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Introduction

Frequently, ecologists are interested in exploring ecolo-

gical relationships, describing patterns and processes, or

making spatial or temporal predictions. These purposes

often can be addressed by modeling the relationship

between some outcome or response and a set of features

or explanatory variables. Some examples from ecology

include:

• analyzing bioclimatic factors affecting the presence of a
species in the landscape,

• mapping forest types from remotely sensed data,

• predicting forest attributes over large geographic areas,

• identifying suitable wildlife habitat,

• making sense of complex ecological data sets with
hundreds of variables,

• predicting microhabitat affecting fish species
distributions,

• developing screening tests for unwanted plant species,

• monitoring and mapping landcover change through
time,
• using environmental variables to model the distribu-
tion of vegetation alliances,

• assessing biological indicators of environmental factors
affecting fish habitat, and

• identifying fuels characteristics for fire spread models.

Modeling ecological data poses many challenges. The

response as well as the explanatory variables may be

continuous or discrete. The relationships that need to

be deciphered are often nonlinear and involve complex

interactions between explanatory variables. Missing

values for both explanatory and response variables are

not uncommon, and outliers almost always exist. In

addition, ecological problems usually demand methods

that are both easy to implement and easy to interpret.

Frequently, many different statistical tools are employed

to handle unique problems posed by the various scenar-

ios. This diverse set of tools might include multiple or

logistic regression, log linear models, analysis of var-

iance, survival models, and the list continues.

Classification and regression trees, however, offer a sin-

gle tool to work with all these challenges. This article
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describes classification and regression trees in general,
the major concepts guiding their construction, some of
the many issues a modeler may face in their use, and,
finally, recent extensions to their methodology. The
intent of the article is to simply familiarize the reader
with the terminology and general concepts behind this
set of tools.
Overview of the Fitting Process

Classification and regression trees are intuitive methods,
often described in graphical or biological terms. A tree is
typically shown growing upside down, beginning at its
root. An observation passes down the tree through a series
of splits, or nodes, at which a decision is made as to which
direction to proceed based on the value of one of the
explanatory variables. Ultimately, a terminal node or
leaf is reached and predicted response is given.

Trees partition the explanatory variables into a series
of boxes (the leaves) that contain the most homogeneous
collection of outcomes possible. Creating splits is analo-
gous to variable selection in regression. Trees are
typically fit via binary recursive partitioning. The term
binary refers to the fact that the parent node will always
be split into exactly two child nodes. The term recursive
is used to indicate that each child node will, in turn,
become a parent node, unless it is a terminal node. To
start with, a single split is made using one explanatory
variable. The variable and the location of the split are
chosen to minimize the impurity of the node at that point.
There are many ways to minimize the impurity of each
node. These are known as splitting rules. Each of the two
regions that result from the initial split are then split
themselves according to the same criteria, and the tree
continues to grow until it is no longer possible to create
additional splits or the process is stopped by some user--
defined criteria. The tree may then be reduced in size
using a process known as pruning.

Assigning a predicted value to the terminal nodes can
be done in a number of ways. Typically, in classification
trees, values at the terminal nodes are assigned the class
which represents the plurality of cases in that node. The
rules of class assignment can be altered based on a cost
function, to adjust for the consequences of making a mis-
take for certain classes, or to compensate for unequal
sampling of classes. In the case of regression trees, values
at the terminal node are assigned using the mean of cases
in that node.

