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Abstract There has been a recent trend in genetic studies

of wild populations where researchers have changed their

sampling schemes from sampling pre-defined populations

to sampling individuals uniformly across landscapes. This

reflects the fact that many species under study are contin-

uously distributed rather than clumped into obvious

‘‘populations’’. Once individual samples are collected,

many landscape genetic studies use clustering algorithms

and multilocus genetic data to group samples into sub-

populations. After clusters are derived, landscape features

that may be acting as barriers are examined and described.

In theory, if populations were evenly sampled, this course

of action should reliably identify population structure.

However, genetic gradients and irregularly collected sam-

ples may impact the composition and location of clusters.

We built genetic models where individual genotypes were

either randomly distributed across a landscape or contained

gradients created by neighbor mating for multiple genera-

tions. We investigated the influence of six different

sampling protocols on population clustering using program

STRUCTURE, the most commonly used model-based

clustering method for multilocus genotype data. For mod-

els where individuals (and their alleles) were randomly

distributed across a landscape, STRUCTURE correctly

predicted that only one population was being sampled.

However, when gradients created by neighbor mating

existed, STRUCTURE detected multiple, but different

numbers of clusters, depending on sampling protocols. We

recommend testing for fine scale autocorrelation patterns

prior to sample clustering, as the scale of the autocorrelation

appears to influence the results. Further, we recommend that

researchers pay attention to the impacts that sampling may

have on subsequent population and landscape genetic

results.

Keywords Landscape genetics � Microsatellite �
Population structure � Sample design � Sampling

Introduction

Within continuously distributed populations, mating with

proximal individuals (hereafter neighbor mating) will lead

to local patterns of genetic autocorrelation producing gra-

dients across a landscape and isolation-by-distance patterns

(Kimura and Weiss 1964; Malecot 1973; Morton 1973,

Sokal and Oden 1978a,b; Barbujani 1987). Neighbor

mating will lead to patterns of close relatedness at fine

scales and, conversely, larger gradients of change in gene

frequencies at larger scales. Additionally, in natural pop-

ulations, habitat fragmentation and the presence of

isolating barriers may separate populations into discrete

groups which gradually drift apart and evolve indepen-

dently. Because these two phenomena (neighbor mating

and isolation by barriers) occur simultaneously within

populations, interpretation problems can arise when sam-

ples from an isolation by distance gradient are grouped and

compared (Manel et al. 2003; Musiani et al. 2007); inap-

propriate grouping can lead to incorrect conclusions as to

the presence, location, and nature of putative barriers.

Landscape genetics has been described as the amal-

gamation of population genetics and landscape ecology
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(Manel et al. 2003; Holderegger and Wagner 2006). The

major theme of this field has been to understand how

landscape features influence spatial structure either by

examining predefined groups of samples, or using cluster-

ing programs with spatially references samples that have

associated multilocus data to identify populations.

Although other landscape genetic approaches exist (e. g.

Double et al. 2005; Cushman et al. 2006; Storfer et al.

2007), the most common way to conduct individual-based

landscape genetic analyses is to sample individuals dif-

fusely across a landscape, detect discontinuities among

mulitlocus genotypes using various clustering algorithms,

and correlate these discontinuities with landscape features

(e.g, Piertney et al. 1998; Manel et al. 2003). The recent

increase in published papers that use a landscape genetics

approach (Holderegger and Wagner 2006) likely reflects

two facts: first many natural populations are not clumped

into well defined spatially obvious populations and instead

are more continuously distributed across a landscape and,

second, the wealth of highly variable molecular markers

available for many species now provides sufficient power

to use a range of clustering methods (Barbujani and Sokal

1989; Bertorelle and Barbujani 1995; Epperson and Li

1996; Pritchard et al. 2000; Corander et al. 2004).

Individual based analyses allow the data to determine

appropriate groupings through the use of clustering statis-

tics: within-data patterns indicate what the optimal number

of clusters is and where the appropriate cluster boundaries

are. As with any clustering algorithm, however, underlying

assumptions are that there are biologically meaningful

clusters to be discovered and that structural elements not

associated with clustering, such as gradients, are small

relative to the elements that contribute to clustering.

