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techniques are often too low, resulting in either a
biased estimate or an estimate with unacceptably
high variance (McKelveyand Pearson 2001, Mills
et al. 2005). Furthermore, costs associated with
capturing a sufficient number of animals for a
CMR have been prohibitive. Thus, most estimates
of snowshoe hare abundance are currently based
on indices.

The most common index of snowshoe hare
abundance has been pellet counts, where the
number of pellets detected is used as a relative
metric of hare abundance (Litvaitis et aI. 1985,
Mowat and Slough 2003). Some researchers have
regressed pellet counts on abundance estimates
derived from captured hares to transform pel­
let indices into abundance estimates (Krebs et
al. 1987, Krebs et al. 2001, Mills et aI. 2005).
While these equations may be useful in the area
they are developed and when hares are dense,
they notably fail when hares are at low densities
(Mills et aI. 2005). For instance, at some sites
with very low hare densities Mills et al. (2005)
found the deviation between density estimated
using locally derived equations based on pellet
counts and directly estimated using CMR to be
1,000% or greater.

Introduction

Snowshoe hare (Lepus americanus) abundance has been of interest to wildlife biologists, as hares are essential prey items for
many rare and endangered predators. Snowshoe hare abundance has most commonly been estimated through indices such as
pellet counts. While pellet counts may be useful in the areas they are developed and when hares are dense, they notably fail when
hares are at low densities. Abundance estimates using capture-mark-recapture (CMR) are often preferred over indices of animal
abundance, yet using CMR to estimate snowshoe hare numbers has proven a formidable and expensive task. Sample sizes ob­
tained using traditional CMR techniques are frequently low, resulting in either biased estimates or estimates with unacceptably
high variance. Here we derive a suite of 9 microsatellite DNA markers that can provide snowshoe hare individual identification
at relatively low cost. We demonstrate that these markers produce no genotyping errors in a captive situation and use the markers
to produce individual identification of free-ranging snowshoe hares in test plots in Montana and Idaho.
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Snowshoe hare (Lepus americanus) abundance
has been of prime interest to wildlife biologists
and managers, as hares are critical prey items
for many rare and endangered predators. For
instance, snowshoe hares are an important prey
item of fishers (Martes pennanti), wolverines
(Gulo gulo), goshawks (Accipiter gentiles), and
martens (Martesamericanus).However,the great­
est interest in snowshoehare numbersrelates to the
management of Canada lynx (Lynx canadensis),
listed as Threatened under the U.S. Endangered
Species Act (USFWS 2000). Lynx prey almost
exclusively on hares and their density, survival,
reproductiverates, dispersal, and home range sizes
are all correlated to hare abundance (Poole 1994,
Mowat et al. 2000).

While formal abundance estimates using cap­
ture-mark-recapture (CMR) are often preferred
over indices of animal abundance, using CMR
to estimate snowshoe hare numbers has proven
challenging (Mills et al. 2005). The sample sizes
likely to be obtained using traditional CMR
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Unfortunately, lynx conservation needs may
be greatest at the periphery of their geographic
range where snowshoe hares exist at low densities
(Ruggiero et al. 2000, Mowat et al. 2000). Given
that the pellet-based indices can produce large
variances and CMR methods likely produce biased
estimates at small sample sizes, we investigated
the possibility of identifying individual hares
reliably based on fecal pellets.

Many wildlife projects have used molecular
genetic methods for enumerating and monitoring
elusive and difficult to study wildlife popula­
tions (Kohn et al. 1999, Mowat and Paetkau
2002, Schwartz et al. 2007). Non-invasive genetic
samples (hair, scat, urine, etc. obtained without
ever seeing or handling the animal) can be col­
lected by a variety ofmeans including following a
snow-track to find a sample (McKelvey et al. 2006,
Ulizio et al. 2006), inducing an animal to leave
a sample at a specific "rub" station (Woods et al.
1999, McDaniel et al. 2000), or by opportunistic
collection. Advantages of non-invasive genetic
sampling rests in the ease of sample acquisition
and the fact that animals already have "tags", their
genetic code, that cannot be lost. What is required
is the development of appropriate molecular mark­
ers allowing unique identification of individuals
and removal of errors caused by low-quality
DNA obtained from non-invasive samples (e.g.,
McKelvey and Schwartz 2004). Microsatellites,
neutral, highly variable repeat regions of the
genome, have been the most popular molecular
tool for identifying individuals collected by non­
invasive genetic sampling.