As an example, consider the problem of modeling the
presence or absence of the tree species Pseudotsuga menzie-

sii (Douglas fir) in the mountains of northern Utah using
only information about elevation (ELEV) and aspect
(ASP), where data take the form:
Figure 1 illustrates a simple classification tree for this
problem. Beginning with all 1544 observations at the root,
the 393 cases that fall below an elevation of 2202 m are
classified as having no Douglas fir. If elevation is greater
than 2202 m, as is the case for 1151 observations, then
more information is needed. The next split is made at an
elevation of 2954 m. These very-high-elevation observa-
tions above the cutoff are also classified as having no
Douglas fir. Turning now to the remaining 928 moder-
ate-elevation observations, yet more fine-tuning is
needed. The third split occurs at an elevation of 2444 m.
The 622 moderately high elevation cases above 2444 m
are classified as having Douglas fir present. The final split
uses aspect to determine if Douglas fir is likely to grow on
the remaining 306 moderately low sites, predicting
Douglas fir to be present on the cooler, wetter northerly
and easterly slopes, and absent on the hotter, dryer
exposures.

At a minimum, construction of a tree involves making
choices about three major issues. The first choice is how
splits are to be made: which explanatory variables will be
used and where the split will be imposed. These are defined
by splitting rules. The second choice involves determining
appropriate tree size, generally using a pruning process.
The third choice is to determine how application-specific
costs should be incorporated. This might involve decisions
about assigning varying misclassification costs and or
accounting for the cost of model complexity.
Splitting Rules

Binary recursive partitioning, as described above, applies to
the fitting of both classification and regression trees.
However, the criteria for minimizing node impurity (i.e.,
maximizing homogeneity) are different for the two methods.
For Regression Trees

For regression trees, two common impurity measures are:

Least squares. This method is similar to minimizing
least squares in a linear model. Splits are chosen to mini-
mize the sum of squared error between the observation
and the mean in each node.
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Figure 1 A simple example of a classification tree describing the relationship between presence/absence of P. menziesii and
explanatory factors of elevation (ELEV) and aspect (ASP) in the mountains of northern Utah. Thin-lined boxes indicate a node from which

a split emerges. Thick-lined boxes indicate a terminal node.
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Least absolute deviations. This method minimizes the
mean absolute deviation from the median within a node.

The advantage of this over least squares is that it is not as
sensitive to outliers and provides a more robust model.
The disadvantage is in insensitivity when dealing with
data sets containing a large proportion of zeros.
For Classification Trees

There are many criteria by which node impurity is mini-
mized in a classification problem, but four commonly
used metrics include:

Misclassification error. The misclassification error is
simply the proportion of observations in the node that
are not members of the majority class in that node.

Gini index. Suppose there are a total of K classes, each
indexed by k. Let p̂mk be the proportion of class k observa-
tions in node m. The Gini index can then be written as
PK

k¼1 p̂mk 1 – p̂mk

� �
. This measure is frequently used in
practice, and is more sensitive than the misclassification
error to changes in node probability.

Entropy index. Also called the cross-entropy or deviance
measure of impurity, the entropy index can be written
PK

k¼1 p̂mklog p̂mk . This too is more sensitive than misclas-

sification error to changes in node probability.
Twoing. Designed for multiclass problems, this

approach favors separation between classes rather than
node heterogeneity. Every multiclass split is treated as a
binary problem. Splits that keep related classes together
are favored. The approach offers the advantage of reveal-
ing similarities between classes and can be applied to
ordered classes as well.
Pruning

A tree can be grown to be quite large, almost to the point
where it fits the training data perfectly, that is, sometimes
having just one observation in each leaf. However, this



Author's personal copy
Ecological Informatics | Classification and Regression Trees 585
results in overfitting and poor predictions on independent
test sets. A tree may also be constructed that is too small
and does not extract all the useful relationships that exist.
Appropriate tree size can be determined in a number of
ways. One way is to set a threshold for the reduction in
impurity measure, below which no split will be made. A
preferred approach is to grow an overly large tree until
some minimum node size is reached. Then prune the tree
back to an optimal size. Optimal size can be determined
using an independent test set or cross-validation
(described below). In either case, what results is a tree of
optimal size accompanied by an independent measure of
its error rate.
Independent Test Set

