can be problematic (Whitacre et al., 2007; Roper et 
al., 2008; Roper et al., in prep). One potential solution to 
these problems is the use of remote sensing, as it can provide 
objective, repeatable measurements over broad spatial scales. 

Airborne LiDAR (light detection and ranging) is a 
remote sensing technology that is currently being used to 
develop high-resolution topographic and vegetation models. 
Several recent studies show the potential for using LiDAR to 
map many of the physical parameters commonly quantified 
in aquatic and riparian monitoring efforts. For example, 
Jones (2006) used a LiDAR-derived digital elevation model 
(DEM) to map side channels and to identify potential sites for 
restoration of salmon habitat in the Dosewallips River, western 
Oregon. In other applications, James et al. (2007) documented 
the potential for using LiDAR to map headwater streams 
under canopy in Sumter National Forest, North Carolina, and 
Cavalli et al. (2007) used LiDAR to detect the spatial extent of 
different stream types in the Italian Alps. 

Two LiDAR instruments provide a variety of applications 
for aquatic habitat monitoring: near-infrared and green-
wavelength LiDAR. Near-infrared LiDAR can not penetrate 
water and is therefore used to map topography above the 
wetted channel. Green-wavelength devices can penetrate water 
to determine channel depth and provide seamless maps of both 
the aquatic and terrestrial environments (Wright et al., 2006; 

Kinzel et al., 2007; McKean et al., 2008). Although green-
wavelength LiDAR can map many of the physical channel 
characteristics used in aquatic monitoring in a continuous and 
spatially extensive manner, near-infrared LiDAR instruments 
are currently capable of significantly higher pulse rates 
and, therefore, can map terrestrial environments at higher 
topographic resolutions. Although small-footprint green-
wavelength LiDAR (Wright et al., 2006) has the potential to 
significantly change how aquatic monitoring is conducted, 
its commercial availability is limited and the widespread 
application of this technology is still several years in the 
future.

Near-infrared LiDAR data and derived products 
(topographic and vegetation models) are becoming 
increasingly available to resource managers in the Pacific 
Northwest. Several regional initiatives for the acquisition 
and distribution of high-resolution LiDAR data are underway 
in the Pacific Northwest (fig. 1). In Washington, the Puget 
Sound LiDAR Consortium (PSLC) has acquired 4.9 million 
acres of LiDAR coverage since 2001. In addition to specific 
projects led by agencies and private entities, the recently 
formed Oregon LiDAR Consortium (OLC) has initially 
contracted to acquire 1.3 million acres in western Oregon, 
with an additional 3.5 million acres anticipated over the next 3 
years. These data are now available to resource managers and 
are now enhancing our ability to assess habitat condition over 
multiple spatial scales. 

During the summer of 2005, the Pacific Northwest 
Monitoring Partnership (PNAMP) conducted a study in 
the John Day basin, northeastern Oregon, to examine the 
performance and compatibility of field protocols used by 
different aquatic habitat monitoring programs (Lanigan 
et al., 2006; Roper et al., in prep.). As part of this project, 
intensive total station surveys were conducted to better 
describe the channel characteristics of each study site (Roper 
et al., in prep.). Airborne near-infrared LiDAR and digital 
color imagery also were collected to analyze the ability of 
these data to characterize the physical habitat and riparian 
characteristics of the study sites. This paper focuses on the 
accuracy of channel characteristics determined from LiDAR-
derived DEMs and, in particular, the ability to remotely 
sense bankfull elevations and associated channel geometry. 
Preliminary results are presented, comparing remotely sensed 
channel characteristics to those obtained from total station 
field surveys. 
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Study Area and Methods

Study Area

Eight mountain stream reaches were examined in the 
upper John Day River basin in northeastern Oregon (fig. 2). 
All streams were wadable, with bankfull widths ranging 
from 3.1 to 14.7 m, reach-average slopes from 0.94 to 9.7%, 
and median grain sizes (D50) of 11.8–121.3 mm (table 1). 
The sampled reaches were 40 bankfull widths in length and 
selected to include three channel types (pool-riffle, plane-bed, 
and step-pool) (fig. 3). 

Figure 1.  Monitoring region for the Aquatic and 
Riparian Effectiveness Monitoring Program 
(Reeves et al., 2004) in Oregon and Washington 
(part of the Northwest Forest Plan area) relative 
to spatial coverages of high-resolution LiDAR 
data that are either currently available or 
planned in 2009 for Oregon and Washington.