In this study we screened a panel of micro­
satellite markers developed for the European
rabbit (Oryctolagus cuniculus) on snowshoe
hare DNA. It had already been documented that
some European rabbit markers can be used for
hares (Burton 2002, Burton et al. 2002), but we
were searching for a panel of microsatellites that
could be used to estimate hare abundance from
low quantity DNA associated with non-invasive
genetic samples (in this case, pellets). Here we
report on this panel, the error rate in a laboratory
test, and its efficacy in the wild.

Study Area

The field component of the study occurred in
two different stands on the Clearwater and Bit­
terroot National Forests in Idaho and Montana,

respectively. The first stand in the Clearwater
National Forest was primarily composed of grand
fir (Abies grandis) and western hemlock (Tsuga
heterophylla) (UTMZone 11682521E5161479N,
elevation: 1,274m), while the second stand (UTM
Zone 11 691802E 5172449N, elevation: 1469m)
in the Bitterroot National Forest was characterized
by young mountain alder (Alnus tenuifolia) and
Douglas-fir (Pseudotsuga menziesiiy. The general
area where both these stands are located can be
characterized as inland maritime ecosystem with
an average of 100 em of annual precipitation
and greater than 400 em of snow in areas above
1,800m.

Methods

The research was conducted in three separate
phases. First, we tested domestic rabbit microsatel­
lite markers on high-quality snowshoe hare tissue
samples. Second we'collected fresh fecal pellets
from captive snowshoe hares to test whether the
markers effectively identified individuals based on
scat samples, and to compare genetic error rates
associated with each marker. Lastly, we tested
the microsatellite panel on fecal pellets collected
from free-ranging hares.

Captive Colony and Laboratory Methods

We collected an ear punch and matching fresh
(collected within hours) fecal sample from each
of five wild snowshoe hares held in captivity (All
procedures were approved by the University of
MontanaAnimal Care and Use Committee; ACC
019-02). Hares were held in cages on the sites
where they were captured, were fed exclusively
native plants collected on the site, and were held in
captivity for no more than 4 days. Only "hard" pel­
lets were analyzed as "soft" pellets are re-ingested
by hares (Watson and Taylor 1955) and will not
be present in field-collected samples. Snowshoe
hare pellets were stored in 100% ethanol at room
temperature until they were brought to the lab
for extraction. We extracted DNA from tissue
samples with the DNeasy Tissue Kit (Qiagen
Inc.) following the manufacturer's protocol and
extracted genomic DNA from single pellets us­
ing the protocol of Maudet et al. (2004) with the
following modifications: we used 900~ of lysis
washing buffer to completely coat the pellet, and
processed the sample through two rounds of the
AL buffer and proteinase k steps.
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Field Testing

We collected pellets of unknown age
field. We collected 20 pellets on May 4
along a 100 meter transect on the Cle
National Forest, Idaho. Collected pellets
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Here we tried a different sampling scheme,
to the large number of pellets observed. We
lected 1 pellet every 10m along a 190 m trans

To test for the presence of usable DNA we
amplified cytochrome b (cytb) using the polymerase
chain reaction (PCR) and primers (L14724 and
H15149; Gottelli et a1. 1994). There is thought
to be approximately 20 fold more mitochondrial
DNA extracted than nuclear DNA, thus even
if microsatellites could not be amplified from
pellets we wanted to know if any target DNA was
recovered. The reaction volume (50Jll) contained
50-100 ng DNA, l x reaction buffer (Perkin­
Elmer), 2.5 mM MgCI

2
, 200JlM each dNTP,

IJ!M each primer, 1 U Titanium Taq polymerase
(BD Biosciences). The PCR program was 94°C/5
min, [94°CIl min, 50°CIl min, 72°CIl min 30s]
x 34 cycles, 72°C/5 min. PCR products (442bp)
were run in a 2% agarose gel containing ethidium
bromide (1.5Jll) and lx TAE buffer (Ausubel et
a1. 1989).