If the sample size is sufficiently large, the data can be
divided into two subsets randomly, namely, one for train-
ing and other for testing. Defining sufficiently large is
problem specific, but one rule of thumb in classification
problems is to allow a minimum of 200 observations for a
binary classification model, with an additional 100 obser-
vations for each additional class. An overly large tree is
grown on the training data. Then, using the test set, error
rates are calculated for the full tree as well as all smaller
subtrees (i.e., trees having fewer terminal nodes than the
full tree). Error rates for classification trees are typically
the overall misclassification rate, while for regression
problems, mean squared error or mean absolute deviation
from the median are the criteria used to rank trees of
different size. The subtree with the smallest error rate
based on the independent test set is then chosen as the
optimal tree.
Cross-Validation

If the sample size is not large, it is necessary to retain all
the data for training purposes. However, pruning and
testing must be done using independent data. A way
around the dilemma is through v-fold cross-validation.
Here, all the data are used to fit an initial overly large
tree. The data is then divided into (usually) v¼ 10 sub-
groups, and 10 separate models fit. The first model uses
subgroups 1–9 for training, and subgroup 10 for testing.
The second model uses groups 1–8 and 10 for training,
and group 9 for testing, and so on. In all cases, an inde-
pendent test subgroup is available. These 10 test
subgroups are then combined to give independent error
rates for the initial overly large tree which was fit using all
the data. Pruning of this initial tree proceeds as it did in
the case of the independent test set, where error rates are
calculated for the full tree as well as all smaller subtrees.
The subtree with the smallest error rate based on the
independent test set is then chosen as the optimal tree.
Questions often arise as to whether one should use an
independent test set or cross-validated estimates of error
rates. One thing to consider is that cross-validated error
rates are based on models built with only 90% of the
data. Consequently, they will not be as good as a model
built with all of the data and will consistently result in
slightly higher error rates, providing the modeler a con-
servative independent estimate of error. However, in
regression tree applications in particular, this overesti-
mate of error can be substantially higher than the truth,
giving more incentive to the modeler to find an inde-
pendent test set.
1-SE Rule

Under both the testing and cross-validation sections
above, tree size was based on the minimum error rate.
A slight modification on this strategy is often used where
the smallest tree size is selected such that the error rate
is within one standard error of the minimum. This
results in more parsimonious trees, with little sacrifice
in error.
Costs

The notion of costs is interlaced with the issues of split-
ting criteria and pruning, and is used in a number of ways
in fitting and assessing classification trees.
Costs of Explanatory Variables and
Misclassification

In many applications, some explanatory variables are
much more expensive to collect or process than others.
Preference may be given to choosing less expensive
explanatory variables in the splitting process by assigning
costs or scalings to be applied when considering splits.
This way, the improvement made by splitting on a parti-
cular variable is downweighted by its cost in determining
the final split.

Other times in practice, the consequences are greater
for misclassifying one class over another. Therefore, it is
possible to give preference for correctly classifying cer-
tain classes, or even assigning specific costs to how an
observation is misclassified, that is, which wrong class it
falls in.
Cost of Tree Complexity

As discussed in the pruning section, an overly large tree can
easily be grown to some user-defined minimum node size.
Often, though, the final tree selected through tree pruning
is substantially smaller than the original overly large tree. In
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the case of regression trees, the final tree may be 10 times
smaller. This result can be a substantial amount of wasted
computing time. Consequently, one can specify a penalty
for cost complexity which is equal to the resubstitution
error rate (error obtained using just the training data) plus
some penalty parameter multiplied by the number of
nodes. A very large tree will have a low misclassification
rate but high penalty, while a small tree will have a high
misclassification but low penalty. Cost complexity can be
used to reduce the size of the initial overly large tree
grown prior to pruning, which can greatly improve com-
putational efficiency, particularly when cross-validation
is being used.