Table 1. Channel characteristics determined from ground-based 
surveys

Stream Stream type
Bed  

slope  
(%)

Bankfull 
width  

(m)

D50 
(mm)

Crane pool-riffle 0.94 8.01 11.8
Trail pool-riffle 1.63 9.86 52.7
Bridge plane-bed 1.03 8.12 37.4
Camas1 plane-bed 0.96 14.71 104.0
Tinker plane-bed 2.86 3.14 33.7
Crawfish step-pool 5.07 6.38 121.3
Myrtle step-pool 9.70 3.96 27.7
Whiskey step-pool 6.67 4.10 72.7

1Values based on limited sampling; 5 permanent cross sections only.
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Figure 2.  Study site locations within the John Day River basin, Oregon, USA.

(a) (b) (c)

Figure 3.  Channel types examined in this study: (a) pool-riffle (Crane Cr.), (b) plane-bed (Camas Cr.) and (c) step-
pool (Crawfish Cr.). See Montgomery and Buffington (1997) for further discussion of these channel types.
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LiDAR Data

High-density LiDAR data were acquired for all eight 
sites from a fixed-wing platform, using an Optech 3100 
ALTM system on September 28, 2005. The acquisition 
date was scheduled to correspond with late summer base-
flow conditions in the study area, and early enough in 
the fall to avoid the possibility of early season snows that 
would interfere with LiDAR measurements. The settings 
consisted of a relatively narrow scan angle (±15o) and 50% 
overlap between opposing flight lines to increase laser pulse 
penetration through the canopy and to minimize shadowing by 
the vegetation (table 2). The vertical accuracy of the LiDAR 
data was assessed using 613 ground check points collected on 
hard, bare-earth surfaces (i.e., roads), and was found to have a 
root mean square error (RMSE) of 6.1 cm. 

The raw LiDAR data were processed to produce geo-
corrected coordinates for each laser return. Ground returns 
were classified from the raw point data using the TerraSolid 
processing software (TerraScan/TerraModeler from  
TerraSolid.fi) by implementing a series of filtering algorithms 
which defined the initial ground plane. The ground 
classification was then manually reviewed to remove any 
“clutter” or obvious misclassifications in the model. Across 
all sites, the average LiDAR pulse density was 3.1 pulses/
m2 with ground classified points having an average density 
of 1.2 returns/m2 (table 2). The final ground-classified points 
were used to generate a 0.5 m DEM for each study reach, 
which took advantage of areas where the ground classified 
point density supported this resolution (fig. 4). 

True color digital imagery was acquired coincidently 
with the LiDAR data using an Applanix Digital Sensor System 
16 mega-pixel camera. The digital camera was integrated with 
a global positioning system (GPS) and inertial measurement 
unit, allowing direct geo-referencing of each pixel. The 
imagery was then orthorectified to the LiDAR DEM at a 
15 cm (about 6 in.) ground sample distance, and was used to 
augment the interpretation of the LiDAR data.

Total Station Data

Detailed topographic and geomorphic surveys of the 
study reaches were conducted from July 16 to September 
12, 2005, using a Leica TPS1200 total station. Eighty cross 
sections were surveyed per reach, with cross sections placed 
at intervals of one-half the average bankfull width (fig. 5). 
Cross-sectional surveys recorded major topographic breaks, 
as well as water elevations, vegetation limits, bankfull 
elevations, floodplain topography, and hillslope margins in 
confined reaches. Because bankfull is defined as the elevation 
at which flow spills onto the floodplain (Leopold et al., 1964), 
it is relevant only to floodplain rivers. However, bankfull-
equivalent indicators are commonly used in confined channels 
where floodplains are absent or poorly defined, as was the case 
for some of the plane-bed and step-pool channels examined 
in this study. Bankfull locations were identified based on the 
following standard field indicators (Dunne and Leopold, 1978; 
Harrelson et al., 1994), given in their order of reliance: break 
in bank slope corresponding with the active floodplain surface, 
high-flow markers (i.e., limit of bank scour, rock staining, 
sand/silt deposits, debris lines), vegetation limits, and bar tops. 
There is less confidence in perennial vegetation as a bankfull 
indicator because of its seasonal variability and interannual 
dependence on flow, scour and deposition. Similarly, bar tops 
typically indicate a lower-limit of bankfull flood stage because 
some additional depth of flow must occur over the tops of the 
bars for them to form through processes of sediment transport 
and deposition. 

