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Abstract. Habitat classification models (HCMs) are invaluable tools for species
conservation, land-use planning, reserve design, and metapopulation assessments, particularly
at broad spatial scales. However, species occurrence data are often lacking and typically
limited to presence points at broad scales. This lack of absence data precludes the use of many
statistical techniques for HCMs. One option is to generate pseudo-absence points so that the
many available statistical modeling tools can be used. Traditional techniques generate pseudo-
absence points at random across broadly defined species ranges, often failing to include
biological knowledge concerning the species–habitat relationship. We incorporated biological
knowledge of the species–habitat relationship into pseudo-absence points by creating habitat
envelopes that constrain the region from which points were randomly selected. We define a
habitat envelope as an ecological representation of a species, or species feature’s (e.g., nest)
observed distribution (i.e., realized niche) based on a single attribute, or the spatial
intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter
gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant
nest presence points and ecologically based pseudo-absence points using logistic regression.
Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and
Analysis (FIA) map products. These habitat-envelope-based models were then compared to
null envelope models which use traditional practices for generating pseudo-absences. Models
were assessed for fit and predictive capability using metrics such as kappa, threshold-
independent receiver operating characteristic (ROC) plots, adjusted deviance (D2

adj), and cross-
validation, and were also assessed for ecological relevance. For all cases, habitat envelope-
based models outperformed null envelope models and were more ecologically relevant,
suggesting that incorporating biological knowledge into pseudo-absence point generation is a
powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of
the species–habitat relationship, ecologically based pseudo-absence points can be applied to
any species, ecosystem, data resolution, and spatial extent.

Key words: Accipiter gentilis atricapillus; Forest Inventory and Analysis (FIA); habitat classification
model; habitat envelope; Landfire; management indicator species; Northern Goshawk; pseudo-absence.

INTRODUCTION

One of the more challenging issues in ecology is

evaluating the utility of extant data for use in resolving

crucial conservation problems, especially for rare,

sensitive, threatened, and endangered species manage-

ment. Many state and federal agencies, non-government

organizations, museum collections, and herbaria have a

wealth of existing species occurrence information from

which ecological insights could be extracted and applied

towards a broad set of conservation problems, such as

the identification of crucial habitats or landscape-scale

species distribution models. Unfortunately, many of

these data were collected in fashions not well suited for

many of today’s sophisticated forms of statistical

analysis (e.g., generalized linear models [GLMs],

McCullagh and Nelder 1989; generalized additive

models [GAMs], Hastie and Tibshirani 1990; classifica-

tion trees, Breiman et al. 1984), especially when used for

classification purposes such as habitat modeling (Guisan

et al. 2002). The more common concerns directed

towards extant data typically center on design issues,

with non-probabilistic forms of sampling (e.g., purpo-

sive sampling; Schreuder et al. 2001) and the associated

biases (Edwards et al. 2006) being one of the more

common. Nonetheless, these data contain important

biological information that can be applied towards

numerous conservation issues.

Here we explore a means for pairing extant, presence-

only data with so-called pseudo-absences (Ferrier and

Watson 1997) generated from ecological backgrounds,

thereby facilitating the use of classification tools for
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modeling species habitat and likelihoods of species

occurrence (known as habitat classification models

(HCMs) or species distribution models). Presence-only

data often arise when biologists target a particular

ecological attribute considered important for species

conservation and management, such as the occurrence

of nesting sites, and ignore locations where the targeted

element is absent. This lack of absence data precludes

the use of many classification techniques mentioned

above for modeling crucial habitats and the likelihoods

of species occurrence in those habitats. Two basic

approaches exist for handling presence-biased datasets

for HCM: (1) incorporating the presence-only bias into

the model and controlling its effects on the resulting

predictions (e.g., Hirzel et al. 2002, Stockwell and

Peterson 2002, Phillips et al. 2006); or (2) generating

pseudo-absence points to be used in place of unknown

absence data (e.g., Ferrier and Watson 1997, Zaniewski

et al. 2002, Engler et al. 2004, Graf et al. 2005, and

Lütolf et al. 2006).

Although bias is associated with presence-only data,

they can still be used for modeling purposes when true

absences are lacking. Often referred to as profile-type

models, example approaches include environmental

niche factor analysis (ENFA; Hirzel et al. 2002),

ecological niche modeling (with Mahalanobis D2;

Rotenberry et al. 2006), the use of set theory in simple

and fuzzy envelope techniques (SEMs and FEMs in

BIOCLIM; Chicoine et al. 1985, Busby 1991), artificial

intelligence methods for use in genetic algorithm for

rule-set production (GARP; Stockwell and Peters 1999),

and statistical mechanics in maximum entropy modeling

(Maxent; Phillips et al. 2006). The resulting output is

typically a habitat suitability index or a species potential

distribution.

Several authors have suggested generating so-called

pseudo-absences to pair with extant presences as an

alternative to profile-type models (Ferrier and Watson

1997, Stockwell and Peters 1999, Zaniewski et al. 2002).

The most common technique for generating pseudo-

absences involves randomly selecting absence points

from the entire study region, excluding where the species

is found (Parra-Olea et al. 2005, Stockman et al. 2006).

These techniques do not typically incorporate ecological

knowledge of the species-habitat relationship; for the

most part, pseudo-absences are selected from broadly

defined areas, such as the study region or simple range

maps.

Recently, researchers have applied different methods

to constrain the region of pseudo-absence point selec-

tion, and tested these variations for habitat modeling in

Switzerland. Engler et al. (2004) found that the best

GLMs of the endangered perennial hemi-cryptophyte

(Eryngium alpinum) used randomly generated pseudo-

absence points from ENFA-defined areas where the

species was unlikely to occur. Similarly, Graf et al.

(2005) created habitat models for the capercaillie (Tetrao

urogallus) using a variety of predictor variable spatial

scales, and found that the best models used pseudo-

absence points generated from non-presence areas.

Finally, Lütolf et al. (2006) found that the best models

for three target butterfly species used pseudo-absence

points generated within regions where neither target

species nor sympatric species occurred for a century.

