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Abstract

Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral
imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after
large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the
application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned
Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green
vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2=0.21 to
0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-
derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2=0.20 to 0.58) and found to be comparable
to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess
the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover
and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Justification

Burn severity is a broad term used to describe the magnitude
of fire effects on vegetation and soil and related ecological
processes (Lentile et al., 2006). The severity of a wildland fire is
mapped as soon as possible to capture immediate postfire
conditions and to assist rapid response rehabilitation crews in
mitigating immediate and long-term fire effects on the
landscape. Burn severity and recovery potential vary depending
upon the pre-fire environment and the intensity and duration of
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the fire in a given location (DeBano et al., 1998; Ice et al., 2004;
Ryan, 2002; Ryan & Noste, 1983; van Wagtendonk et al.,
2004). Although a continuum of fire effects on the environment
can be evaluated to assess burn severity (Jain et al., 2004), it is
generally mapped in discrete categories of unburned, low,
moderate, and high, corresponding to the relative magnitude of
change in the post-wildfire appearance of vegetation, litter, and
soil (Lutes et al., 2006; Miller and Yool, 2002).

Potential watershed responses to wildland fire, such as
increased peak flows, runoff, and erosion, typically increase
with severity of fire effects on the ground-surface (DeBano,
2000; Moody & Martin, 2001; Moody et al., 2005; Robichaud,
2000). Areas that exhibit characteristics of moderate or high soil
burn severity, such as soil charring (gray to orange soil color) and
complete loss of vegetative cover, are at increased risk of soil
erosion. Postfire assessment and mapping of soil burn severity
and soil exposure is crucial for making decisions concerning
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erosion mitigation and hillslope stabilization treatments (Lewis
et al., 2006; Parsons, 2003).

The goal of this study was to determine how remotely sensed
hyperspectral data can be used to analyze and map postfire soil
burn severity. The specific objectives were to: 1) use spectral
mixture analysis of hyperspectral imagery to discriminate
ground characteristics that are indicative of soil burn severity;
2) compare ground measurements to the relative abundance of
each endmember estimated from the spectral mixture analysis;
and 3) compare spectral mixture analysis results of the burned
area with a standard burn severity map derived from
multispectral imagery.

1.2. Traditional burn severity mapping

Burn severity maps are typically created from multispectral
satellite imagery such as Landsat Thematic Mapper (TM) or
Enhanced Thematic Mapper Plus (ETM+) (Clark et al., 2003;
Orlemann et al., 2002; RSAC, 2005). TM and ETM+ are often
used because transformed reflectance (R) values of two bands,
near-infrared (NIR; band 4: 750–900 nm) and mid-infrared
(MIR; band 7: 2090–2350 nm), are particularly sensitive to fire-
induced changes in vegetation and soil (Lutes et al., 2006; van
Wagtendonk et al., 2004). A decrease in green vegetation and
vegetation moisture, due either to fire or to vegetative
productivity, causes R4 to decrease with burn severity, while
R7 increases because of the decrease in moisture and increased
exposure of soil and rock and fewer shadows from trees (Lutes
et al., 2006). Therefore, the normalized ratio of these bands,
known as the Normalized Burn Ratio (NBR), is used as an index
of burn severity (Lutes et al., 2006). The NBR is calculated by:

NBR ¼ ðR4−R7Þ=ðR7þ R4Þ: ð1Þ

Because the change in vegetation and soil properties due to
the fire is a more appropriate measure of fire effects than simply
the postfire surface condition, pre- and postfire NBR values are
commonly differenced:

DNBR ¼ NBRpre−NBRpost ð2Þ
with the resulting index known as the differenced Normalized
Burn Ratio (dNBR) (Lutes et al., 2006). NBR values are
strongly positive when vegetation is green and thriving. When
vegetation is sparse or senesced, NBR values are near zero;
when soil exposure is high and there is little or no green
vegetation (such as after a recent fire), NBR values are negative
(Lutes et al., 2006). dNBR is also driven by green vegetation
and soil exposure, at either end of the burn severity spectrum,
but since the pre- and postfire values are differenced, low dNBR
values indicate low burn severity and high dNBR values
indicate high burn severity (opposite of NBR).

Higher dNBR values are indicative of areas that experienced
the greatest change due to the fire, or high burn severity. High
burn severity generally indicates some or all of the following: an
increase of scorched and blackened vegetation and a decrease in
green vegetation, a decrease in vegetative and soil moisture, and
increased exposure of light-colored soil and ash (Lutes et al.,
2006). Unburned and areas burned at low severity are indicated
by little change from pre-fire conditions, with only light or fine
fuels being consumed and minimal increase in soil exposure.

The dNBR is calculated using an immediate postfire image
for an initial assessment, and may be repeated one or more years
later for an extended assessment. The initial assessment quickly
provides a map of the fire perimeter and a preliminary estimate
of burn severity to be used for stabilization and rehabilitation
planning. However, the initial assessment may not capture the
actual severity of the fire, which is evidenced by delayed tree
mortality and revegetation. An extended assessment gives a
better evaluation of the long-term ecological consequences,
which are evaluated from the vegetation recovery and the rate of
return to pre-fire conditions—a process that can take up to 10
years or more. One difficulty of extended assessment is the need
to calibrate observed responses to pre-fire conditions which may
become more difficult in subsequent years (Lutes et al., 2006).