Five of the cross sections were monumented as reference 
sites for the PNAMP comparison of field monitoring protocols 
(Lanigan et al., 2006; Roper et al., in prep.). These cross 
sections were placed every 10 bankfull widths along the 
length of the channel and are referred to as “permanent cross 
sections” in this study (fig. 5).

The number of points sampled within the bankfull extent 
of each cross section ranged from 9 to 21 across the study 
sites, representing a point spacing of 5–13% of the bankfull 
width. In addition to cross sections, a longitudinal profile of 
the channel center-line was surveyed, as well as locations of 
all pool bottoms and downstream riffle crests. The overall  
data density within the bankfull channel typically was  
0.4–3.7 points/m2.

Although the survey points are accurate relative to each 
other, the coordinates for the benchmarks used in the total 
station surveys were recorded using a non-survey grade GPS 
and therefore the geographic precision of the benchmarks is 
unknown. The total station surveys were designed to compare 
to the other ground-based measurements being made as part of 
the comparison of monitoring protocols (Lanigan et al., 2006; 
Roper et al., in prep.), with the acquisition of airborne LiDAR 
data added late in the program. Therefore, precise geospatial 
references (i.e., surveyed benchmarks and/or air targets) were 
not included in the total station surveys.

Table 2. LiDAR system parameters.

System/acquisition parameter Specification

Scan Angle ±15o from Nadir (30o total)
Number of Returns Collected Per  

Laser Pulse
4

Average Multi-Swath Pulse Density 3.1 pulses/m2

Average Ground Return Density 1.2 returns/m2

Adjacent Swath Overlap (Side-Lap) ≥ 50%
Assessed Vertical RMSE of LiDAR 

Survey
0.061 m
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(b) 1st return points 

(a) bare earth model  

Figure 4. LiDAR-derived bare earth model (a) 
and LiDAR 1st return points (b) for Trail Creek. 
Yellow transects on the bare-earth model are 
the five monumented cross sections placed 
by the total station field crews.

Figure 5. Locations of total station survey points (“ground 
points”) and monumented cross sections on Trail Creek 
overlain on hillshade of the LiDAR 0.5-m DEM.
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The lack of a good geographic reference was a potential 
source of error for comparing the geographically precise 
LiDAR points to the total station data.

For this analysis, we used a small subset of the 
available cross sections (two per site) for comparing channel 
characteristics determined from airborne LiDAR to those 
of the total station surveys. Our intent was to provide a 
preliminary comparison of the two approaches. Comparisons 
were conducted for monumented (or permanent) cross sections 
2 and 4 (PXS2 and 4), located at longitudinal distances of 
10 and 30 bankfull widths, respectively, in each study reach 
(fig. 5). 

Analysis

Transect Placement

As a consequence of not having a precise geographic 
reference, some shifting in the horizontal (X, Y) plane was 
necessary to line-up the total station points with their true 
geographic coordinates. The X, Y shift was computed as a 
best-fit between the water-surface center line derived from 
the LiDAR DEM and the center-line profile measured by 
the total station crew. The five monumented cross sections 
in each reach were used as an additional reference, because 
hand-held GPS coordinates were available for the end-points 
of these cross sections. The shift maintained the integrity of 
the original data with no changes to the points relative to each 
other.

To accurately place the field data in the vertical 
dimension (Z), the relative elevations of the field 
measurements had to be given a true elevation datum. The 
water-surface elevation was used as a common datum for 
vertical alignment of the two data sets, and ortho-imagery 
was used to confirm the water-surface location in the LiDAR 
DEM. Although the datasets were collected at different times, 
both were collected during 2005 base-flow conditions, and 
differences in water-surface elevations between the two 
datasets were considered minimal (within a few cm) for these 
streams.

Channel Geometry

Once the total station transects were relocated relative to 
the LiDAR data, point elevations defining the channel cross 
sections were extracted along a corresponding transect in the 
LiDAR data. The ArcGIS extension EZ Profiler 9.1 (freeware) 
was used to generate the transect line and collect elevations 
from the LiDAR DEM at 0.5-m intervals.