These techniques generate pseudo-absence points from

outside the presence areas or within low-suitability

habitat, rather than across the entire study region.

Here we incorporate ecology into the selection of

pseudo-absences, improve classification of suitable

habitat (i.e., identify suitable vs. highly suitable), and

reduce the inherent variability in pseudo-absences drawn

from an entire study region. Our technique relies on

external published knowledge of the species–habitat

relationship to create habitat envelopes, which we define

here as ecological representations of a species, or species

feature’s (e.g., nest) observed distribution (i.e., realized

niche) based on a single attribute, or the spatial

intersection of multiple attributes. Habitat envelopes

constrain the region from which species pseudo-absence

points are generated to within the species distribution.

These habitat envelopes can range from simple to

complex, depending on the amount of ecological

knowledge they incorporate. We refer to pseudo-absence

points generated from within habitat envelopes as

‘‘ecologically based’’ pseudo-absence points. A key

distinction of our method (as opposed to methods of

Engler et al. 2004, Graf et al. 2005, and Lütolf et al.

2006, which randomly generate pseudo-absence points

outside the species known distribution) is that it

generates pseudo-absence points from within the species

distribution (excluding its known presence areas),

enabling improved differentiation between suitable and

highly suitable habitat, which is extremely important for

conservation of rare, sensitive, threatened, and endan-

gered species.

Our goal was to determine whether the incorporation

of known ecological relationships into habitat envelopes

(from which ecologically based pseudo-absence points

were selected) could increase the classification ability in

a HCM. We selected a habitat specialist species, the

Northern Goshawk (Accipiter gentilis atricapillus), as

our test species. The Northern Goshawk was an ideal

species to model with ecologically based pseudo-absence

points because of its high degree of nest habitat

specificity, its status as a management indicator species

and as a sensitive species by various management

agencies in the Intermountain West of the United States,

and the availability of a relatively large extant data set of

nest presence points.

Known ecological associations of Northern Goshawk

nest locations to habitat variables were translated into

increasingly complex habitat envelopes from which

ecologically based pseudo-absence points were random-

ly selected. Ecologically based pseudo-absence points

were then paired with extant presence points in logistic

regression to model the likelihood of occurrence of
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Northern Goshawk nest site and nest area as a function

of habitat predictor variables. These likelihood of

occurrence models were next translated into spatially

explicit habitat suitability maps across the study region

for evaluation. Null models, based on pseudo-absence

points selected from the entire study region, were

developed in a similar fashion. We compared the habitat

envelope-based models with the null models using a

variety of accuracy metrics via ten-fold cross-validation,

and tested these accuracy metrics between models with a

rank test.

We predicted that models using ecologically based

pseudo-absence points would improve classification and

produce more ecologically relevant models because any

time observed and measured ecological relationships are

incorporated into modeling and extrapolation, the

resulting outcomes are more representative of true

underlying ecological relationships (Belovsky et al.

2004).

METHODS

Study region and species

Our study region covered the forested land of the

Wasatch and Uinta mountain ranges in the central Utah

highlands (hereafter Zone 16, Homer and Gallant 2001;

Fig. 1). Fifty-five percent of Zone 16 is forest (;4 3 106

ha) and includes aspen (Populus tremuloides), Douglas-

fir (Pseudotsuga menziesii), Engelmann spruce (Picea

engelmannii), blue spruce (P. pungens), subalpine fir

(Abies lasiocarpa), white fir (A. concolor), lodgepole pine

(Pinus contorta), high elevation pines (limber pine; P.

flexilis, and bristlecone pine; P. longaeva), ponderosa

pine (P. ponderosa), pinyon pine (P. edulis), juniper

(Juniperus osteosperma and J. scopulorum), Gambel oak

(Quercus gambelii), bigtooth maple (Acer grandidenta-

tum), and cercocarpus woodlands. Elevation in Zone 16

ranges from 386 to 3978 m. The study region was

confined to only forested land to represent generally

appropriate nesting habitat for the study species (i.e.,

non-forest area was excluded).

The Northern Goshawk is the largest accipiter in

North America, and is holarctic in distribution. Home

range is ;2370 ha, and consists of three components:

nest area (;12 ha), post-fledging area (;170 ha), and

the foraging area (;2188 ha; Reynolds et al. 1992).

Multiple nest areas typically exist within a home range,

and multiple satellite nests occur within each nest area

(Reynolds et al. 1994, Squires and Reynolds 1997). In

general, large trees (.40.6 cm diameter at breast height

[dbh]) arranged in a clump with dense canopy cover

(Hayward and Escaño 1989, Bright-Smith and Mannan

1994, Beier and Drennan 1997, Graham et al. 1999) are

preferred for nesting. High territory occupancy and high

nesting rates are associated with increased tree density

and canopy closure in the nest area (Finn et al. 2002).

We modeled two ecological components of Northern

Goshawk nesting habitat based on in-field measurement

resolutions. The first, the nest site, was defined as the

nest tree and habitat immediately surrounding the nest

tree, an area 0.10 ha in size (Reynolds et al. 1982,

Squires and Reynolds 1997). The second was nest area,

which was defined as habitat 0.10–12 ha beyond the nest

site, including adult roosts and prey plucking sites

(Reynolds et al. 1992). Nest site and nest area were both

used to test the ability of ecologically based pseudo-

absence points to outperform traditional pseudo-ab-

sence points at fine and coarse resolutions, respectively.

Habitat predictor variables

Two resolutions of predictor variables were used in

our analyses to match the two resolutions of Northern

Goshawk nesting habitat, and to test the utility of two

map product sets. Coarse resolution predictor variables

originated from the U.S. Department of Agriculture

Forest Inventory and Analysis (FIA) Program (data

available online).5 In addition to reporting numerous

silvicultural metrics for forest management, FIA recent-

ly generated 250-m resolution vegetation map products

using regression-tree modeling techniques of forest plot-

FIG. 1. Zone 16 study region map. Forested areas are in
black; white areas within Zone 16 represent non-forest. Black
circles are Northern Goshawk nest presence points (n ¼ 281
nests) used in the nest site models. The same Northern
Goshawk nest presence points were used in the nest area
models, less two nest presence points in the Uinta Mountains
(northeast region of Zone 16).

