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a b s t r a c t

Although long-lived tree species experience considerable environmental variation over their life spans,
their geographical distributions reflect sensitivity mainly to mean monthly climatic conditions. We intro-
duce an approach that incorporates a physiologically based growth model to illustrate how a half-dozen
tree species differ in their responses to monthly variation in four climatic-related variables: water avail-
ability, deviations from an optimum temperature, atmospheric humidity deficits, and the frequency of
frost. Rather than use climatic data directly to correlate with a species’ distribution, we assess the relative
constraints of each of the four variables as they affect predicted monthly photosynthesis for Douglas-fir,
the most widely distributed species in the region. We apply an automated regression-tree analysis to
limate change
S Forest Inventory and Analysis
itka spruce
onderosa pine
estern juniper

odgepole pine
ouglas-fir

create a suite of rules, which differentially rank the relative importance of the four climatic modifiers
for each species, and provide a basis for predicting a species’ presence or absence on 3737 uniformly
distributed U.S. Forest Services’ Forest Inventory and Analysis (FIA) field survey plots. Results of this gen-
eralized rule-based approach were encouraging, with weighted accuracy, which combines the correct
prediction of both presence and absence on FIA survey plots, averaging 87%. A wider sampling of climatic
conditions throughout the full range of a species’ distribution should improve the basis for creating rules

dictin

estern hemlock

and the possibility of pre

. Introduction

A region’s flora and fauna reflect the interplay of dispersal, col-
nization, and competition for resources under a specific range of
nvironments. Within the Pacific Northwest (PNW) region of the
nited States, the distribution of the flora is well described by
ranklin and Dyrness (1973) in terms of temperature and precip-
tation patterns, physiography, and associated plant communities.
hese descriptions, however, lack predictive power, and this defi-
iency, in a region where the climate may already be changing (Mote
t al., 2005; Westerling et al., 2006), makes plans for conservation,
s well as exploitation of natural resources, highly uncertain. In the
xtreme, climatically induced disturbance might cause major struc-
ural transformations from one type of vegetation to another, and

hrough changes in the energy balance, further alter the region’s
limate (Pielke et al., 1998).

At present, there are two divergent approaches that incorpo-
ate climatic information to predict the distribution of species. One

∗ Corresponding author. Tel.: +1 604 822 6452; fax: +1 604 822 9106.
E-mail address: nicholas.coops@ubc.ca (N.C. Coops).

304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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g future shifts in the geographic distribution of species.
© 2009 Elsevier B.V. All rights reserved.

approach relies on empirical correlations while the other attempts
to acquire a mechanistic understanding on which to base predic-
tions. The first, and most widely accepted approach, consists of
“niche” or “bioclimatic envelope” models (Austin, 1985; Iverson
and Prasad, 1998; McKenzie et al., 2003; Thuiller et al., 2008). Such
models usually relate presence/absence data empirically to envi-
ronmental variables, most often climate (but sometimes including
soil and physiographic features), using an array of statistical meth-
ods including multiple regression techniques, neutral networks,
and regression-tree analysis (Iverson and Prasad, 2001). The capac-
ity of these empirical models to provide accurate predictions of
species’ distributions under future, possibly novel climatic combi-
nations is unclear (Williams et al., 2007).

At the other extreme are mechanistic models that predict the
growth of individual species or even clones under any specified
environment (Sands et al., 2000; Rodriguez et al., 2002; Almeida
et al., 2004; Dye et al., 2004). The advantage of such mechanistic,

process-based models is that they identify the relevant environ-
mental constraints on growth and other processes. Such models
are specifically designed to be able to predict performance of a
species outside its present natural range (Waring, 2000; Coops et
al., 2005; Waring et al., 2008). Their disadvantage is that detailed

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:nicholas.coops@ubc.ca
dx.doi.org/10.1016/j.ecolmodel.2009.04.029
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ature, frost occurrence, and short wave radiation over the 18-year
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nformation is required by these models to define a species’ toler-
nce and response to deviations from optimum temperature, frost,
rought, and atmospheric humidity deficits, and in how resources
re partitioned to leaves, roots, stems, and branches.