The most common tool used to statistically cluster

populations and define population substructure in the field

of molecular ecology is program STRUCTURE (Pritchard

et al. 2000, Falush et al. 2003, 2007), although other

approaches and programs exist (e.g., PARTITION,

Dawson and Belkhir 2001; BAPS2, Corander et al. 2004;

GENELAND, Guillot et al. 2005a, b; 2D LSA in GEN-

ALEX, Double et al. 2005, Peakall and Smouse 2006;

HMRF models, François et al 2006; TESS Chen et al.

2007). Unlike STRUCTURE, some of these impose addi-

tional spatial constraints on the derived solutions.

STRUCTURE assumes that collected samples represent K

populations; and uses a Markov Chain Monte Carlo

(MCMC) method to assign individual multi-locus geno-

types to populations, minimizing Hardy–Weinberg

deviations and linkage disequilibrium. In most cases in the

molecular ecology literature K is unknown, and STRUC-

TURE computes the probability of the clusters for all

values 1 B K B N, where N is an arbitrary integer, gen-

erally\8 in published studies (Cegelski et al. 2003; Natoli

et al. 2005; Jorde et al. 2007). The K with the highest

likelihood is most supported, and samples are subsequently

divided into clusters based on their assignment (Pritchard

et al. 2000; Falush et al. 2003). However, the authors of

STRUCTURE state that this approach ‘‘merely provides an

ad hoc approximation’’ of the number of clusters and that

‘‘the biological interpretation of K may not be straight-

forward’’ (Pritchard et al. 2007).

Using program STRUCTURE to illuminate various

ecological and evolutionary patterns and processes has been

extremely popular in molecular ecology and landscape

genetics; the initial paper describing the method has been

cited 1494 times in scientific journals as of January 11, 2008

and over 400 times in the previous 6 months (ISI Web of

Knowledge v 3.0), far more frequently than any of the other

clustering programs specific to population genetics. These

applications range from evaluating the spread of West Nile

Virus by Culex pipiens mosquitoes (Fonseca et al. 2004), to

understanding the patterns and causes of human population

substructure (Rosenberg et al. 2002, 2003, 2005; Parra

et al. 2003). In the molecular ecology literature, STRUC-

TURE results have been used to better understand the

ecology, habitat structure, and natural and anthropogenic

features that impact substructure and dispersal of many taxa

including marine mammals (Natoli et al. 2005; Jorde et al.

2007), amphibians (Funk et al. 2005), flowering plants

(Tero et al. 2003), and insects (Repaci et al. 2006).

STRUCTURE has also been used to inform management

and conservation decisions. For instance, STRUCTURE has

been used to provide advice on how best to partition the

wolverine (Gulo gulo) harvest in Montana (Cegelski et al.

2003, 2006) and to mitigate the influence of roads and nat-

ural barriers on bobcats (Lynx rufus) in Michigan (Millions

and Swanson 2007) and California (Riley et al. 2006).

There have been several well-constructed evaluations of

STRUCTURE’s ability to correctly delineate the number

of clusters represented in a dataset (Evanno et al. 2005;

Latch et al. 2006; Latch and Rhodes 2006). Latch et al.

(2006), testing subpopulations with no internal structure

and no migration, concluded that STRUCTURE performed

exceedingly well at assigning populations given low levels

of differentiation among groups (i.e., FST = 0.03). How-

ever, they noted that FST must be at least 0.05 to reach a

97% assignment accuracy rate (Latch et al. 2006). Alter-

natively, Evanno et al. (2005) found that in most of their

simulations, representing three different migration models,

the traditional metric of ‘‘log probability of data’’ was not

maximized at the correct number of subpopulations (K).