The ability to remotely sense bankfull elevations and 
associated channel geometry is a key focus of this study. 
Bankfull elevation is a primary metric for fluvial studies 

(Leopold et al.. 1964) and commonly is used to scale and 
standardize channel characteristics relevant to aquatic 
habitat (e.g., Woodsmith and Buffington, 1996; Buffington 
et al., 2002). In the field, bankfull elevation is identified by 
a number of indicators, as discussed above (section, “Total 
Station Data”). In contrast, bankfull mapping from LiDAR 
depends almost entirely on topographic indictors (breaks in 
the streambank slope) identified from the LiDAR-derived 
DEM. In order to objectively compare bankfull elevations 
between the field- and LiDAR-based measurements, we 
plotted the hydraulic depth (flow area divided by width) as 
a function of flow height (elevation) at each cross section, 
where the maximum value of this function indicates a sudden 
increase in flow width at the elevation where water spills 
across the floodplain (i.e., bankfull) (fig. 6). This approach 
was suggested by McKean et al. (2005) and is a variant of the 
bankfull approaches discussed by Williams (1978).

We recognized that the above method for identifying 
bankfull elevation would work best in floodplain rivers and 
would be limited in confined channels that lack floodplains. 
The method is less definitive in channels with inset/multiple 
terraces, where one is faced with deciding which terrace and 
which plateau in the hydraulic depth function is the current 
bankfull elevation (i.e., the active floodplain) (fig. 7). Many of 
our study sites exhibited both characteristics confined channels 
and multiple terraces. Field observations can be used to 
guide selection of the correct overflow surface corresponding 
with the active floodplain (Williams, 1978), but we wished 
to conduct a blind test of the remote sensing capabilities 
of LiDAR (i.e., without recourse to field observations of 
bankfull). Consequently, where multiple terraces were present, 
we determined the elevation and channel width for the first 
terrace (i.e., lowest elevation terrace), which may or may 
not be equivalent to the actual bankfull elevation, depending 
on the local conditions and geomorphic history of a site. 
The hydraulic depth calculations were performed using the 
WinXSPRO program (Hardy et al., 2005) and were plotted 
versus elevation for the examined cross sections.

Stream Gradient

Water-surface elevations were measured from the LiDAR 
data by sampling directly from the DEM at 1-m intervals 
along the stream centerline. The stream centerline was 
generated using the flow accumulation function in ArcGIS 
Spatial Analyst and then manually edited within the GIS 
environment with the digital orthophotos as a visual reference. 
The extent of the study area was small enough that manual 
editing of the stream center was preferred for correcting for 
culverts and other features in the ground model that may 
create errors in the stream network. The custom ArcGIS 
extension TTools (Boyd and Kasper, 2005) was used to 
create equal-interval nodes along the centerline and to sample 
elevations directly from the DEM. LiDAR-derived water-
surface slopes were compared to those determined from total 
station measurements at each site.
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Results

First Terrace Elevation and Bankfull 
Identification

With the exception of one outlier (Bridge Creek, PXS2), 
the first-terrace elevations derived from the LiDAR DEMs 
differed from those of the total station surveys by 0–40 cm 

(table 3), with a RMSE of 15 cm (complete dataset, including 
the above outlier, yields an RMSE of 34 cm). In some cases, 
the first terrace corresponded with the bankfull elevation 
identified in the field (fig. 8, Trail Creek), while in other cases, 
it underestimated the actual bankfull surface (fig. 8, Crane 
Creek; bankfull is the second terrace, while the first “terrace” 
is a bar top). Hence, while the first-terrace elevations are 
comparable between the LiDAR-derived data and the total 
station data, remote predictions of bankfull geometry may 
have errors and will likely require field observations to guide 
extraction of this feature from the LiDAR data.

Figure 6.  Example hydraulic depth function (a) for objectively defining bankfull elevation. The function 
maximum coincides with the active bankfull floodplain identified in the field (b, cross section). Reported 
elevations are for an arbitrary coordinate system and are not georeferenced.
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Figure 7.  Example hydraulic depth function (a) and underlying cross section (b) for a channel 
showing two terraces. Dashed lines in (b) indicate terrace locations determined from (a).