We questioned whether it might be possible to combine
he automated, statistically sophisticated component of empirical

odels with the process-based understanding imbedded in the
echanistic type models. To address this question, we recognize

hat we must first simplify the mechanistic approach by referenc-
ng environmental responses of any number of species to one that is

idely distributed. We also know that climatic data must be extrap-
lated across landscapes in an appropriate form and at a spatial
esolution that match model requirements and the availability of
iological information recorded on ground-based field survey plots.
o automate the process of seeking rules to define the distribution
f different tree species, we chose regression-tree analysis because
f its efficiency and transparency in recognizing those physiological
ariables and their thresholds that separate one tree species from
nother in its adaptation to environment. Based on the analysis of
half-dozen species, the results of this hybrid approach were suf-
ciently encouraging to share, although we recognize the need to
xpand the analysis to include the full environmental range that
ach species now occupies.

. Methods

.1. Hybrid model

All ecosystem process-based models are simplified versions of
eality with the choice of which model to utilize dependent a
umber of factors including the minimum spatial and temporal
nits of operation and the number and type of output param-
ters (Nightingale et al., 2004). Likewise the scale at which the
odel operates (leaf–tree, plot–stand, regional and ecosystem lev-

ls) is also critical, with model complexity generally decreasing
s the time step and spatial extent of model operation increases
Wulder et al., 2007). Given the need to predict species distribution
ver large spatial extents we believe a monthly time step, stand-
evel, process-based model is an appropriate choice for our analysis.

ithin this specification a number of process-based models exist
Nightingale et al., 2004) including HYBRID (Friend et al., 1997),
OREST-BGC (Running and Coughlan, 1988), BIOME-BGC (Running
nd Hunt, 1993) amongst others.

The 3-PG model (physiological principles predicting growth)
as selected as a basis for the test because it contains a number
f simplifying assumptions that have emerged from studies con-
ucted over a wide range of forests (Landsberg et al., 2003). These

nclude:

Climatic data can be summarized at monthly intervals with little
loss in the accuracy of model predictions.
Each month, the most limiting climatic variable on photosyn-
thesis is selected, based on departure from conditions that are
optimum (expressed as unity) or completely limited (expressed
as zero).
Maximum canopy stomatal conductance approaches a plateau
above a leaf area index (LAI) of 3.0.
The ratio of actual/potential photosynthesis decrease in propor-
tion to the reductions in the most limiting environmental factor.
The fraction of production not allocated to roots can be parti-
tioned among foliage, stem and branches based on allometric

relationships and knowledge of annual leaf turnover.

In the model, absorbed photosynthetically active radiation
APAR) is estimated from global solar radiation and LAI; the uti-
ized portion, APARu, is calculated by reducing APAR by an amount
lling 220 (2009) 1787–1796

determined by a series of modifiers that take values between 0 (sys-
tem ‘shutdown’) and 1 (no constraint) to limit gas exchange via
canopy stomatal conductance (Landsberg and Waring, 1997). The
modifiers include: (a) high averaged day-time D; (b) the frequency
of subfreezing conditions, (c) soil drought and (d) temperature.
Limitations on APARu are imposed each month by the modifier
with the lowest value. Drought limitations are imposed as a func-
tion of soil texture when the total monthly precipitation and soil
water supply are significantly less than transpiration estimated
with the Penman–Monteith equation (Coops et al., 2005). Gross
primary production (PG) is calculated by multiplying APARu by a
canopy quantum efficiency coefficient, with a maximum value set
by the soil fertility ranking and reduced monthly when mean tem-
peratures are suboptimal for photosynthesis and growth. A major
simplification in the 3-PG model is that it does not require detailed
calculation of respiration from knowledge of root turnover, but
rather assumes that autotrophic respiration (Ra) and total net pri-
mary production (PN) in temperate forests are approximately fixed
fractions (0.53 and 0.47, SE ± 0.04) of PG (Landsberg and Waring,
1997; Waring et al., 1998; Law et al., 2001). The model partitions
PN into root and aboveground biomass. Under more favorable cli-
matic conditions, the fraction of photosynthate allocated to roots
increases with infertility of the soil (Landsberg and Waring, 1997).