We screened 15 microsatellite primers for
variability and suitability for use with DNA from
snowshoe hare pellets (Table 1). Seven of these
have been previously used on snowshoe hare tis­
sues (Burton 2002). DNA was amplified in a 10
ul reaction volume containing 1.0-3.0Jll DNA,
l x reaction buffer (Applied Biosystems), 2.0
mM MgCI

2
, 200JlM of each dNTP, IJlM reverse

primer, 1JlM dye-labeled forward primer, 1.5 mg!
ml BSA, and 1U Taq Gold polymerase (Applied
Biosystems). The PCR profile was 94°C/5 min,

TABLE 1. Table showing microsatellite loci used with snowshoe hares and their optimaI running conditions. Loci in bold
up the panel used for amplifying pellets. a Primers known to work on tissue samples (Burton 2002); however, Sol
was monomorphic in Montana samples and Sat 5 amplified null aIleles in this study. "This primer has been shown
be variable in other populations (Burton et aI. 2002) , but was monomorphic in our study area. A = number of alleles;
H, is observed heterozygosity, Heis expected heterozygosity, and PIC is polymorphic information content. All geneti~!
variability measures are caIculated based on 5 tissue samples.

Temp Size Range Amplify Amplify
Locus (0C) (bp) w/Tissue w/pellets A Ho He PIC Reference

Sat 12 a 63 119-125 Y Y 4 1.00 0.73 0.60 Mougel et aI. 1997
Sat 13 a 54 116-124 Y Y 4 0.60 0.73 0.61 Mougel et aI. 1997
Sat 16 a 57 101-111 Y Y 5 0.80 0.82 0.70 Mougel et aI. 1997
Sol 08 56 119-127 Y Y 4 0.60 0.73 0.60 Rico et aI. 1994
Sol 30 55 156-184 Y Y 6 0.60 0.89 0.77 Rico et aI. 1994
sass- 54 214-230 Y Y 2 0.4 0.36 0.27 Surridge et aI. 1997
5LIA8 60 133-139 Y Y 2 0.40 0.53 0.37 Korstanje et aI. 2003
7LID3 55 84-92 Y Y 3 0.20 0.38 0.31 Korstanje et aI. 2003
Sat 3 a,b 62 130 Y Y 1 0.00 0.00 0.00 MougeletaI.1997
Sol 28 56 171-183 Y N 5 NA NA NA Surridge et aI. 1997'
Sat z» 56 230-244 Y N 5 NA NA NA Mougel et aI. 1997
sacs- 54 238-266 Y N 5 NA NA NA Rico et al. 1994
Sat 5 a 56 NA N N NA NA NA NA Mougel et aI. 1997
63LF8 60 NA N N NA NA NA NA Korstanje et aI. 2003
6L3B8 50 NA N N NA NA NA NA Korstanje et aI. 2003
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Sol 28 produced too many stutter bands under
all PCR conditions, and markers Sat 2 and Sol
03 did not amplify with any of the pellets; thus
were discarded. There was no genotyping error
found for any of the 9 microsatellites that ampli­
fied successfully on fresh pellets when compared
to the matching tissue samples. With a 9-locus
panel (including monomorphic Sat 3) we have
ample power to detect unique individuals, as the
probability of identity (PI; Paetkau and Strobeck
1994) was 3.55 x 10-6 and PI(Sib) was 4.51 x 10.3

(Evett and Weir 1998, Waits et al. 2001).

DNA from pellets collected in the field dur­
ing the spring (n=20) and fall (n=20) had a 65%
amplification success rate at cytb per season. We
ran those samples that amplified at cytb with our
9-locus panel of microsatellites, running each
sample 3 times to ensure consistency (Taberlet et
al. 1996, Schwartz et al. 2004). The error checking
algorithms of McKelvey and Schwartz(2004) sug­
gest that the resulting identifications were largely
error free. Fifty-four percent of the pellets collected
in the spring and 69% of the pellets collected in the
fall that amplifiedusing cytb produced reliable (e.g.,
produced the same genotype across 3 replicates,
scored independently) genotypes. We identified 5
individual hares in the spring pellet sample, and 3
individuals in the fall sample (Figure 1).
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for a total of 20 pellets. Samples were brought to
the laboratory and tested with mtDNA and the
microsatellite panel we developed.