5 hhttp://www.fia.fs.fed.usi
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based inventories and 250-m MODIS imagery across

Zone 16 (Blackard et al. 2004; and see footnote 5). FIA

digital representations of forest attributes were used to

model the nest area. Finer resolution predictor variables

came from a multi-partner ecosystem and wildland fire

mapping project called Landfire (involving the USDA

Forest Service Fire Lab, United States Geological

Survey [USGS], and The Nature Conservancy; project

description available online).6 Regression tree modeling

with plot inventories (including FIA plot data), bio-

physical gradients, and 30-m Landsat TM imagery

created 30-m resolution Landfire prototype map prod-

ucts for Zone 16 (Rollins et al. 2006). Zone 16 Landfire

map products included forested and non-forested areas;

for modeling and comparison with FIA map products,

non-forested regions in Landfire map products were

excluded. Landfire map products were used to model the

nest site.

Eleven FIA and 10 Landfire map products were used

as Northern Goshawk habitat predictor variables (Table

1). Topographic variables (i.e., elevation [m], slope [%].

aspect [degrees]) were derived from 30-m and 250-m

digital elevation models (DEMs) originating from the

U.S. National Elevation Data set (Table 1). Aspect was

transformed to a scale from 0 to 1, where the highest

values were assigned to north-northeast-facing slopes

(Roberts and Cooper 1989), TASP ¼ [1 � cos(aspect �
30)]/2. To reflect the habitat distinctions of the nest site

and nest area, map products at 250-m resolution (FIA

and DEM) and 30-m resolution (Landfire and DEM)

were restricted to the 250-m nest area and 30-m nest site

models, respectively.

Response data

Extant presence points.—Locations of nests used by

breeding pairs of Northern Goshawks from 1994 to 2005

were obtained from National Forests in Zone 16 and the

Utah Division of Wildlife Natural Heritage database (n

¼ 572 nests). These nests were distributed across the

entire study region, with 38% concentrated in the region

of the Uinta Mountains in the northeastern portion of

the study region. Eight nests which intersected non-

forest pixels (as defined by 30-m Landfire or 250-m FIA)

were eliminated, and territories with multiple nests were

condensed to the most recently active nest, leaving 281

nests for 30-m nest site models, and 279 nests for 250-m

nest area models. These reduced numbers of nests were

more evenly distributed across Zone 16 (Fig. 1).

Habitat envelopes and their ecologically based pseudo-

absence points.—Ecologically based pseudo-absence

points were randomly selected within the defined nest

site and nest area habitat envelopes (Tables 2 and 3). To

create habitat envelopes, we first surveyed the literature

for published field-based studies of Northern Goshawk

nest habitat associations during nest occupancy (April

to August; Reynolds et al. 2005). We used habitat

associations reported in 25 published studies set in the

western United States (Appendix A). We took geometric

means (geomeans) of the published minima and maxima

habitat characteristic values for different variables (e.g.,

forest canopy cover, tree height) and then applied these

as the lower and upper bounds of single-variable habitat

envelopes.

Single-variable habitat envelopes were created in

ArcGIS 9.0 (ESRI, Redlands, California, USA) by

retaining digital values from the FIA, Landfire, and

DEM map products that fell within the geomean of the

published ranges for a given predictor habitat variable.

Values outside the ranges were excluded from the

habitat envelope. Spatial intersection of two or more

habitat envelopes produced multi-variable habitat enve-

lopes (e.g., a two-variable habitat envelope, QMD \
ELEV, where \ is the spatial intersection of single-

TABLE 1. Predictor variables derived from FIA (250-m
resolution) and Landfire (30-m resolution) spatial map
products, and digital elevation models (DEMs).

Variable Abbreviation Description

FIA

Stand age AGE yr
Basal area BA m2/ha
Forest biomass BIO Mg/ha
Crown cover CC %
Forest type� FT 18 dominant

tree types
Forest growth GRW m3/ha
Quadratic mean diameter QMD cm
Stand density index SDI ha
Trees per hectare TPH no. trees .2.54

cm dbh per ha
Forest volume VOL m3/ha
Weighted height WHT m (weighted by

larger trees)

Landfire

Canopy bulk density CBD kg/m
Canopy base height CBH height (m) to

live canopy
Cover type� COV 10 dominant

cover types
Forest canopy cover FCC %
Forest height FHT m
Herbaceous canopy cover HCC %
Herbaceous height HHT m
Shrub canopy cover SCC %
Shrub height SHT m
Structure§ STR four classes

Topographic}
Elevation ELEV m
Slope SLP rise, %
Transformed aspect TASP 0–1

Notes: All units were converted to the metric system for
consistency. Vegetation predictor variables are from forested
area only.

� Source: Bechtold and Patterson (2005), and see footnote 5.
� Source: Rollins et al. (2006), and see footnote 6.
§ Class 1, forest height �10 m, canopy �40%; class 2, forest

height �10 m, canopy .40%; class 3, forest height .10 m,
canopy �40%; class 4, forest height .10 m, canopy .40%.

}From DEMs of the U.S. National Elevation Data set.

6 hhttp://www.landfire.govi
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variable habitat envelopes quadratic mean diameter

[QMD] and elevation [ELEV]). Single-variable habitat

envelopes were larger in area (contained more pixels)

than multi-variable habitat envelopes. Because habitat

envelopes must encompass appropriate nesting habitat,

only those envelopes (single or multi-variable) contain-

ing at least 90% of all extant presence points (�508 of

564 nests for both nest site and nest area models) were

used for subsequent generation of ecologically based

pseudo-absence points. Up to three habitat envelopes

from each combination type (one, two, and three

variable) containing the highest percentages of presence

points were chosen to generate the ecologically based

pseudo-absence points (Tables 2 and 3). Northern

Goshawk nest areas and post-fledging areas (a total of

182 ha centered on each nest) of all extant nests were

removed from the habitat envelopes so that pseudo-

absence points would not be selected from areas where

known nests and defended territories occur (Reynolds et

al. 1992).