We further simplified the approach by selecting Douglas-fir
(Pseudotsuga menziesii), the most widely distributed species in
the region, to characterize the importance of climatic constraints
on photosynthesis and growth across all forested environments,
as we have done previously for other purposes (Swenson et al.,
2005; Waring et al., 2005; Coops et al., 2007). Rather than utiliz-
ing climatic data directly, we use 3-PG to assess the implications
of seasonal limitations of water availability, deviations from an
optimum temperature of 20 ◦C, frost frequency, and atmospheric
humidity deficits on photosynthesis and growth. The link to pho-
tosynthesis is critical because the potential varies seasonally. The
upper limits are set by the amount of light absorbed by the canopy’s
foliage. Although we recognize that soil fertility and soil water stor-
age capacity vary considerably across the region (Swenson et al.,
2005), in this paper we chose to keep soil properties constant to
simplify the analysis of the effects of climatic variation on tree dis-
tributions. We did this by setting the maximum available soil water
storage capacity at 200 mm and giving a moderately high rank to
a soil fertility index (0.7), which generates a maximum photosyn-
thetic quantum efficiency of 0.05 mol C mol photon−1 (2.75 g C MJ−1

of absorbed photosynthetically active radiation).
We used parameters for equations describing the physiological

responses of Douglas-fir reported in a previous publication (Coops
et al., 2007). The extent that different species encounter envi-
ronments that would impose restrictions on the performance of
Douglas-fir is incorporated through an automated regression-tree
analysis, described in more detail below. This statistical procedure
generates a suite of rules for each species that differentiates the rel-
ative importance of the four climatic modifiers (maximum impact
imposed through the year by: water availability, deviations from an
optimum temperature of 20 ◦C, frost frequency, and atmospheric
humidity deficits).

2.2. Climatic data

Monthly mean climatic data, registered at a resolution of 1 km2,
were obtained for precipitation, minimum and maximum temper-
period from 1980 to 1997 from the DAYMET US climatological
database (Thornton et al., 1997; Thornton and Running, 1999).1

1 URL: (http://www.daymet.org).

http://www.daymet.org/
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.3. Species occurrence data

Information on species occurrence was obtained from records on
737 United States Department of Agriculture (USDA), Forest Ser-
ice (USFS) Forest Inventory and Analysis (FIA) field survey plots.
hese plot records contain detailed information regarding the size,
asal area, mortality, and frequency of tree species. To maintain
rivacy the publically available spatial locations of the FIA plots
re randomly moved by up to 800 m within the 1 km spatial reso-
ution of this application. We chose presence/absence data alone,
owever, as the most reliable to establish the environmental distri-
ution of a species.

.4. Delineating limiting climatic factors

Across the region, we applied the model to predict stand growth
nd LAI, using the mean 18-year DAYMET averages, for each year of
he 50 years of stand development with an initial stocking density of
000 tree seedlings ha−1. At the end of the 50th year, by which time
tands have obtained maximum LAI, the simulations were stopped
nd the most climatically restricting variables on photosynthesis
etermined for each of the preceding 12 months.

.5. Regression-tree analysis

To assess the extent that the annual maximum constraints of the
-PG environmental modifiers, expressed as fractions of optimum
onditions (unity), might serve to predict presence or absence of
ach of six selected tree species, a classification tree analysis was
pplied. This type of analysis is increasingly advocated for ecolog-
cal research because it is not dependent on the assumption of a
ormalized distribution, is well suited to dealing with collinear
atasets, and efficiently excludes variables that are insignificant
De’ath, 2002; Schwalm et al., 2006; Melendez et al., 2006). The
echnique automatically separates the dependent variables (pres-
nce or absence of a tree species) into a series of choices that
ot only identifies the importance of each constraining variable,
ut also establishes thresholds that best separate one species from
nother (diagrams for two species appear later, Fig. 3).

We execute the regression-tree analysis with a 10-fold cross val-
dation technique, similar to a jackknifing procedure, which starts
y using all available data (the reference tree). The total dataset is
artitioned randomly into 10 equally sized groups (or folds). One
et is held in reserve, while the other nine are pooled and a model
eveloped. The accuracy of the model is assessed using the remain-

ng 10% of the data which were not used in model development.
his process is then repeated 10 times, resulting in 10 different
est trees and 10 different accuracy assessments. The average of the
ccuracy of the 10 test trees is provided as the training accuracy,
nd the average accuracy of runs using the 10% reserved dataset
s the validation accuracy. The decision rules of the 10 models are
hen merged to produce a final classification tree with an overall
ccuracy accessed by averaging the independent results of the 10
imulations (Breiman et al., 1984).