To test for genotyping errors (scoring errors,
false alleles, or allelic dropout) we compared pellet
samples to tissue samples from known individuals
in our captive colony. To eliminate any bias in
the scoring, pellet samples were scored separate
from the tissue samples (i.e., pellet samples were
run on different gels and entered into a database
without knowledge of the tissue samples) by two
independent observers. Additionally we tested our
field samples for errors with the EB and DCH tests
described in McKelvey and Schwartz (2004).

We found 12 microsatellite primers that produced
scorable products (Le., with low stutter and high
consistency) on snowshoe hare tissue (Table 1).
Three other loci tested, Sat5, 63LF8, and 6L3B8
did not amplify snowshoe hare tissue reliably
(Table 1).

We examined the matching pellet samples
from captive hares by testing the 12 microsatel­
lites that were successful on tissues. We found 9
primers amplified and produced scorable, variable
products with DNA from pellets (Table 1).Marker

Figure 1. The top line represents the test of the methods during the spring 2004, and the bottom line represents the test of the
methods during the fall 2004. In the spring a 100 meter transect was established and all pellets along that transect,
regardless of age, were collected. In the fall, 20 stations placed at 10 meter intervals were established and pellets within
1 meter of the location were collected. The white squares represent samples where no DNA was obtained from the pel­
let, and black squares are where DNA was extracted, but only mtDNA analysis was successful. Each color triangle is
a unique individual in a field test. In the spring we identified 5 individuals and the fall we identified 3 new individuals.
Numbers above the triangles are individual hare identifications.



Discussion

Pellets have been used to estimate hare abundance
because they are easy to collect. However, when
hares are present at low densities, pellet counts
exhibit high plot-to-plot variance and become
poor predictors of numbers of hares trapped
(Mills et al. 2005). Hares, however, produce an
abundance of pellets-over 500/hare/day (Hodges
1999) providing ample sign of use by individual
hares. This panel of microsatellite DNA mark­
ers for obtaining individual identification from
pellets, therefore has much promise for indexing
or estimating hare numbers, particularly when
hares are scarce.

Before these methods are used for CMR,
several sampling issues need to be resolved. For
instance, if multiple sampling occasions are used,
both temporal and spatial closure assumptions
need to be considered. Ideally, all pellets from
the area of interest should be removed prior to
the time frame of interest, to prevent identifying
an individual that is no longer in the area due to
death or emigration. DNA may prove ideal for
this situation as DNA degrades over time, and
pellets that successfully amplified DNA were
more likely recently deposited than those that
failed. Further research on the degradation rates
ofpellets should be undertaken before conducting
a formal study to estimate hare abundance. The
number of pellets produced by hares in a stand
can be substantial (Hodges 1999), thus a sampling
strategy to minimize redundant sampling will also
need to be developed.

DNA data are not without potential problems.
When DNA iscollectedfrom non-invasive samples,
genotyping errors can lead to an overestimation of
abundance (Waits and Leberg 2000, Creel et al.
2003, McKelvey and Schwartz 2004, Pompanon
et al. 2005). However, there are both mechanical
(Taberlet et al. 1996) and analytical approaches
(Paetkau 2003, McKelvey and Schwartz 2004) to
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detect errors in genetic datasets, as well as ways
to model error rates using formal mark-recapture
methods (Lukacs and Burnham 2005).

In this study, we specifically identified prim­
ers that produced reliable genotypes from pellet
samples-amplification rates for cyt-b screened
pellets were over 50% on samples of unknown
age. An important goal of future research will
therefore be to better identify those pellets likely
to produce quality DNA (e.g., through the use
of quantitative PCR, Morin et al. 2001). As an
example, during the process of extracting DNA
from scat we anecdotally noticed that when the
wash buffer product was light colored or clear,
DNA was absent or in low quantity. This property
and other physical characteristics associated with
specific pellets may allow for much more efficient
screening for sample quality.

In summary,we now hav.e a panel of 9 microsat­
ellites that can provide snowshoe hare individual
identification at a relatively low cost providing
the basis for accurate density estimation. Future
research should concentrate on DNA degradation
rates, identifying pellets likely to produce DNA,
and evaluating sampling designs. The promise
of molecular tagging has shown useful for a va­
riety species (Taberlet et al. 1997, Paetkau 2003,
Schwartz et al. 2004), and should be considered
for snowshoe hares as a complement to pellet
counts and trapping, especially when hare densi­
ties are low.
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