Habitat envelope values and unique cell identifiers

were exported to SAS 9.1 (SAS Institute 2003) for the

following analyses. Pseudo-absence points were ran-

domly generated from all cells of a given habitat

envelope. The number of pseudo-absence points from

each habitat envelope was set equal to the number of

presence points given that unbalanced ratios of presence

to absence points can affect the accuracy of classification

models (Manel et al. 2001). To determine if randomized

pseudo-absence point selection was biased and unrepre-

TABLE 2. Northern Goshawk 30-m nest site habitat envelopes from Landfire map products.

Envelopes Values

Portion of all
nest points contained
(%) (n ¼ 564 nests)

Cover of Zone 16
forested area (%)

CONASP All conifers and aspen� 97.7 95.0
ELEV 1828–3048 m 96.0 88.0
FHT 8.97–25.6 m 96.9 79.3
CONASP \ FHT All conifers and aspen� 94.9 60.1

FHT: 8.97–25.6 m
CONASP \ ELEV All conifers and aspen� 93.7 84.6

ELEV: 1828–3048 m
ELEV \ FHT ELEV: 1828–3048 m 92.8 65.2

FHT: 8.97–25.6 m
CONASP \ ELEV \ FHT All conifers and aspen� 90.9 53.1

ELEV: 1828–3048 m
FHT: 8.97–25.6 m

Notes: Abbreviations are: CONASP, all conifers and aspen; ELEV, elevation; FHT, forest height. The spatial intersection of two
or more habitat envelopes is indicated by \.

� All conifers and aspen from Landfire map product COV documented in the nest site according to Graham et al. (1999). These
include aspen–birch, Douglas-fir, spruce–fir, white fir, lodgepole pine, high-elevation pine, ponderosa pine, pinyon–juniper, and
juniper.

TABLE 3. Northern Goshawk 250-m nest area habitat envelopes from FIA map products.

Envelopes Values

Portion of all
nest points contained
(%) (n ¼ 564 nests)

Cover of Zone 16
forested area (%)

QMD 11.5–77 cm 100 99.6
WHT 5–21 m 99.8 81.3
SDI 337–2021 ha 97.9 90.3
QMD \ WHT QMD: 11.5–77 cm 99.8 80.9

WHT: 5–21 m
QMD \ SDI QMD: 11.5–77 cm 97.9 89.8

SDI: 337–2021 ha
SDI \ WHT SDI: 337–2021 ha 97.7 74.9

WHT: 5–21 m
QMD \ SDI \ WHT QMD: 11.5–77 cm 97.7 74.6

SDI: 337–2021 ha
WHT: 5–21 m

ELEV \ QMD \ WHT ELEV: 1828–3048 m 95.9 72.4
QMD: 11.5–77 cm
WHT: 5–21 m

QMD \ WHT \ CONASP All conifers and aspen� 95.9 68.5
QMD: 11.5–77 cm
WHT: 5–21 m

Notes: Abbreviations are: QMD, quadratic mean diameter; WHT, weighted height; SDI, stand density index; ELEV, elevation;
CONASP, all conifers and aspen. The spatial intersection of two or more habitat envelopes is indicated by \.

� All conifers and aspen from FIA map product FT documented in the nest area according to Graham et al. (1999). These
include aspen, Douglas-fir, Engelmann spruce, subalpine fir, white fir, lodgepole pine, ponderosa pine, and pinyon–juniper.
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sentative of the source population (the habitat enve-

lope), we randomly generated 100 sets of pseudo-

absence points from each habitat envelope, and used a

two-sample Kolmogorov-Smirnov statistic to determine

the likelihood that any set of pseudo-absence points

differed from the source population. All randomly

generated pseudo-absence points were within the 95%

CI of the envelope population means (P . 0.05, all

tests), indicating no bias in pseudo-absence point

generation.

Null envelopes and their traditional pseudo-absence

points.—Null envelope models were created to compare

our habitat envelope method with traditional methods

of pseudo-absence point generation. Here, pseudo-

absence points were randomly generated from within

null envelopes representing the entire study region extent

(i.e., forested regions of Zone 16), minus the nest areas

and post-fledging areas, at 30-m and 250-m resolutions.

The number of pseudo-absence points generated from

null envelopes was set equal to the number of presence

points of the model resolution. Two-sample Kolmogo-

rov-Smirnov tests were run on the 100 sets of traditional

pseudo-absences; all were within the 95% CI of the null

envelope population means (P . 0.05, all tests). These

pseudo-absence points were used in the nest site and nest

area null models, respectively.

Model building and evaluation

One set of pseudo-absence points was randomly

selected from each of the 100 sets generated from the

habitat and null envelopes, paired with the presence

points, and modeled as the response using logistic

regression in R 2.1.1 (program available online).7

Variables used to create habitat envelopes were not

included as predictor variables in any of the corre-

sponding logistic models (i.e., if quadratic mean

diameter [QMD] was used to generate a QMD envelope

from which pseudo-absence points were selected, QMD

was not included as a predictor variable in the

subsequent logistic model). Some cover and forest type

categories were so low in occurrences of presences or

pseudo-absences that the logistic models could not

converge. Consequently, these categories were re-

assigned to more common types based on associated

forest cover following Burns and Honkala (1990).

Highly correlated predictor variables (as defined by

Pearson correlation coefficient .0.70 at P , 0.05) were

not included together in one model; the more ecologi-

cally relevant variable was included.

Models were run with up to four predictor variables

included, using Northern Goshawk ecology to guide

variable selection. Fifty-nine top candidate habitat and

null envelope models (Tables 11–14 in Zarnetske 2006)

were all assessed for fit (adjusted deviance, D2
adj) and

predictive capability (sensitivity, specificity, kappa) on

the training data, and internally validated by 10-fold

cross validation. Receiver operating characteristic plots

(ROC) and associated area-under-curve (AUC) were

performed on the training data and predicted values.