.6. Spatial validation of models

To provide a visual comparison of model accuracy with refer-

nced sources, we generated maps of current species’ distributions
nd compared these with recorded presence of each species on
IA survey plots as well as with more general range distributions
Critchfield and Little, 1966; Little, 1971).2

2 URL: (http://esp.cr.usgs.gov/data/atlas/little/).
lling 220 (2009) 1787–1796 1789

3. Results

Spatial variation in the four climatic modifiers as they constrain
photosynthesis of Douglas-fir during the most unfavorable month
is shown in Fig. 1(A)–(D). All the modifiers are scaled between 0
and 1, where 1 indicates optimum conditions for photosynthesis,
and 0 indicates complete shutdown for at least 1 month out of each
year. According to model predictions, late summer drought is typi-
cal throughout most of the interior of the Pacific Northwest region
with soil water storage capacity set at 200 mm (Fig. 1A). There are
isolated mountain ridges in the southern interior where precipi-
tation in the form of snow provides ample recharge of the water
supply throughout the growing season. In the Rocky Mountains,
the northwestern Cascades and Coastal Ranges, summer precipi-
tation is sufficient to limit soil water stress on photosynthesis, in
some cases to zero.

High evaporative demand during the summer is typical through-
out the central valley in California, and for much of the areas on the
eastern sides of the Cascade and Sierra Mountains. Mountainous
areas toward the interior part of the region remain sufficiently cool
resulting in deviations in optimum temperature (Fig. 1B), reducing
evaporative demand (Fig. 1C) and limitations imposed by frequent
frost (Fig. 1D) show similar patterns, with the areas most unfa-
vorable for Douglas-fir located to the east of the Cascades and
Sierra mountain ranges. The coastal mountains are buffered from
extremes in temperature, whereas diurnal variation increases with
elevation and with movement inland.

Based on presence data recorded on FIA plots for the selected
species, we contrast seasonal variation in the climatic modifiers in
Fig. 2. In regard to tolerance to soil water stress, western juniper
appears the most adapted as it experiences 4 months in the year
where photosynthesis is reduced to less than 20% of its potential
(Fig. 2A). In contrast, Sitka spruce, which occurs along the coast, is
present in areas where precipitation is sufficient to maintain a soil
water balance within 10% of optimum throughout the year.

With temperature, most of the species analyzed are adapted to
considerable variation throughout the year (Fig. 2B). Sitka spruce is
present where temperature extremes are rare, in conjunction with
its distribution close to the Pacific Coast. Lodgepole pine, on the
other hand, is well adapted to survive, if not grow well, in areas
where seasonal variations in temperature are extreme. Douglas-fir,
the reference species, inhabits environments that are predomi-
nantly mild, with departures from its optimum temperature (20 ◦C)
on average, of less than 50%. In regard to seasonal variation in atmo-
spheric humidity deficits (VPD), the species show similar ranking,
although with less extreme variation than they exhibit to drought
(Fig. 2C). Sitka spruce experiences the least limitations and juniper
the most. The environmental distribution of species in reference to
monthly constraints imposed by frost (Fig. 2D) follows the gen-
eral pattern exhibited for deviation from optimum temperature
(Fig. 2B). The separation among species is accentuated, with lodge-
pole pine associated most with the occurrence of frost and Sitka
spruce the least.

Decision trees were developed to predict presence and absence
of each of the species, based on the maximum effect each of the
four climate modifiers have on photosynthesis throughout the year.
Examples of decision trees constructed for Sitka spruce and pon-
derosa pine are presented in Fig. 3. In the case of Sitka spruce
(Fig. 3A), the first decision is based on the temperature modifier
being >0.68. The second decision separates sites that are rarely
water stressed (modifier >0.82). A third separation is made to

include only those site where the temperature modifier is <0.82,
and among those selected, a further delineation is based on the
frost modifier being >0.47.

The decision tree constructed for ponderosa pine (Fig. 3B) sorts
the climate variables in a different order, and assigns different

http://esp.cr.usgs.gov/data/atlas/little/
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ig. 1. (A–D) Geographic variation in the maximum effect on photosynthesis of the f
t 50 years of age. Modifiers are scaled between 0 (complete restriction in growth)

hresholds than those presented for Sitka spruce. The first level of
iscrimination for ponderosa pines is water availability with the
odifier ranked at <0.1 of optimum during late summer. The sec-

nd decision level is based on the temperature modifier being <0.36
uring part of the growing year, with a third level decision that
dentifies sites with the frost modifier at >0.1. The fourth and last
ecision is based on the vapor pressure deficit modifier being >0.35.