Evanno et al. (2005) created an ad hoc statistic: DK, the

second order rate of change of the likelihood function with

respect to K. This statistic was able to accurately reflect the

true number of clusters, but because it was a second order

statistic could never evaluate K = 1 (Evanno et al. 2005).
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To date none of the clustering programs (including

STRUCTURE), have been adequately tested in situations

where significant genetic gradients exist within a continu-

ous population (but see Witherspoon et al. 2006 for limited

simulations). Further, there has not been an evaluation on

the effects of irregular sampling on optimal cluster deter-

minations. Rosenberg et al. (2005) tested STRUCTURE

with respect to its performance to detect clusters versus

clines on multi-locus genotype data from human popula-

tions sampled worldwide. They showed via subsampling

methods, that clusters of humans were not a consequence

of uneven sampling along genetic clines as had been sug-

gested by Serre and Paabo (2004). In fact, their data

suggest that less uniformly distributed samples produced

lower ‘‘clusteredness’’ than more uniformly sampled dis-

tributions (Rosenberg et al. 2005). However, while this

demonstrated that the derived clusters were not sampling

artifacts, it does not provide a direct test of the behavior of

STRUCTURE when confronted with continuous gradients

and clumped samples.

Our goal in this paper was to test the influence of

sampling schemes on the behavior of the most commonly

used clustering method in a simulated continuous popula-

tion characterized by gradients associated with neighbor

mating.

Methods

To evaluate the effect of sampling and gradients on pro-

gram STRUCTURE we simulated a population of 10,000

organisms arranged as a square of 100 9 100 territories.

All individuals were given 2 alleles per locus for 15

independent diploid, co-dominant loci, each with 7 alleles

per locus. We assigned alleles to each locus by randomly

drawing individual alleles numbered between 1 and 7 in the

following proportions 1 = 0.38, 2 = 0.24, 3 = 0.17,

4 = 0.08, 5 = 0.05, 6 = 0.04, and 7 = 0.03, similar to

microsatellite allele distributions associated with several

wildlife species that we currently study (e.g., Schwartz

et al. 2003, 2004, 2006). The initial population showed no

spatial autocorrelation.

Neighbor mating can create a gradient across space such

that the population would be structured in an isolation-by-

distance manner. To create the neighbor mating distribu-

tion, all 10,000 individuals mated simultaneously (although

to avoid edge effects, all analyses were conducted on the

interior 2,500 individuals; 50 9 50 territories). We ran-

domly chose one of each individual’s eight neighbors for

them to mate with (organisms at the edges of the surfaces

could only mate with 1 of 5 partners and those in the

corners could only mate with 1 of 3 neighbors). Offspring

received alleles from both parents assuming that all loci

were independent and, at each locus, each allele was chosen

with equal probability. Offspring replaced the individual

causing full population turnover each generation. Since

each individual produced 1 offspring, population size was

constant. We initially ran this procedure for 20 generations

to produce gradients.

We were interested in the effects of sampling schemes

on population clustering when the population was ran-

domly mating and when there was an underlying neighbor

mating scheme. Therefore, we established a series of six

different sampling schemes reflective of how samples are

collected in the conservation genetics and molecular

ecology literature (Fig. 1a–f). The sampling schemes used

were as follows: (A) Trapper sampling—360 individual

samples were drawn randomly across the entire simulated

landscape (2,500 available individuals). (B) Research

sampling—360 individuals were drawn in 10 clusters of

36, which is similar to sampling schemes where researchers

collect most, or all individuals, from a small portion of the

landscape and compare these samples to other landscape

patches (e.g., many small mammal trapping grid studies

such as Mossman and Waser 2001, Burton et al. 2002). (C)

Corner sampling—similar to research sampling, two dis-

tinct areas in a landscape are compared to estimate gene

flow or substructure. However, with corner sampling only a

subset of individuals are captured within each sampling

area. This type of sampling is common with ungulates,

marine fish, and carnivores (e.g., Pardini et al. 2001; Sch-

wartz et al. 2006; Hicks et al. 2007). (D) Line transect

sampling—10 equally spaced lines of 36 individuals were

sampled following the study design of many small mam-

mal, forest carnivore, and plant studies (e.g., Gamache

et al. 2003). (E) Multi-generation trapper sampling—120

individuals were sampled in generations t18–t20 for a total

of 360 individuals. Studies of rare carnivores often require

multiple generations of trapper samples to accumulate to

estimate gene flow. Examples of this type of sampling

occur in Cegelski et al. (2003). (F) Mixed sampling—this

is probably the most common type of sampling for carni-

vores and marine mammals, where samples are obtained

from hunters, harvesters, and trappers, and through

research effort (e.g., Schwartz et al. 2003). Here we have

one block of 36 individuals (6 9 6 cells in the simulation)

collected in one generation (t18) and 324 individuals cap-

tured diffusely across the study area and over multiple

generations (t18–t20).