Models produced from the same set of pseudo-absence

points were ranked according to Akaike’s information

criterion (AIC; Akaike 1973), cross-validation error

rate, and D2
adj to form a list of top competing models

(Tables 4 and 5). Because many of the top competing

models used different pseudo-absence points, they were

not nested models and therefore AIC was not an

appropriate method for model performance assessment.

Therefore, the best-fit model for each category (nest site

and nest area null and habitat envelope models) was

selected first on lowest cross-validation error rate (all

models ,1% from the lowest cross-validation error rate

were considered), and then by the highest D2
adj. If D2

adj

was equal for two or more top candidate models, the

more parsimonious model was chosen.

Comparisons among best-fit null and habitat envelope

models were made using a one-tailed Kruskal-Wallis

rank test, testing our prediction that habitat envelope

models would perform better than null models across

the range of selected model fit and predictive metrics. To

test if traditional pseudo-absence points were more

variable than ecologically based pseudo-absence points,

a two-sample test of variance was run on pseudo-

absence points from each type (100 sets pooled) with the

alternative hypothesis that the variance of ecologically

based pseudo-absence points divided by the variance of

traditional pseudo-absence points was greater than 1.

Coefficients of best-fit model parameters were trans-

lated into likelihood of occurrence maps across forested

regions of Zone 16 using StatMod extension for

ArcView 3.2 (ESRI, Redlands, California, USA; avail-

able online).8 Map output likelihood of occurrence

ranged from 0 to 1 and was categorized into four levels

of habitat suitability: very low (0–0.25), low (0.26–0.5),

moderate (0.51–0.75), and high (0.76–1.0).

RESULTS

Characteristics of competing top models

Top competing habitat envelope models outper-

formed null envelope models both in model fit and

predictive capabilities for each model resolution (Fig. 2).

Results of the rank test indicated that all habitat

envelope accuracy metrics except sensitivity were signif-

icantly better than those of null models (one-tailed

Kruskal-Wallis rank test, P ¼ 0.05, Fig. 2). The higher

sensitivity and specificity of habitat envelope models

indicated that presences and absences, respectively, were

classified better than those in null envelope models.

Additionally, the top competing null envelope models

did not reflect known Northern Goshawk nest habitat

relationships as well as the top competing habitat

7 hhttp://www.r-project.orgi 8 hhttp://arcscripts.esri.com/details.asp?dbid¼12502i
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envelope models; null envelope models selected some

predictor variables tied less strongly to Northern

Goshawk ecology (Tables 4 and 5). Ecologically based

pseudo-absence points used in habitat envelope models

were less variable than traditional pseudo-absence

points (although not always significantly less variable

via two-sample test of variance at P ¼ 0.05), allowing

better classification of suitable and non-suitable nest

habitat for both nest site and nest area. Null envelope

models never had more than one model with DAIC , 2,

indicating that null models were statistically different

from one another (Burnham and Anderson 2002). In

contrast, models of the same habitat envelope often had

more than one model with DAIC , 2, indicating several

statistically similar models (Burnham and Anderson

2002) and that using ecologically based pseudo-absence

points may lead to more competing top models.

Slope was a significantly negative parameter in both

the null and habitat envelope top competing models

(Tables 4 and 5), reflecting findings of Northern

Goshawk preference for low to moderate slopes in the

western United States (e.g., Squires and Ruggiero 1996).

Top competing nest site null and habitat envelope

models all contained significantly positive forest height

parameters (CBH and FHT [see parameter abbrevia-

tions in Table 1]). Top competing nest area null and

TABLE 5. AIC and DAIC for the top four nest area null and habitat envelope models.

Model name Model AIC DAIC

Null envelope

NA-Null1 þ FT(� PJ þ PP þ WF) þ GRW � SLP þ WHT 580.82 0
NA-Null2 � AGE� þ FT(� PJ þ DF þ PP þ WF þ LPP) þ GRW � SLP 583.03 2.21
NA-Null3 þ FT(� PJ þ DF þ PP þ WF þ LPP) þ GRW � SLP 584.10 3.28
NA-Null4 þ BIO þ FT(� PJ þ PP þ WF þ LPP) � SLP þ WHT 584.44 3.62

Habitat envelope

NA-QMD1 þ FT(� PJ þ PP þ WF) þ GRW � SLP þ WHT 538.73 0
NA-QMD2 � AGE þ FT(� PJ þ DF þ PP þ WF) þ GRW � SLP 539.78 1.05
NA-QMD3 þ FT(� PJ þ DF þ PP þ WF) þ GRW � SLP 542.53 3.80
NA-QMD \ SDI4 � AGE� þ FT(� PJ þ PP þ WF) þ GRW � SLP 546.06 1.89

Notes: Forest type (FT) codes: PJ, pinyon–juniper; DF, Douglas-fir; PP, ponderosa pine; WF, white fir; LPP, lodgepole pine.
Other predictor variables are: GRW, forest growth; SLP, slope: WHT, weighted height: AGE, stand age; BIO, forest biomass. Nest
area models were selected from four candidate top null-envelope models and 33 candidate top habitat-envelope models. Model
names derive from the null or habitat envelope which generated their pseudo-absence points; NA refers to nest area. Multiple
models per habitat envelope are distinguished with 1, 2, 3, and so on following the habitat envelope name (i.e., NA-QMD2). Only
significant FIA forest types are shown. Direction of variable influence is indicated by ‘‘þ’’ or ‘‘�’’ preceding the variable. All nest
area top null models can be compared with AIC because they contain the same set of pseudo-absence points. NA-QMD nest area
habitat envelope models listed here can be compared with AIC because they use the same set of ecologically based pseudo-absence
points; NA-QMD \ SDI4 uses a different set of ecologically based pseudo-absence points and cannot be compared with the NA-
QMD models using AIC.

� Not significant.

TABLE 4. AIC and DAIC for the top four nest site null and habitat envelope models.