Although all four modifiers were used in the decision tree anal-
sis, their importance differs, as shown in Fig. 4. For three species,
ne modifier accounts for 60–90% of the predictive power of the

able 1
ommon and scientific names, and limiting environmental conditions of six common tre

ommon name Scientific name

itka spruce Picea sitchensis (Bong.) Carr
onderosa pine Pinus ponderosa Dougl. ex Loud.
estern juniper Juniperus occidentalis Hook.

odgepole pine Pinus cortorta Dougl. ex Loud.
ouglas-fir Pseudotsuga menziesii (Mirb.) Franco
estern hemlock Tsuga heterorphylla (Raf.) Sarg.
imatic modifiers throughout the year, referenced to responses by Douglas-fir stands
(optimum).

regression-tree analysis. For lodgepole pine the critical modifier is
frost, for western hemlock it is temperature, and for ponderosa pine
it is soil water availability. Douglas-fir and Sitka spruce have two
variables that account for >30% of the model’s predictive power,
but the variables differ: frost and VPD are important for Douglas-

fir, whereas soil water and temperature help define the distribution
for Sitka spruce (Table 1).

Accuracy assessments of the models were similar whether the
data sets were for training or for validation (Table 2). Accuracies are
referenced to the percentage of FIA plots on which a species was cor-

e species in the Pacific Northwest region.

Environmental limiting factors

Most sensitive to humidity deficits and temperature extremes
Less sensitive to drought, frost, and humidity deficits than Douglas-fir
Least sensitive to drought and high VPD
Most tolerance of frost
Suited to intermediate environmental conditions
More sensitive to humidity deficits and to drought than Douglas-fir
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Fig. 2. (A–D) Monthly mean variation in the four
ectly assigned as being present or absent, and then combined into
weighted value, proportionately to the number of plots associated
ith each of the two categories. The overall accuracy of the six mod-

ls averaged 87%. The approximate location of the presence/absence
IA survey data plots are shown in Fig. 5 and graphic presentations

able 2
ercent correct classification for training and validation classification trees for the six sele

ata sets Sitka spruce Ponderosa pine Western juniper

of cases presence 2 21 5

raining
Presence 68 56 56
Absence 99 93 99
Overall 98 86 97

alidation
Presence 67 56 53
Absence 99 93 99
Overall 98 86 96
tic modifiers for each of six selected tree species.
of model predictions of current species’ distributions are presented
in Fig. 6. Predictions based on the modifiers, and the Little (1971)
range maps are independent of current land-use, whereas the FIA
plots used in this study only occurred in areas recognized as forest.
The predicted range of Sitka spruce is more confined than that sam-

cted species.

Western hemlock Lodgepole pine Douglas-fir Averages

15 30 40 19

49 69 82 63
97 78 67 89
90 75 76 87

49 64 82 62
97 78 66 89
90 74 76 87
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Fig. 3. (A) and (B) Decision tree rules (shown in lightest shade of gray) for Sitka
spruce and for ponderosa pine indicate different orders of importance and differ-
e
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Fig. 4. Importance of the four modifiers for the six modeled species.
nt threshold values for the four climatically related modifiers (scaled between 0
nd 1) to predict the species presence and absence. Temp = temperature modifier,
rost = frost modifier, Water = soil water modifier and VPD = vapor pressure modifier.

led by FIA surveys and indicated on Little’s range maps, although
he overall accuracy was 98%. A larger sample that included areas
n Canada and Alaska might improve model accuracy in estimating
resence (67–68%). In the case of ponderosa pine, the model pre-
ictions closely match the distribution of FIA plots recording the
pecies’ presence, but a wider sampling is obviously required to

mprove predictions in California, Arizona, and New Mexico. Pre-
ictions of western juniper distribution were rarely placed in areas
here the species was not recorded on FIA plots (accuracy 99%)

ut were predicted in areas where FIA plots were not available in
Fig. 5. The location of the 3737 FIA survey data plots used in this analysis.

the 18-year period (1980–1997) selected for this analysis. Model
prediction of the distribution of western hemlock show the best
correspondence to Little’s range map of any of the species evalu-
ated and had an overall accuracy of 90%. Lodgepole pine predictions
were also in general agreement with Little’s maps, although the
distribution of the coastal subspecies Pinus contorta var. contorta
was not captured. Model predictions of Douglas-fir presence on FIA
survey plots were 82% correct, but the distribution is extended to
areas where the species was not recorded, with a resulting drop in
accuracy (66–67%).
4. Discussion