For each of the six sampling schemes we evaluated

STRUCTURE at t0 (random mating) and at t20 (or t18–t20

for Multi-generation trapper sampling and Mixed sam-

pling) when there was an underlying neighbor mating

scheme. We chose those STRUCTURE parameters most

commonly used in the literature, recommended by the

manual, and used in other STRUCTURE evaluations
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(Falush et al. 2003; Evanno et al. 2005; Pritchard et al.

2007). Thus, we chose the admixture model and the option

of having allele frequencies correlated between populations

(recommended by Falush et al. 2003) for detecting subtle

population substructure. We used a burn-in period of

10,000, consistent with simulations conducted by Evanno

et al. (2005). We then ran each iteration for 500,000

MCMC repetitions. It has been reported that different

iterations can produce different likelihood values (Evanno

et al. 2005), thus for each of the 12 data sets we conducted

20 independent iterations (similar to Evanno et al. 2005) in

order to quantify the variation in log-likelihood for each K.

All iterations were tested for K = 1–7, a common set of K

used in the published literature.
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Fig. 1 Schematic of the sampling schemes used in this exercise.

These schemes were established to mimic real sampling schemes used

in the published literature. The colored squares represent the clusters

that STRUCTURE assigned individuals (based on maximum Q per

individual) for the iteration with the best supported K per sampling

scheme in generation t20. The values of the X and Y axis are cell

references in our 50 9 50 grid. In sampling schemes 1E and 1F some

points represent more than one sample, as samples were drawn over

multiple generations
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The most supported K maximized LnP(D) (also called

L(K) in Evanno et al. 2005), which is the log-likelihood of

the data at each step of the MCMC minus half the variance

averaged across the 20 iterations. Additionally, we tested

Evanno et al.’s (2005) ad hoc test statistic DK. To assess

the spatial arrangement of the derived clusters, we color-

coded the location of all samples by cluster for each

sampling scheme; for this assessment, for each of the six

sampling schemes we chose the iteration with the highest

likelihood to graph. We also examined the estimated

membership fractions (Q) for each of the most supported

simulations. Specifically, we calculated the random

expectation of Q if membership was equally divided; the

mean, median, max and min Q; and the index ‘‘clustered-

ness’’ (see Rosenberg et al. 2005).

We wanted to determine if the patterns of local auto-

correlation created by our neighbor mating simulations

were realistic. We therefore compared the spatial autocor-

relation patterns associated with simulated neighbor mating

to those found in a large-scale intensive sample of indi-

vidual black bears (Ursus americanus) on a grid established

in North Idaho (data described in detail in Schwartz et al.

2006, Cushman et al. 2006). This dataset was used because

in the bear work we did not sample based on groups, but

rather evenly at 1.6 km intervals across two mountain

ranges (3,000 km2 area). The black bear dataset consisted

of a 9-locus microsatellite genotype from 146 individuals

sampled using non-invasive genetic snares. Landscape

resistance modeling using these data suggested that genetic

structure was primarily related to gradients of landcover and

elevation, although distance was also a significant factor

(Cushman et al. 2006). Spatial autocorrelation analyses

were conducted using GenAlEx Version 6 (Peakall and

Smouse 2006) with even distance classes of size 2 (25

classes for the simulated data and 32 classes for the bear

data), 99 permutations and 100 bootstraps to produce con-

fidence intervals around the null hypothesis of a random

distribution and around the correlation coefficient.

In the cases of research and corner sampling, where

samples were spatially clumped, we compared traditional

FST estimates between each of the sampled blocks (not the

STRUCTURE derived FST results) in generation t20 using

program FSTAT 2.9.3.2 (Goudet 1995). Finally, we

explored the influence that the number of generations had

on our results by running additional simulations for 50, 100,

and 250 generations and comparing autocorrelation plots.