Model name Model AIC DAIC

Null envelope

NS-Null1 þ CBH þ COV(þ P � LPP � DF � SF � PJ � J � RH � AB)
þ FHT � SLP 578.72 0

NS-Null2 � CBD þ CBH þ COV(þ P � LPP � HEP � SF � PJ � J � RH � AB)
� SLP 581.02 2.30

NS-Null3 � CBD þ CBH þ FHT � SLP 581.31 2.59
NS-Null4 þ CBH � HCC þ FHT � SLP 583.40 4.68

Habitat envelope

NS-ELEV1 þ CBH � COV(þ PP � SF � PJ � J � AB) þ FHT � SLP 512.53 0
NS-CONASP3 þ CBH þ FHT � SLP 552.82 1.90
NS-CONASP \ ELEV2 þ CBH þ FHT � HHT� � SLP 545.73 1.74
NS-CONASP \ ELEV3 þ CBH þ FHT � SLP 546.95 2.96

Notes: Cover type (COV) codes: PP, ponderosa pine; LPP, lodgepole pine; HEP, high-elevation pine; DF, Douglas-fir; SF,
spruce–fir; PJ, pinyon–juniper; J, juniper; RH, riparian and other hardwoods; AB, aspen–birch. Other predictor variables are:
CBH, canopy base height; FHT, forest height; SLP, slope; CBD, canopy bulk density; HCC, herbaceous canopy cover. Nest site
models were selected from four candidate top null-envelope models and 18 candidate top habitat-envelope models. Model names
derive from the null or habitat envelope that generated their pseudo-absence points; NS refers to nest site. Multiple models per
habitat envelope are distinguished with 1, 2, 3, and so on following the habitat envelope name (i.e., NS-ELEV2). Only significant
Landfire cover types are shown. Direction of variable influence is indicated by ‘‘þ’’ or ‘‘�’’ preceding the variable. All nest site top
null models can be compared with AIC because they contain the same set of pseudo-absence points. Nest site habitat envelope
models listed here (with the exception of NS-CONASP \ ELEV2 and NS-CONASP \ ELEV3) cannot be compared with AIC
because they each use a different set of ecologically based pseudo-absence points from their particular habitat envelope.

� Not significant.
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habitat envelope models contained the same parameters

(FT, GRW, SLP), but FT category parameters in the

habitat envelope models better reflected Northern

Goshawk nest area habitat in Utah (i.e., lodgepole pine

(LPP) is not as preferable; Graham et al. 1999). The top

competing nest site and nest area habitat envelope

models were ecologically sound and contained param-

eters which agreed strongly with published Northern

Goshawk habitat associations. When nonsensical pa-

rameters were included in top competing habitat

envelope models, they were insignificant, or were an

artifact of categorical loading (e.g., �HHT in NS-

CONASP \ ELEV2, �AGE in NA-QMD2 and NA-

QMD \ SDI4, and �COV categories in NS-ELEV1).

Best-fit nest site and nest area models

The best-fit nest site habitat envelope model was

CONASP \ ELEV3. This complex habitat envelope met

our expectations that incorporation of more biological

knowledge (both forest type and elevation), and a

constrained sampling region, would yield more ecolog-

ically and statistically robust models. The two-variable

habitat envelope (CONASP \ ELEV) which generated

the ecologically based pseudo-absence points in the

CONASP \ ELEV3 model contained 85% of the study

region and 94% of the extant presence points (Table 2).

The single variable nest area habitat envelope, QMD,

produced the ecologically based pseudo-absence points

used in the best-fit nest area habitat envelope model

(NA-QMD3). While QMD did not constrain the habitat

envelope by much, retaining 99% of the study region, it

did generate points used in models which outperformed

null models in terms of fit and predictive capability (Fig.

2, Table 3).

Nest site and nest area habitat envelope models with

four predictor variables always had the lowest AIC

scores, but similar models with three predictor variables

were usually within DAIC , 2, suggesting that addition

of a fourth predictor variable did not improve models

significantly. High AUC values from the best-fit habitat

envelope models show that these models have useful

application across the study region because they are

insensitive to threshold cut-off values, and have few false

positives (Fig. 2).

FIA forest type and Landfire cover, both representa-

tions of dominant tree species, were always included in

the best-fit habitat envelope models (as parameters in

NA-QMD3 and as the habitat envelope in NS-CON-

ASP \ ELEV3). The parameters of the NS-CONASP \
ELEV3 model (conifer and aspen forests between 1830

FIG. 2. Comparison of model accuracy metrics associated with the top null envelope and habitat envelope models for nest site
and nest area listed in Tables 4 and 5: ‘‘Null,’’ null envelope models using traditional pseudo-absence points; ‘‘HE1,’’ habitat
envelope models using ecologically based pseudo-absence points from a one-variable habitat envelope (e.g., QMD); ‘‘HE2,’’ habitat
envelope models using ecologically based pseudo-absence points from a two-variable habitat envelope (e.g., CONASP \ ELEV).
Open circles represent nest site models; black diamonds represent nest area models. Means of metric values within boxes are not
significantly different at P , 0.05; means between boxes are significantly different at P , 0.05, one-tailed Kruskal-Wallis test.
‘‘AUC’’ is area under the curve.
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and 3050 m elevation, with moderate canopy base

height, tall trees, and moderate slopes) reflect known

Northern Goshawk habitat associations at the nest site

(Squires and Ruggiero 1996, McGrath et al. 2003).

Suitable nest area parameters of the NA-QMD3 model,

dominated by Douglas-fir, ponderosa pine, or white fir,

with moderate slopes, and moderate to high quadratic

mean diameter (11.5–77 cm), reflect published ecological

relationships of the nest area (Reynolds et al. 1982,

McGrath et al. 2003).

The best-fit null envelope models (NS-Null4 and NA-

Null3) did not reflect known Northern Goshawk-habitat

relationships as well as the best-fit habitat envelope

models. The negative association with HCC in NS-Null4

has never been documented as an important variable for

Northern Goshawk nest site selection; –HCC likely

reflects the denser over-story typical of nest sites which

allow less light to penetrate to the forest floor. The best-

fit nest area null and habitat envelope models used

pseudo-absence points drawn from similar spatial

extents (i.e., 100% of the study region for NA-Null3

and 99% of the study region for NA-QMD3; Table 3).

These best-fit models also had similar model parameters.