Channel Widths

Comparisons between the LiDAR- and field-derived 
values of channel width at the first terrace of each cross 
section are shown in table 3. For plane-bed streams, a median 
difference of 0.87 m in channel width was observed between 
the two datasets. The LiDAR model overestimated channel 
width by 0.59–7.89 m (4–167 %) on four of the six measured 

cross sections, with an overall median error of 0.87 m (16%). 
The largest difference (7.89 m) was observed on Bridge Creek 
(PXS2) where the LiDAR-derived profile generalized the 
first terrace break and hence overestimated bankfull width. 
Excluding this cross section, the range of width overestimation 
decreases to 0.59–1.05 m (4–29%). At two of the six cross 
sections, the LiDAR model underestimated channel width by 
0.35–2.34 m (8–13%). 
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 For the pool-riffle streams, the comparison of LiDAR 
and field-derived values yielded a median difference in 
channel width of 1.57 m and a median error of 23%. The 
LiDAR model overestimated channel width by 0.40–1.89 m 
(4–76 %) for all four cross sections. Step-pool channels 
exhibited a median difference in channel width of 1.80 
m and a median error of 43%. However, the frequency of 
over-versus under-estimation was equal in this channel type 
(3 overestimated and 3 underestimated). 

Figure 8. Comparison of LiDAR-derived and total station cross sections for plane-bed (top), pool-riffle (middle), 
and step-pool channels (bottom). Dashed lines are first-terrace elevations determined from the hydraulic 
depth method. The wetted channel is represented on the profile in blue and is based on field measurements. 
The water-surface topography is interpolated from the LiDAR DEM, which includes LiDAR returns from both 
the water surface and exposed channel topography.

These findings suggest that the accuracy of LiDAR-
derived channel widths varies with channel type (progressively 
greater median errors across plane-bed, pool-riffle, and step-
pool channels). The larger error in step-pool channels also 
may reflect limitations of the hydraulic depth approach for 
defining bankfull in confined streams. In several cases, plots 
of hydraulic depth versus elevation did not reveal a distinct 
local maximum. Consequently, a more robust approach or 
combination of methods should be considered for remote 
sensing of bankfull elevation across the range of stream types 
present in mountain rivers (e.g., Rosgen, 1994; Montgomery 
and Buffington, 1997).
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be delineated using a grid-based DEM (Warren et al., 2004; 
James et al., 2007). However, the LiDAR DEM described the 
channel geometry (in terms of terrace elevations and shape) 
of some of the smallest streams in the study (i.e., widths of 
2–3 m). For example, the LiDAR DEM closely matched the 
field measured bank full elevation (within 3 cm) and width 
(within 70 cm) on Tinker Creek (PXS2), which had a field 
measured bankfull width of only 3.5 m. As expected, the DEM 
generally interpolated or missed features that were less than 1 
m2 in planar surface area (i.e., less than 2× the DEM grid cell 
size; 0.5 m).

The accuracy of the LiDAR DEM depends on both the 
quality of the ground-point classification and the achieved 
ground return density. While the degree to which vegetation 
influences the LiDAR returns depends on season and species 
composition, heavily vegetated areas generally will result in 
fewer ground returns and the potential for more interpolation 
errors in the resulting DEM. This effect was evident in cases 
where the LiDAR DEM interpolated over fine-scale cross-
sectional features and banks located under heavy vegetation. 
Landscape features such as downed logs also contributed 
to noise in the ground model. The largest inaccuracies were 

Table 3.  First-terrace elevations and widths determined from LiDAR versus total station data.

Stream XSection
Terrence elevations (m) Channel width (m)

LiDAR Field Difference LiDAR Field Difference

Pool-Riffle Streams

Trail PXS2 1,581.31 1,581.31 0.00 9.91 9.51 0.40
Trail PXS4 1,585.04 1,584.92 0.12 11.32 9.73 1.59
Crane PXS2 1,634.31 1,634.21 0.10 4.39 2.50 1.89
Crane PXS4 1,635.43 1,635.42 0.01 6.79 5.24 1.55

Plane-Bed Streams

Camas PXS2 848.24 848.26 -0.02 16.27 18.61 -2.34
Camas PXS4 852.46 852.41 0.05 16.81 16.22 0.59
Tinker PXS2 1,410.22 1,410.25 -0.03 4.18 3.49 0.69
Tinker PXS4 1,412.19 1,412.24 -0.05 4.09 4.44 -0.35
Bridge PXS2 660.17 658.94 1.23 12.63 4.74 7.89
Bridge PXS4 660.19 660.01 0.18 4.68 3.63 1.05