Results

For each of the random mating simulations (t0) the average

LnP(D) over 20 iterations was maximized at K = 1 indi-

cating that only one cluster existed (Table 1). Alternatively,

the neighbor mating simulations supported anywhere from 5

to 7 clusters, depending on the sampling scheme (Fig. 2a–f,

Table 1). The trapper sampling showed a near linear increase

in LnP(D) from K = 1 to K = 5 before declining (Fig. 2a),

whereas the multi-generation trapper sampling and line

transect sampling showed an increase in LnP(D) from K = 1

to K = 6 before declining (Fig. 2d, e). The research sam-

pling and corner sampling showed an increase in LnP(D)

from K = 1–7 (Fig. 2b, c). The most complex sampling

scheme, the mixed sampling showed an increase to K = 4

before declining and subsequently increasing. In all cases,

mean FST derived by STRUCTURE among clusters was

large ([0.058; Table 2).

We color coded individuals based on the cluster to

which they were assigned, given the most supported

STRUCTURE iteration per sampling scheme in the most

supported K, after neighbor mating occurred (Fig. 1). No

obvious spatial clustering was evident for clusters delin-

eated by trapper, corner, line transect and multi-generation

sampling. However, for the smaller sample blocks in

research and mixed sampling, genetic and spatial clusters

were highly correlated (v2 = 1248.99, 63 d.f., P \ 0.0001

for the Research sampling, comparing cluster assigned

individuals in blocks to random expectations; Fig. 1b).

The DK method (Evanno et al. 2005) of evaluating the

number of clusters suggested K = 2 for research sampling,

corner sampling, line transect sampling and mixed sam-

pling (Fig. 3; K = 2 is the lowest possible number of

clusters definable using this method). For the other sam-

pling patterns, trapper and multi-generation trapper

sampling, K = 3 and K = 4 were most supported,

respectively (Fig. 3a and e, Table 1).

We were interested in determining if there were signals in

the estimated membership fractions (Q) of each individual

that could inform us as to the underlying neighbor mating

distribution. Mean Q and clusteredness, which are highly

correlated statistics (0.9 in this study), varied substantially

between sampling schemes, despite the underlying surface

Table 1 Most supported K value from program STRUCTURE,

suggesting the number of clusters present in the dataset

Sampling

scheme

Random

mating

Neighbor

mating

LnP(D) criteria

Neighbor

mating

DK criteria

Trapper 1 5 3

Research 1 7 2

Corner 1 7 2

Line transect 1 6 2

Multi-generation 1 6 4

Mixed 1 7a 2

a In the mixed sampling there was a peak at K = 4 and K = 7. Many

researchers would have selected K = 4
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being constant (Range of mean Q = 0.333–0.741; Table 3).

For the most supported K, Mean Q was always substantially

larger than the random expectation (Table 3).

For the two sampling schemes where samples were

collected in discrete blocks (Corner sampling and research

sampling) we calculated traditional F-statistics among

sample blocks (not STRUCTURE delineated clusters) for

the neighbor mating simulations. FST was 0.010 (95% CI

0.006–0.014) for the Corner sampling and 0.086 (95% CI

0.071–0.101) for the research sampling; FIS was 0.151

(95% CI 0.130–0.174) for the corner sampling and 0.101

(95% CI: 0.084–0.119) for the research sampling. Pairwise

FST ranged from 0.048 to 0.136 between blocks in the

research sampling scheme. The correlation between genetic

distance and geographic distance was positive (Rxy = 0.118),

but the relationship was not significant (Mantel test:

Z = 179.88, P = 0.24).

There was no spatial autocorrelation for the trapper

sampling (i.e., random sampling) in generation t0, as

expected (Fig. 4a). However, after running these data for 20

generations under our neighbor mating scheme, significant

spatial autocorrelation could be detected up to 6 cells away

a b c

d e f

Fig. 2 Plot of the STRUCTURE simulations for K = 1–7 after

neighbor mating for 18–20 generations (depending on the simulation;

see text for details). K is the number of subpopulations evaluated

by program STRUCTURE. The error bars are the standard error

across the 20 independent iterations of STRUCTURE. The least

negative LnP(D) value is the grouping most supported by program

STRUCTURE

Table 2 Mean FST per group for each of the most supported number of clusters generated by STRUCTURE after 20 generations of neighbor

mating (18–20 generations in the multi-generation trapping and mixed sampling schemes)