However, inappropriate nest area forest types, decidu-

ous oak woodland and cercocarpus woodland, had twice

the positive influence on suitable nest area habitat in the

NA-Null4 model as in the NA-QMD3 model (Appendix

B). Additionally, other top competing null models

contained spurious parameters (e.g., nonsensical COV

categories in NS-Null1, NS-Null2, and –AGE in NA-

Null2).

Spatial depictions

The best-fit habitat envelope nest site and nest area

model outputs both predicted high likelihood of

occurrence in appropriate Northern Goshawk habitat

throughout Zone 16 (Fig. 3). The portion of the study

region predicted to be of very low and low habitat

suitability (0–0.50; blue and green) is approximately the

same for the best-fit nest site and nest area null and

habitat envelope models (nest site null envelope model:

73.7%; nest site habitat envelope model: 76.0%; nest area

null envelope model: 71.3%; and nest area habitat

envelope model: 73.7%). However, within the range of

‘‘suitable’’ (0.51–1.0; yellow and red) the best-fit habitat

envelope models contain a slightly larger proportion of

highly suitable (0.76–1.0; red) area than their best-fit null

envelope model counterparts (8.1% for nest site null

envelope vs. 10.0% for nest site habitat envelope; 8.6%

for nest area null envelope vs. 12.0% for nest area

habitat envelope; Zarnetske 2006).

DISCUSSION

As the amount of biological knowledge incorporated

into habitat envelope generation increased, model

performance improved due to both the reduced vari-

ability of ecologically based pseudo-absence points and

the enhanced ecological relevance (Fig. 2). This, in turn,

allowed the classification model to better distinguish

suitable from unsuitable habitat. We found that

increasing the complexity of habitat envelopes (i.e.,

one- and two-variable habitat envelopes) increased the

precision and decreased the error rate of top competing

models when compared with the null envelope technique

(Fig. 2). However, increasing the complexity of habitat

envelopes to 3-variable habitat envelopes so reduced the

area from which ecologically based pseudo-absence

points were generated (Tables 2 and 3) that these

pseudo-absence points became too similar to presence

points. In this case, the statistical model had difficulty

creating HCMs which were both precise and low in

error. This suggests that for a given species, there exists a

threshold of habitat envelope complexity, beyond which

resulting HCMs do not improve and may worsen. For

the present study, this threshold was achieved at three-

variable habitat envelopes (Zarnetske 2006).

The decision to restrict the study region to only

forested regions was based on the ecological knowledge

that Northern Goshawks do not nest in non-forested

areas within our study region. By restricting this area to

within the Northern Goshawk nesting habitat range, we

ask the models to tease out the habitat variable values

which are most important for determining highly

suitable nesting habitat. Other techniques of pseudo-

absence point generation select these points from outside

of the species known distribution, thus generating

pseudo-absence points in unsuitable habitat (e.g., Engler

et al. 2004, Graf et al. 2005, Lütolf et al. 2006). These

methods are excellent for determining suitable from

non-suitable, but in order to recognize what habitat the

species prefers within its known range, it is necessary to

incorporate our ecological knowledge a priori into

habitat envelopes, restricting the region from which

pseudo-absence points can be selected.

Here best-fit habitat-envelope models not only have

improved classification and are more ecologically

robust, they identify highly suitable habitat within the

range of suitable (0.51–1.0) habitat more accurately

when compared to best-fit null envelope models using

heterogeneous traditional pseudo-absence points (as

indicated by the habitat envelope models’ higher values

of sensitivity and AUC; Fig. 2). Distinguishing highly

suitable from moderately suitable habitat may be

essential to species conservation and habitat manage-

ment, particularly for rare, sensitive, threatened, and

endangered species susceptible to habitat fragmentation

and degradation.

Our assessment of this technique at two spatial

resolutions provided additional testing of the method

itself but also provided an analysis of the utility of

Landfire and FIA map products for HCMs. We found

that both Landfire and FIA map products as model

predictor variables provided accurate representations of

Northern Goshawk nesting habitat. From these results,

we are confident that national Landfire and FIA map

products are excellent sources of predictor variables for
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species HCMs, when used at the appropriate resolution

for the study species. This technique, like other HCM

methods, will provide robust ecologically relevant model

results only if there is careful matching of resolution and

extent among the species ecology, predictor variables,

and study region.

Even with abundant and robust predictor variables,

deficient knowledge of the species-habitat relationship

will hinder the creation of accurate HCMs. However,

the habitat envelope technique can still be applied to

species whose habitat relationships are less familiar.

Presumably some knowledge of species-habitat relation-

ships exists for most species, even if it is simply that they

prefer forested over non-forested habitat. For example,

a lesser-known species with similar management indica-

tor status, the American Three-toed Woodpecker

(Picoides dorsalis), feeds on beetle-infested trees, often

post-burn, and seems to prefer spruce forest (Bock and

Bock 1974, Murphy and Lenhausen 1998, Hobson and

Schieck 1999). Habitat envelopes created with this

limited habitat information resulted in improved wood-

pecker HCMs (statistically and ecologically) when

compared to the null technique (P. Zarnetske, unpub-

lished data).

Additionally, if a strong association of occurrence

exists between a less-studied species and a well-studied

surrogate species, the surrogate’s habitat associations

could also be used to create habitat envelopes for the

less-studied species, as long as discretion is taken in

interpreting the resulting habitat suitability map (similar

to Lütolf et al. 2006). The reduction of even a few error

rate percentage points by habitat envelope models is an

important improvement for rare, sensitive, threatened,

and endangered species whose conservation assessments

often rely on incomplete data. If the modeler is

concerned about selecting one top model produced with

deficient ecological knowledge, model averaging could

allow the inclusion of several top models (Burnham and

Anderson 2002). Regardless of the ecological knowledge

base, including some biological knowledge for a given

species in the generation of pseudo-absence points is

both important for maintaining ecological relevance in

HCMs, and improving model performance. This inclu-

sion of ecological knowledge should also decrease the

FIG. 3. Likelihood of nest site occurrence across Zone 16 based on best-fit habitat envelope models: (A) best-fit nest site habitat
envelope model (NS-CONASP \ ELEV3); (B) best-fit nest area habitat envelope model (NA-QMD3). Likelihood of occurrence
ranges from 0 to 1, where habitat suitability levels are: very low (0–0.25; blue), low (0.26–0.50; green), moderate (0.51–0.75; yellow),
and high (0.76–1.0; red).
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chance of a biologically inappropriate top model

because habitat envelopes already constrain the sam-

pling region to that of generally preferred habitat.