One process that combines the cross-validation and
cost complexity ideas is to generate a sequence of trees
of increasing size by gradually decreasing the penalty
parameter in the cost-complexity approach. Then, tenfold
cross-validation is applied to this relatively small set of
trees to choose the smallest tree whose error falls within
one standard error of the minimum. Because each time a
tenfold cross-validation procedure is run a modeler might
see a different tree size chosen, multiple (like 50) tenfold
processes may be run, with the most frequently appearing
tree size chosen.
Additional Tree-Fitting Issues

Although the main issues of fitting classification and
regression trees revolve around splitting, pruning, and
costs, numerous other details remain. Several of these
are discussed below.
Heteroscedasticity

In the case of regression trees, heteroscedasticity, or the
tendency for higher-value responses to have more varia-
tion, can be problematic. Because regression trees seek to
minimize within-node impurity, there will be a tendency
to split nodes with high variance. Yet, the observations
within that node may, in fact, belong together. The
remedy is to apply variance-stabilizing transformations
to the response as one would do in a linear regression
problem. Although regression trees are invariant to
monotonic transformations on explanatory variables,
transformations like a natural log or square root may be
appropriate for the response variable.
Linear Structure

Classification and regression trees are not particularly
useful when it comes to deciphering linear relationships,
having no choice but to produce a long line of splits on
the same variable. If the modeler suspects strong linear
relationships, small trees can first be fit to the data to
partition it into a few more similar groups, and then
standard parametric models can be run on these groups.
Another alternative available in some software packages
is creating linear combinations of the explanatory vari-
ables, then entering these as new explanatory variables
for the tree.
Competitors and Surrogates

It should be noted that when selecting splits, classification
and regression trees may track the competitive splits at
each decision point along the way. A competitive split is
one that results in nearly as pure a node as the chosen
split. Classification and regression trees may also keep
track of surrogate variables. Use of a surrogate variable
at a given split results in a similar node impurity measure
(as would a competitor) but also mimics the chosen split
itself in terms of which and how many observations go
which way in the split.
Missing Values

As mentioned before, one of the advantages of classifica-
tion and regression trees is their ability to accommodate
missing values. If a response variable is missing, that
observation can be excluded from the analysis, or, in the
case of classification problem, treated as a new class (e.g.,
missing) to identify any potential patterns in the loss of
information. If explanatory variables are missing, trees
can use surrogate variables in their place to determine
the split. Alternatively, an observation can be passed to
the next node using a variable that is not missing for that
observation.
Observation Weights

There are a number of instances where it might be desir-
able to give more weight to certain observations in the
training set. Some examples include if the training sample
has a disproportionate number of cases in certain classes
or if the data were collected under a stratified design with
one strata having greater or lesser sampling intensity. In
these cases, observations can be weighted to reflect the
importance each should bear.
Variable Importance

The importance of individual explanatory variables can
be determined by measuring the proportion of variability
accounted for by splits associated with each explanatory
variable. Alternatively, one may address variable
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importance by determining the effect of excluding vari-
ables in turn and by assessing the resulting predictive
accuracy of the resulting models.
Model Assessment

While a single measure of error may be used to pick the
optimum tree size, no single measure of error can capture
the adequacy of the model for often diverse applications.
Consequently, several measures of error may need to be
reported on the final model. In classification problems,
these may include the misclassification rate and kappa.
Kappa measures the proportion of correctly classified
units after accounting for the probability of chance
agreement. In classification problems involving only a
zero–one response, additional measures include
sensitivity, specificity, receiver operating characteristic
(ROC) curves with associated area under the curve
(AUC). In regression problems measures of interest
might include correlation coefficients, root mean squared
error, average absolute error, bias, and the list continues.
The literature on error assessment is vast. The point here
is that an optimal tree size may be determined using one
criterion, but often it is necessary to report several mea-
sures to assess the applicability of the model for different
applications.
Enhancements through Ensemble
Methods

While classification and regression trees are powerful
methods in and of themselves, much work has been
done in the data mining and machine learning fields to
improve the predictive ability of these tools by combining
separate tree models into what is often called a committee
of experts, or ensemble. Following is a very brief descrip-
tion of some of these newer techniques using classification
and regression trees as building blocks.
Bagging and Boosting