Step-Pool Streams

Whiskey PXS2 1,217.64 1,217.68 -0.04 2.67 7.90 -5.23
Whiskey PXS4 1,223.47 1,223.66 -0.19 3.45 5.57 -2.12
Myrtle PXS2 1,423.62 1,423.37 0.25 4.62 2.90 1.72
Myrtle PXS4 1,430.25 1,430.18 0.07 5.75 3.79 1.78
Crawfish PXS2 1,797.46 1,797.06 0.40 7.24 5.43 1.81
Crawfish PXS4 1,803.59 1,803.68 -0.09 5.47 5.70 -0.23

Channel Cross Sections

While the width predictions varied, the shape and 
topography of the cross-section profiles above the water-
surface elevation were correlated between the two datasets, 
even for streams with channel widths of less than 5 m 
(fig. 8). In only one instance (Bridge Creek; PXS2) did the 
LiDAR DEM miss the first terrace, resulting in a significant 
overestimation of channel width (table 3). Inspection of the 
LiDAR DEM of Bridge Creek shows that the first terrace 
was visible as a continuous linear feature in the data and 
that the generalization of this terrace at PXS2 may have 
been the consequence of vegetation along the right bank 
rendering fewer ground returns. This finding suggests that 
sampling discrete cross sections in isolation from the spatially 
continuous dataset might be misleading. 

We expected the LiDAR DEM to more precisely map the 
larger channel geometries due to a higher number of ground 
returns per cross section, with greater variability in results 
observed for smaller channel widths and fewer ground returns. 
Theoretically, the Nyquist frequency (twice the grid cell size) 
represents the minimum size of topographic features that can 
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observed when a combination of these factors contributed 
to the error budget. For example, permanent cross section 
4 (PXS4) on Myrtle Creek contained both vegetation and 
downed logs near the streambank (fig. 9). Myrtle Creek also 
had one of the steepest gradients (table 1) and a confined 
channel. The DEM at this location generalized the steep 
terrace break along the left bank and completely missed the 
small channel split in the center of the stream, which appeared 
due to a mixture of relatively small channel width (<4 m) and 
downed logs/vegetation in the stream (fig. 9). 

Stream Gradient

Stream gradients determined from the two data sets are 
in close agreement (table 4), with median errors of 3.87, 5.75, 
and 0.16 percent for pool-riffle, plane-bed, and step-pool 
channels, respectively. The difference in slope measurements 
between the two approaches generally decreases with channel 
gradient, with step-pool channels showing the least error 
(fig. 10). 

Figure 9.  Example of fine-scale topography obscured by large woody debris and riparian vegetation in 
a LiDAR-derived cross section compared to that surveyed in the field with a total station. The ground-
level photograph shows general channel conditions in Myrtle Creek.

Figure 10. Scatter plot of 
percent difference in water-
surface slope between 
LiDAR and total station 
measurements for different 
stream types.0
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While the gradient comparisons were based on a limited 
number of water surface measurements in the total station 
data, water surface elevations can be sampled from LiDAR 
data at any user defined interval (fig. 11). Dense sampling of 
the water-surface topography potentially can be used to locate 
pools and riffles (low-gradient, smooth surface areas relative 
to that of steeper-gradient, rough surface areas indicative of 
riffles and steps).

Discussion
Overall, the LiDAR approach tended to overestimate 

channel widths (69% of the time), with errors systematically 
varying with channel type (progressively greater median 
error across plane-bed, pool-riffle, and step-pool channels). 
Overestimation of channel width likely is due to the resolution 
of the LiDAR DEM and interpolation of streambank 
topography in locations where the density of ground returns 
is reduced by riparian vegetation. Some error also may be due 
to the native resolution of the data (section, “LiDAR Data 
Quality”). The geo-positioning of the field data could not be 
quantified, but inevitably introduced additional uncertainty 
due to small differences in the position or angle of the cross 
section.

Results also showed that remote sensing of the bankfull 
elevation and width using LiDAR may be prone to errors in 
channels with multiple terraces. However, these errors could 
be reduced with limited field observations that allow data 
training for selection of the terrace corresponding with the 
active floodplain. 

While differences in width were observed between 
LiDAR-derived cross sections and those measured in the field, 
LiDAR offers a means to apply a consistent sampling method 
to all sites in a watershed and to reduce or eliminate observer 
variability in field sampling sites. Among observers, estimated 
bankfull dimensions have been shown to vary by as much as 
±15 % (Roper et al., 2002). Furthermore, because the LiDAR 
data are geographically precise, temporal changes in channel 
geometry can be evaluated at the same location using the same 

Figure 11. Example 
of water-surface 
elevations sampled 
from the LiDAR DEM 
at 1-m intervals 
longitudinally along 
Trail Creek (a pool-riffle 
stream).