Although a variety of techniques exist for generating

pseudo-absence points, recent studies suggest that

superior models use pseudo-absence points generated

from constrained areas where the variability of points is

reduced (e.g., Engler et al. 2004, Graf et al. 2005, Lütolf

et al. 2006, and the present study). The consistent

improvement in model fit and predictive capability of

habitat envelope models demonstrated here, further

supports the use of constrained ecologically based

pseudo-absence points over traditional pseudo-absences

generated over entire study regions. While profile-type

models were not explicitly tested against our habitat

envelope models, use of robust statistical modeling tools

(e.g., GLMs, GAMs, classification trees) with ecologi-

cally based pseudo-absence points and extant presence

points may be more appropriate than profile techniques,

which (1) assume that all predictor variables are equally

important in determining species distribution (e.g.,

FEM; Robertson et al. 2004), (2) assume presence data

is unbiased (e.g., ENFA; Hirzel et al. 2002), (3) assume

the presence-only data originates only from source

habitat (e.g., Maxent; Phillips et al. 2006), (4) over-

predict (e.g., ENFA; Brotons et al. 2004, Engler et al.

2004), and (5) are difficult to interpret and assess

statistically. Furthermore, if field-collected absence

points in a dataset are expected to contain false or

spurious absence points (Graham et al. 2004, Hirzel et

al. 2001, 2002), including additional ecologically based

pseudo-absence points may provide more robust ab-

sences for modeling.

Common problems with this type of modeling include

assumptions of habitat saturation and lack of complete

species distribution data. The present technique is no

exception. The inherent HCM assumptions that habitat

is saturated (Capen et al. 1986), and that the species

modeled is in equilibrium with its environment (Austin

2002, Guisan and Thuiller 2005) are often ignored in

broad-scale habitat modeling because knowing the

locations of all individuals or the attribute of interest

(i.e., a nest site) is nearly impossible across a large

spatial extent, particularly at one time step. Because

landscape-scale census and monitoring is not complete

for Northern Goshawks within Zone 16 (and is one

reason why these models were created), we cannot

assume that habitat is saturated, especially because it is

probable that not all territories have been identified.

Additionally, due to incomplete activity information for

some nests throughout 1994–2005, some nest locations

may exist in so-called sink habitat (Pulliam 1988) with

poor habitat quality or lack of abundant prey items

nearby.

Predictor variable error is another recurring issuing

with HCMs, particularly at broad spatial scales. No

matter how well any habitat model fits the data from

which it is developed, it contains error from a variety of

sources (Edwards et al. 1996, Pearce and Ferrier 2000).

FIA and Landfire map products are models of

vegetation attributes which contain error too, error

which was then transferred to the Northern Goshawk

HCMs. Additionally, because FIA and Landfire map

products of Zone 16 incorporate plot-based inventory

data and satellite imagery spanning from 1998 to 2003,

certain cells within the map products may not reflect

current conditions, although validation of these map

products indicates low error (Blackard 2004, Rollins et

al. 2006, and see footnotes 5 and 6). Unfortunately, no

method exists to incorporate the inherent error of spatial

predictor layers into classification models such as

GLMs, even if the error is known. Conservation

recommendations based on HCMs should take into

account the uncertainty inherent in the models and their

map outputs so that variability within the system is

recognized. However, even with inherent error, the good

fit, predictive capability, and ecological relevance of the

Northern Goshawk best-fit habitat envelope models

suggest that sampling high habitat suitability areas may

lead to the discovery of new nest sites and nest areas in

Zone 16.

Here we use habitat as an example for constraining

the region of selection to refine the classification; other

ecologically relevant variables could be used to constrain

envelopes. For a given species, these might include

spatially explicit representations of: predator, competi-

tor, prey, or resource abundance; disturbances (e.g., fire,

pollutants, and drought); resource proximity; territory

boundaries; degree of isolation; and demographic

parameters. Inclusion of other ecologically relevant

Northern Goshawk variables (in habitat envelopes and

as predictor variables) may have improved classification

further, predicting likelihood of occurrence for suitable

and successful nests (i.e., suitable conditions for

successful fledglings). Prey abundance, competitor pres-

ence, nest-specific fledgling survival, forest characteris-

tics of post-fledging and foraging areas, territoriality,

forest disturbances (i.e., bark beetles, fire, timber

harvest), and inter-annual climatic variation have all

been shown to be important variables for nest success

(Squires and Reynolds 1997, Salafsky et al. 2005,

Reynolds et al, 2006, Wiens et al. 2006). However, as

is the case for many other species of concern, these data

were either not available or were incomplete. Yearly

surveys of existing nests and regions of high likelihood

of occurrence will help provide these valuable data for

refined models of suitable and successful Northern

Goshawk nests.

CONCLUSIONS

This study contributes to research aimed at advancing

habitat and species distribution modeling techniques.

Here we improved upon traditional techniques of

generating pseudo-absence points by incorporating the

ecology of the species–habitat relationship. Habitat

envelopes provide an ecologically based method for
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generating less variable pseudo-absence points which

can produce more statistically and ecologically robust

HCMs. Moreover, given some a priori knowledge of the

species–habitat relationship, ecologically based pseudo-

absence points can be created for any species, ecosystem,

data resolution, and spatial extent.
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APPENDIX A

Literature studies and values used in creating 30-m nest site and 250-m nest area habitat envelopes for Northern Goshawk
(Ecological Archives A017-071-A1).

APPENDIX B

Best-fit Northern Goshawk nest site (30-m) and nest area (250-m) habitat and null envelope model coefficients and their
significance (Ecological Archives A017-071-A2).
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