Cluster Trapper (K = 5) Research (K = 7) Corner (K = 7) Line transect (K = 6) Multi-generation (K = 6) Mixed (K = 7)

1 0.074 0.120 0.083 0.070 0.059 0.080

2 0.068 0.126 0.090 0.070 0.058 0.085

3 0.076 0.108 0.094 0.070 0.060 0.083

4 0.072 0.107 0.088 0.070 0.061 0.086

5 0.067 0.133 0.087 0.071 0.058 0.081

6 – 0.113 0.088 0.070 0.059 0.085

7 – 0.130 0.091 – – 0.087
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(first 3 bins; Fig. 4b). Similarly, our black bear data showed

a steady decline in spatial autocorrelation for the first 10 km

(first 5 bins), then either no or negative autocorrelation as

distance increased (Fig. 4c). The magnitude of autocorre-

lation was similar between bears (max r = 0.19, 95% CI

Lower = 0.15, Upper = 0.23) and the simulated data (max

r = 0.27, 95% Lower = 0.25, CI Upper = 0.29) suggest-

ing that our simulations were at least plausible.

Increasing the number of generations produced marginal

increases in spatial autocorrelation as well as concomitant

increases in the distance at which spatial autocorrelation

was significant (Fig. 5). However, these increases were

small and followed an asymptotic relationship (Fig. 6)

suggesting that our results were relatively insensitive to the

number generations in which neighbor mating occurred

prior to applying STRUCTURE.

Discussion

Before discussing the results, it should be noted that the

STRUCTURE instruction manual states that, ‘‘Isolation by

a b c

d e f

Fig. 3 Results of the STRUCTURE simulations using the Evanno DK method to evaluate the most supported grouping (K)

Table 3 Summary statistics of the estimated membership fractions (Q) across 20 iterations of each sampling scheme

Rand exp. Mean Q Median Q Max Q Min Q Clusteredness

Trapper 0.200 0.567 0.556 0.917 0.245 0.492

Research 0.143 0.741 0.799 0.967 0.207 0.721

Corner 0.143 0.596 0.575 0.939 0.224 0.568

Line transect 0.167 0.333 0.272 0.912 0.195 0.253

Multi-generation 0.167 0.452 0.373 0.920 0.205 0.412

Mixed 0.250 0.453 0.419 0.882 0.270 0.317

Random exp. is 1/K and clusteredness is a measure of the averaged clumping of individuals, which is the extent that individuals are estimated to

belong to 1 cluster versus a combination of clusters (following the formula in Rosenberg et al. 2005)
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Fig. 4 Spatial autocorrelation

correlogram plots of (a) the

trapper sampling (random

model) at t0, (b) the trapper

sampling at t20, after the

neighbor mating gradient was

established, and (c) the black

bears (Ursus americanus)

dataset from North Idaho (9

locus microsatellite dataset).

The y axis is the genetic

correlation coefficient (r) as

computed by Peakall and

Smouse (2006) as a function of

distance. The 95% confidence

interval (dashed lines) around

the null hypothesis of a random

distribution and the

bootstrapped 95% confidence

error bars around r are also

displayed
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distance refers to the idea that individuals may be spatially

distributed across some region, with local dispersal….The

underlying STRUCTURE model is not well suited to data

from this kind of scenario….In such situations, interpreting

the results may be challenging’’ (Pritchard et al. 2007).

Thus, while Pritchard et al. (2007) speak to the limits of

their program, their advice appears to be ignored in many

landscape genetic papers. Specifically, the practice of using

STRUCTURE to determine the best supported K presup-

poses no a priori knowledge as to what factors (e.g.,

distance, ecological barriers, etc.) structure populations.

Thus, although STRUCTURE and other similar programs

allow priors to be incorporated to the analysis, due to the

manner in which they are commonly used, they seldom are.