Table 4. Comparison of reach-average water-surface gradient 
between the total station data and the LiDAR DEM.

Water-surface gradient (m/m)

LiDAR Total station
Percent 

difference

Pool-Riffle Streams 

Trail Creek 0.0160 0.0163 1.56
Crane Creek 0.0101 0.0107 6.17

Plane-Bed Streams

Camas Creek 0.0089 0.0095 5.75
Tinker Creek 0.0266 0.0284 6.32
Bridge Creek 0.0105 0.0094 -12.29

Step-Pool Streams

Whiskey Creek 0.0745 0.0748 0.40
Myrtle Creek 0.0988 0.0990 0.16
Crawfish Creek 0.0523 0.0523 0.05
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methods. LiDAR-derived models have continued to improve 
through technological advances in pulse densities, GPS 
accuracy, and ground classification methods. Consequently, 
multi-temporal analysis should consider the contribution of 
differences in the precision and resolution of the underlying 
data when interpreting results. 

Field crews typically measure channel cross sections 
at discrete locations along the channel. Although these 
survey points are accurate, even the most rigorous surveys 
are inherently limited due to time and resource constraints. 
Consequently, field measurements typically quantify physical 
habitat indicators at discrete locations, but often fail to 
accurately capture the variability of these parameters at 
the watershed or even reach scale. For example, Young et 
al. (2006) showed that quantifying the variability of large 
wood debris may require sampling over much longer stream 
lengths than typically measured during monitoring surveys. 
In contrast, LiDAR DEMs are spatially continuous and can 
be used to measure a variety of channel characteristics at 
user defined intervals along the stream, better quantifying the 
spatial variability of conditions. For example, first-terrace 
widths varied from 3.3–23.4 m over a 3-km segment of Trail 
Creek, showing a greater range of variability than would have 
been detected by the five monumented cross sections at this 
site (fig. 12). LiDAR mapping of these physical parameters 
provides an unprecedented ability to quantify channel 
characteristics and associated habitat at multiple spatial scales 
(e.g., McKean et al., 2008). 

LiDAR Data Quality

The quality of results obtained from LiDAR will be 
strongly controlled by the native resolution and accuracy 
of the LiDAR data and derived products (table 2). A lower 
resolution data acquisition (expressed as pulse densities for 
raw LiDAR) may produce different results in terms of how 
well the DEM represents the channel geometry. James et al. 
(2007) showed that LiDAR data processed at 2-m grid cells 
were not suitable for detailed morphologic analysis or for 
subtle change detection in monitoring gullies in headwater 
streams in South Carolina. The number of ground returns can 
be improved by collecting data at higher pulse densities and 
flight planning that maximizes penetration through the canopy. 
In the Pacific Northwest, the Oregon LiDAR Consortium 
(OLC) and Puget Sound LiDAR Consortium (PSLC) are 
currently collecting data at pulse densities of >8 pulses/m2 
(PSLC has collected data at ≥4 pulses/m2 since 2005). The 
collection of data during winter months also helps minimize 
the influence of broad-leaf riparian vegetation on ground 
return density. Finally, the LiDAR instrument has to be well 
calibrated with good relative consistency.

Figure 12. Plot showing first-terrace widths measured at 5-m intervals over three km of Trail Creek derived 
from the LiDAR data. The locations of the five monumented cross sections (fig. 5) also are shown on the plot.
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Costs and Capabilities

With the increasing availability of high-resolution, 
quality-controlled LiDAR data through statewide initiatives 
and regional consortiums, natural resource managers can 
benefit by utilizing publicly available data and/or contributing 
to regional consortiums to collect data from new areas of 
interest. Large initiatives offer a pre-defined price structure 
that realizes an economy of scale by combining contributions 
from multiple entities. Current pricing through the Oregon and 
Puget Sound LiDAR Consortiums is $0.78/acre for contiguous 
areas greater than 250  mi2 (Puget Sound LiDAR Consortium, 
2008). 

Although there are many potential benefits of using 
LiDAR (e.g, increased spatial sampling, elimination of 
observer variability), LiDAR measurements provide a 
subset of the attributes currently collected by aquatic habitat 
monitoring programs (table 5). Other attributes can be partially 
measured or inferred depending on scale and the availability 
of corresponding imagery. As technology continues to 
advance (e.g., increased pulse densities, small footprint green-
wavelength LiDAR, etc.), the number of attributes that can be 
reliably measured also will advance. Currently, the benefit of 
LiDAR data products will be to enhance, but not replace, field 
monitoring programs.