Two simple enhancements to tree-based methods are
called bagging and boosting. These iterative schemes
each produce a committee of expert tree models by
resampling with replacement from the initial data set.
Afterward, the expert tree models are averaged using a
plurality voting scheme if the response is discrete, or
simple averaging if the response is continuous. The dif-
ference between bagging and boosting is the way in which
data are resampled. In the former, all observations have
equal probability of entering the next bootstrap sample; in
the latter, problematic observations (i.e., observations that
have been frequently misclassified) have a higher prob-
ability of selection.
Random Forests

Another recent ensemble method is called ‘random for-
ests’. In this technique, a bootstrap sample of the training
data is chosen. At the root node, a small random sample of
explanatory variables is selected and the best split made
using that limited set of variables. At each subsequent
node, another small random sample of the explanatory
variables is chosen, and the best split made. The tree
continues to be grown in this fashion until it reaches
the largest possible size, and is left unpruned. The
whole process, starting with a new bootstrap sample, is
repeated a large number of times. As in committee mod-
els, the final prediction is a (weighted) plurality vote or
average from prediction of all the trees in the collection.

Stochastic Gradient Boosting

Yet another ensemble method is known as stochastic
gradient boosting. In this technique, many small classifi-
cation or regression trees are built sequentially from
residual-like measures from the previous tree. At each
iteration, a tree is built from a random subsample of the
data set (selected without replacement), producing an
incremental improvement in the model. Ultimately, all
the small trees are stacked together as a weighted sum of
terms. The overall model accuracy gets progressively
better with each additional term.
Software

A wide variety of software packages are available for
implementing classification and regression trees. The R
part library and affiliated packages, part of the R public
domain statistical software, is widely used. Popular
commercial packages include Salford Systems CART,
Rulequest’s See5 and Cubist, tree-based models in S-Plus,
to name a few.

See also: Data Mining.
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Introduction

Short-term dynamics of the global carbon cycle is closely
related to the concept of climate system: the totality of
the atmosphere, hydrosphere, biosphere, and their
interactions. Human activities have been substantially
increasing the concentrations of carbon dioxide and
other greenhouse gases in the atmosphere and thus
inducing potentially adverse changes in the climate
system. This tendency has become of public concern that
led to the United Nations Framework Convention on
Climate Change (UNFCCC). This convention suggests
protection of carbon pools, enhancement of carbon sinks,
and reduction of emissions from carbon sources.
Carbon Pools

Carbon pool (or reservoir, or storage) is a system that has
the capacity to accumulate or release carbon. The abso-
lute quantity of carbon held within at a specified time is
called carbon stock. Transfer of carbon from one carbon
pool to another is called carbon flux. Transfer from the
atmosphere to any other carbon pool is said to be carbon
sequestration. The addition of carbon to a pool is referred
to as uptake.
Carbon Sink

Carbon sink is a process or mechanism that removes
carbon dioxide from the atmosphere. A given carbon
pool can be a sink, during a given time interval, if carbon
inflow exceeds carbon outflow.
Carbon Source

Carbon source is a process or mechanism that releases
carbon dioxide to the atmosphere. A given carbon pool
can be a source, during a given time interval, if carbon
outflow exceeds carbon inflow.
Carbon Budget

The estimates of carbon stocks and carbon fluxes form the
carbon budget, which is normally used as a kind of diag-
nostic tool in the studies of the short-term dynamics of the
global carbon cycle.
Carbon Budget Components

The components of the global carbon budget may be
subdivided into fossil and dynamic categories (Figure 1).
Fossil Components

The fossil components are naturally inert. The stock of
fossil organic carbon and mineral carbonates (estimated at
65.5� 106 PgC) is relatively constant and would not
dramatically change within a century. The lithospheric
part of the carbon cycle is very slow; all the fluxes are less
than 1 PgC yr�1. For example, volcanic emissions are
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