Our principle findings are consistent with Pritchard

et al.’s (2007) advice. STRUCTURE does identify existing

structural patterns in our data. For example, consider

Fig. 1b showing the Research sampling where STRUC-

TURE suggests that there are seven populations, when in

fact there is one population with neighbor mating forming

local areas of relatedness. Because the local areas of

relatedness were consistent with sampling patterns, there

was a high degree of association between spatial blocks

and STRUCTURE clusters. This is a valid analysis of the

existing population sub-structure, but without additional

information interpretation is problematic.

We might, for example, believe that we were observing

a highly fragmented population consisting of many largely

independent and well defined subpopulations, but with

some level low levels of migration. Confidence in our

result would be further bolstered by the relatively large

pairwise FST results associated with the defined clusters.

These patterns, in turn, could be correlated with various

putative barriers such as roads, valleys, high ridges, and

human settlements leading to the telling of a variety of

compelling, but erroneous, stories. Further, consider the 37

samples identified by green blocks in Fig. 1b. Thirty-two

green blocks are found in one cluster at the top, center of

the simulated landscape. The remainder are scattered

throughout the plot. We could claim that the top center

block is an isolated population that produces a few dis-

persers (5 found in 3 other blocks) and maintains its genetic
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variation through low levels of immigration from four

different blocks (producing the yellow, grey, maroon and

blue blocks). If these data were used to inform conservation

decisions, one might allocate scarce resources to the top

center block to bolster productivity or increase

connectivity.

Our simulated neighbor mating, where mating is always

with one of eight nearest neighbors, is only a model.

However, many natural mating structures can and do pro-

duce similar patterns of local autocorrelation, as

demonstrated by our empirical black bear dataset (Fig. 4c).

Patterns of local autocorrelation will lead samples to

appear strongly clustered if sampling occurs at similar or

smaller scales than the autocorrelation. In our simulations,

the Research sampling areas are 6 9 6—small enough that

all organisms sampled in an area are more closely related

than would be expected in a panmictic population (Fig. 4).

Therefore, in the research sampling simulations STRUC-

TURE grouped individuals into areas that made geographic

sense and were visually appealing. However, when sam-

pling areas were larger than the correlogram plot

asymptote, assignment patterns made little intuitive or

geographical sense.

In many field studies that use microsatellite data to

investigate population structure, sample collection is

ad hoc. Samples are frequently obtained from trappers

(Kyle and Strobeck 2002; Cegelski et al. 2003), individual

research efforts (Tallmon et al. 2002), or combinations of

the two (Schwartz et al. 2003). If patterns of local auto-

correlation exist in the population, then divergent spatial

and temporal scales associated with these ad hoc samples

can produce misleading patterns. For example, in our

combined research/trapping simulation (mixed sampling),

the ‘‘research’’ area looks different and unique in an

otherwise pattern-less landscape (Fig. 1f). This, however, is

an artifact of the research area being on the same scale as

the autocorrelation pattern rather than any unique properties

associated with the sampling area.

Our results presented here should be expanded upon

with additional simulations. For example, we did not

increase or decrease the number of loci. Instead we used a

number commonly used in many wildlife and conservation

genetics studies. Additional simulations could also choose

to use higher numbers of bi-allelic markers to simulate

single nucleotide polymorphisms (SNPs) or other types of

genetic markers. Futhermore, sample size and the interac-

tion of sample size with number of loci could be modeled.

We did, however, ensure that our results were not an

artifact of a single realization by running each sampling

scenario for three iterations on two additional neighbor

mating surfaces. In 3 cases (random, line transect, and

multi-generational), the most supported K varied one group

from the reported averages: 6 and 4 for random

(reported = 5); 7 and 6 for line transect (reported = 6) 7

and 5 for multi-generational (reported = 6). In no cases

was K = 1.