Table 5. Near-infrared LiDAR capabilities for measuring channel and habitat attributes.

[Measurable: Y, parameter measurable with minimal error; WL, parameter measurable to some degree, with limitations under some circumstances; 
N, parameter can not be measured]

Parameter Measurable Comments

Channel characteristics
 - Reach length Y
 - Sinuosity Y
 - Connectivity Y Includes mapping inactive/paleo-channels
 - Terrace Elevations Y
 - Bank Incision Y Bank elevation/channel elevation
 - Cross Sections WL Measured down to water surface
 - Bankfull Depth WL Provides a reasonable estimate on small streams at base flow.
 - Bank Angle WL Scale and ground-return density may be a factor on small streams in terms of how well 

bank topography can be identified.
 - Bank Type WL
 - Bank Stability WL
 - Partial blockages to salmon 

migration
WL Improved with digital imagery, but features that represent a real blockage may be open to 

interpretation.
 - Water Surface Elevation Y
 - Pool Frequency/Length WL Water-surface topography can be used to locate pools (low-gradient, smooth surface areas 

relative to that of steeper-gradient, rough surface areas indicative of riffles and steps). 
This capability will be a function of stream size and discharge (smoothness of water-
surface profile), and can be facilitated with multi-spectral images.

 - Pool Depth N
 - Bed Topography N
 - Substrate N
 - Bank Materials N
Valley/Upslope
 - Valley cross section Y
 - Landslides Y
 - Road Density Y
 - Stream Crossings Y
 - Impervious Surfaces Y Improved with digital imagery.
Riparian
 - Vegetation Height Y
 - Large Woody Debris WL The availability of large wood can be derived from LiDAR-derived vegetation models, 

but can be greatly improved with digital imagery.
Biological
 - Water Chemistry N
 - Biology (fish, invertebrates, etc.) N
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Conclusions
High-resolution LiDAR data and derived DEMs present 

an opportunity for resource managers to expand the amount 
and quality of information available for aquatic habitat 
monitoring. This paper specifically looked at the ability of 
LiDAR to describe the geometry and slope of mountain 
channels in northeastern Oregon. The LiDAR data offers 
the means to apply a consistent and repeatable approach for 
sampling and analysis of physical characteristics within the 
watershed. The elimination of errors introduced by observer 
interpretation will improve a manager’s ability to compare 
results between streams and/or between years on the same 
stream. 

Ultimately, the broader utility of LiDAR data is in the 
ability to develop higher-order topographic metrics (e.g., 
area, volumes, curvature, and topology) of homogeneous 
units rather than measuring point or line samples common 
to existing protocols. Because near-infrared LiDAR does 
not penetrate the water surface, the DEM does not contain 
information about the channel depth, bed topography, and 
substrate size. As a result, near-infrared LiDAR data are more 
useful for understanding riparian, floodplain, and upslope 

characteristics. The need for in-channel data for habitat 
monitoring and modeling fluvial processes warrants continued 
technological development and deployment of high-resolution 
bathymetric (green wavelength) LiDAR. In both cases, the 
increased availability of these data will allow field crews 
to focus more time on studying the biological processes 
occurring within the wetted channel and to sample over larger 
spatial areas for the remaining parameters that can not be 
determined remotely with LiDAR. 

LiDAR-derived DEMs additionally provide the potential 
for extending decision support processes to include spatially 
explicit information that is not well represented in existing 
protocols. For example, stream slope, sinuosity, channel 
complexity, and LWD retention could be mapped continuously 
along the stream length, capturing the overall variability in 
the system (fig. 13). Although not explicitly addressed in 
this study, the LiDAR data inherently contain information 
on upslope factors that influence habitat quality, such as 
road location, landslides, and riparian vegetation. In short, 
the availability of high-resolution LiDAR data may move 
our view of physical habitat monitoring away from discrete 
subsamples to a watershed-scale view that captures more of 
the complexity and variability of the ecosystem condition. 

Figure 13. Example showing the mapping of side and secondary channels along a section of Trail Creek. Mapping 
of side-channel and floodplain elevations can provide measures of aquatic and riparian habitat suitability that 
extend beyond traditional monitoring parameters.
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