The approach developed here in this paper makes the inherent
assumption that the species presence or absence at a given site is a
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Fig. 6. (A)–(L) Maps of predicted species occurrence using regression-tree decision rules (left) in reference to presence data recorded on FIA survey plots (�), and to more
general range distributions from Little (1971) (right).
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Fig. 6. (Continued ).
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unction of plants’ physiological responses (most specifically photo-
ynthesis) to climate. Thus the idea of choosing a widely distributed
ree species such as Douglas-fir as a surrogate for other evergreen
onifers seems reasonable based on the results of these analyses. To
dapt the approach for deciduous trees, we might choose big-leaf
aple (Acer macrophyllum Pursh), which is also widely distributed.
ne of our big concerns was that presence data would not be as good
f metric as abundance (or frequency of occurrence on FIA plots) to
efine the environments where a species is best adapted. Our pre-

iminary analysis suggests that presence data may be adequate but
comparison needs to be made. A number of models are suited

o this including, for example, the CLIMEX model (Sutherst and
aywald, 1985) which predicts the responses of species to climate,

ased on its current geographical distribution. The model develops
series of response functions which can then be applied to new

limate data from future climate scenarios or from other locations
Sutherst, 2003).

By combining information on species abundance with predic-
ions of stand growth we meet two of the most critical data needs
or sustainable forest management activities, and this approach has
otential for both species mapping efforts, as well as productiv-

ty studies. The regression tree-analysis using the four climatically
elated constraints on photosynthesis appears to be a powerful
pproach, but also requires further evaluation to see how stable
he order of variables selected and thresholds defined remain as the
rea sampled increases (McKenzie et al., 2003). While the locations
f the FIA plots are spatially smoothed, and only average an area of
.067 ha, their benefit is that they are available across the U.S.A. in

ncreasing numbers (Swenson and Waring, 2006; Nightingale et al.,
008). Similar surveys are also conducted in Canada (Gillis, 2001).
e propose to extend the approach presented here to include
ore species and to incorporate data from a wider sampling area.
lthough a wider sample may increase the predictive power of

he model, it might require recognition of subspecies and varieties
hat are adapted to a more restricted climatic environment (e.g. P.
ontorta var. contorta).

We could find some species, as they approach the limits of
heir range, to be restricted to environments where competition
s limited. This is the case for Jeffrey pine (Pinus jeffreyi Grev. &
alf.) in Oregon where it grows naturally only on ultramafic soils
Whittaker, 1960). The 3-PG model includes a soil fertility index,
ut the mapping of soil properties is inaccurate at the scale we
eed (Swenson et al., 2005). Similarly, soil water holding capacity
aries from <100 to >300 mm across the region. Although 200 mm
as been shown to be a reasonable average, a more accurate assess-
ent would be desirable in drought-prone areas, as demonstrated

hrough sensitivity analyses (Nightingale et al., 2007).
There are physical stresses associated with wind, ice, snow,

nd selective predation by animals that also affect tree distribu-
ions that are not currently incorporated in most process-based

odels. Indirectly, sites where snow accumulates might be recog-
ized through the regression-tree analysis as they rarely experience
rought, high evaporative demand, or seasonally favorable temper-
tures for growth of Douglas-fir. High winds and salt spray typical
f coastal regions might be correlated with the environmental char-
cteristics associated with the performance of Sitka spruce, in lieu
f direct measurement. Similarly, factors of succession and com-
etition are not explicably modeled using this approach, as we are
imply looking at the presence and absence of species based on the
urrent climatic conditions at a site.

The extent that the hybrid modeling approach will provide

n adequate basis for predicting a species’ performance under a
hanging environment, particularly one beyond that experienced in
he natural range, is unknown. Paleobotanical studies suggest that

any species have altered their competitive status under changing
limates (Raven and Axelrod, 1974). Several Pacific NW conifers are
lling 220 (2009) 1787–1796 1795

also known to grow as well or better in climates not commonly
encountered in their home range (Waring, 2000; Waring et al.,
2008). In New Zealand and in South America, some species such
as lodgepole pine have escaped to invade national parks, as a result
of being much better adapted to current temperatures than other
endemic species (Hawkins and Sweet, 1989).

If the climate were gradually to shift to one less favorable for a
native species, we would expect a hybrid model to predict constric-
tions on a species’ range in a consistent manner. The 3-PG model,
parameterized for Douglas-fir, will, under such circumstances, also
predict a reduction in LAI and growth efficiency (NPP produced per
unit of absorbed light). Remote sensing techniques are available to
confirm reductions in LAI and to identify areas where reductions
in growth efficiency are associated with major outbreaks of fire,
disease, and insects (Mildrexler et al., 2006).
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