Recommendations and conclusions

Based on these simulations, we believe that the practice of

applying STRUCTURE (and likely any other clustering

program) to ad hoc data, finding the most likely K, and

subsequently constructing narratives to explain the derived

patterns could lead to erroneous conclusions regarding the

role of landscape features on genetic structure. Further-

more, implementing management policies based on

incorrect inferences from these patterns could be hazard-

ous. Prior to applying clustering algorithms to samples,

some understandings concerning patterns of within-popu-

lation genetic correlation must be derived. We therefore

recommend that, prior to analyzing population structure,

one determines the patterns of local autocorrelation and

then carefully considers how these patterns may influence

results. This is particularly true when applying powerful

pattern recognition programs like STRUCTURE. Exam-

ining the patterns of local relatedness can be accomplished

using individual based models through commonly applied

autocorrelation analyses, Mantel tests, isolation by distance

plots, or through examining relatedness or kinship (using

CERVUS (Kalinowski et al. 2007) or other similar pro-

grams) between spatially close individuals. Examining

each individual’s estimated proportion of population

membership (Q in program STRUCTURE) over several

iterations, to look for patterns that indicate isolation by

distance is structuring individuals (see Rosenberg et al.

2002), however, does not appear to be completely reliable

given our simulations. In the line transect and mixed

sampling schemes mean Q, median Q, clusteredness, and

the ratio of mean Q to random expectations were all low,

which may serve as a signal that the underlying surface is

due to isolation by distance through neighbor mating.

However, even in these sampling schemes median Q was

nearly twice the random expectation with the maximum Q

being near unity. For research sampling, median Q was

0.799 and clusteredness was 0.721 (Table 3) which, given

the number of loci and sample size would be considered

strong support for clustering (see Rosenberg et al. 2002,

2005).

Determining the presence of local autocorrelation

(likely to confuse clustering programs such as STRUC-

TURE) is not adequately addressed by standard pair-wise

FST tests for isolation by distance between study areas or

groups of samples (Fig. 5). In our simulations and the

Idaho black bear data, spatial autocorrelation occurred at

very fine scales, below the level of the study area. While

FST was significant between research sampling locations,
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and STRUCTURE’s clustering results were visually

compelling, the pairwise FST between the research sam-

pling areas was not significantly related to geographic

distance. Thus, tests for isolation by distance between

study areas would be rejected, erroneously reinforcing the

idea that barriers were leading to the observed structures.

We therefore suggest sampling on a fine-grained grid,

relative to the species life history, and evaluating spatial

autocorrelation within each study area using correlogram

plots similar to Fig. 4.

The effects of spatial autocorrelation on group statistics

are not limited to clustering programs like STRUCTURE.

If local autocorrelation exists, Pairwise FST values will

depend strongly on the relationship between the scale of

the sampling frame and the semivariogram asymptote. If

the sampling scale is smaller than the asymptote, then the

autocorrelation will decrease within-group variance and

reinforce between-group patterns. If larger than the

asymptote, fine-scale autocorrelation will increase within-

group variation thereby decreasing the strength of between

group patterns. For example, in the research sampling,

where the sampling is at a scale equal to the autocorrela-

tion, FST (between group variance) was significantly

different than zero (FST = 0.086), whereas it was much

lower in the Corner sampling (FST = 0.010) where the

sampling was at a scale larger than the local population

autocorrelation.

Lately, there has been a trend to use genetic clustering

programs that impose a geographic constraint on the results

(e.g., BAPS2, Corander et al. 2004; GENELAND, Guillot

et al. 2005a, b; HMRF models, François et al. 2006).

Further simulations should be conducted to determine if

spatial constraints improve clustering results when samples

are drawn unevenly and when autocorrelation patterns

exist.

While other fields of the natural sciences (e.g., ecology,

geology) have focused intensively on study design and the

effect of spatial structure in biasing results (Sokal et al.

1998; Legendre et al. 2002, 2004); we believe the field of

molecular ecology has paid less attention to these sampling

issues. Our simulations demonstrate that sampling can have

a large effect on subsequent results in a common research

situation (isolation by distance and patchy sampling) and

likely have major impacts on the interpretation of data from

wild populations. None of the results from our various

sampling approaches suggest a single biological population,

sampling had strong effects on the number (Figs. 2, 3);

spatial pattern (Fig. 1) and strength of membership

(Table 3), and hence both the assumed reliability of the

clusters and their biological meaning. At times it won’t be

possible to collect samples in a perfect grid pattern, and we

do not suggest that this is strictly required. However, we

recommend that researchers pay more attention to the

impacts that sampling schemes may have on their results,

especially as they examine questions related to substructure.
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