Few studies have assessed the quantitative, physical
characteristics of dNBR classes on the ground (Roy et al.,
2006). The dNBR has primarily been evaluated through
comparisons to the Composite Burn Index (CBI), an index of
burn severity assessed in the field across a matrix of vegetative
criteria to validate the dNBR (Lutes et al., 2006). The dNBR has
been compared to CBI plots with reasonable agreement (Cocke
et al., 2005; Epting et al., 2005; Sorbel & Allen, 2005; van
Wagtendonk et al., 2004). Drawbacks of the dNBR and the CBI
are that both are qualitative indices which are prone to
subjectivity when they are stratified into burn severity classes
(Lentile et al., 2006). Another drawback of the CBI is that it
requires knowledge of the pre-fire conditions as all values are
assigned based on the change in condition due to the fire. Hence,
the CBI and dNBR are most accurately assessing the magnitude
of change, rather than the current conditions on the ground.

Burned Area Reflectance Classification (BARC) maps are
created from classified dNBR values as soon as possible after a
fire (Lutes et al., 2006; RSAC, 2005). Valuable time and re-
sources are spent by postfire assessment teams adjusting
preliminary BARC maps to produce an acceptable burn severity
map related to surface/soil conditions or vegetation mortality
(Clark et al., 2003; Hardwick et al., 1997; Hudak et al., 2004;
Parsons & Orlemann, 2002; Patterson & Yool, 1998). BARC
maps require adjustment because the standard formula that is
used to classify dNBR values does not universally apply to
every vegetation type that burns. For example, in grasslands or
areas of sparse pre-fire vegetation, such as chaparral, complete
vegetation combustion does not necessarily indicate high burn
severity as it would in a forest environment. The adjusted
BARC map classes must represent the magnitude of change
from pre-fire conditions. Modifications regarding specific
resources at risk help direct the interpretation of the burn
severity map. To accurately prescribe soil stabilization treat-
ments to high erosion-risk areas, a burn severity map must
represent fire effects on the soil surface (Parsons, 2003).

Hyperspectral sensors collect high spectral and spatial
resolution data that can distinguish finer surface features than
broadband satellite imagery and may be able to better
distinguish postfire ground cover and conditions. Jia et al.
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(2006) successfully mapped fractional cover of photosynthetic
and non-photosynthetic vegetation and soils using AVIRIS
(Airborne Visible and Infrared Imaging Spectrometer) data on
the Colorado Front Range. van Wagtendonk et al. (2004)
calculated a multi-temporal band ratio similar to dNBR using
AVIRIS hyperspectral bands (788 nm and 2370 nm), which
showed that the ratio between higher spectral resolution data
may have the potential to be slightly more sensitive to fire
effects than traditional broadband ratios. Their work illustrated
the potential advantages of higher spectral resolution and
suggested exploiting the discriminatory power of hyperspectral
imagery for postfire assessment.

Other methods and sensors have been used to map and
classify burn severity. Landmann (2003) used a spectral mixture
model with Landsat data to map ash and combustion
completeness. His results showed that ash abundance increased
with increasing vegetation combustion. Smith et al. (2005) used
a spectral mixture model in an African savannah to determine
the correlation between increased reflectance (due to the
increase in white ash) and burn severity. They found that
when the soil was covered with ash, the reflectance in high
severity areas was much higher after the fire. Trigg and Flasse
(2000, 2001) evaluated the ability of visible through long
wavelength mid-infrared reflectance to detect fires and fire
effects. They determined that MODIS and Landsat satellite
sensors are appropriate for detecting and evaluating the effects
of fire in burned shrub-savannah. Others have made remote
assessments of burn severity using Landsat, SPOT, and AVIRIS
data, many of which are summarized in Lentile et al. (2006).

1.3. Hyperspectral remote sensing

Airborne hyperspectral sensors provide imagery in narrow
bands of reflectance spectra arranged contiguously from the
visible through the short-wave infrared (SWIR) range of the
electromagnetic (EM) spectrum, approximately 400 nm to
2500 nm. The spectral bandwidth and sampling interval
typically ranges 10 nm to 20 nm and the pixel size of the
high spatial resolution images is as fine as 1 m to 5 m, over an
area of many square kilometers. Field spectrometers provide
even higher spectral resolution (1–2 nm bandwidths and sub-
meter spatial sampling) for the same spectral range, and can be
used to relate the reflectance from ground-surface features to
remotely sensed imagery (Clark et al., 2002).

A single image pixel is assumed to be a mixture of the sum of
the individual reflectance spectra (endmembers) of the reflective
surfacematerials (Adams et al., 1985; Roberts et al., 1993; Smith
et al., 1990). Each pixel retains the characteristic features of the
individual spectra from each of the component reflective
materials; however, they may be influenced by surrounding
pixels (Townshend et al., 2000). Once endmember spectra are
identified, spectral unmixing of individual pixels can estimate
the fractional component spectra and, in turn, the physical
fractional component of the materials within the pixels (Adams
et al., 1985; Roberts et al., 1993; Theseira et al., 2003). Recent
research has suggested that most rural land cover scenes can be
mapped as endmember combinations of green vegetation, non-
photosynthetic vegetation, soil and rock, and shade (Adams
et al., 1995; Roberts et al., 1993; Theseira et al., 2003). A
combination of these endmembers with ash and charred
vegetation endmembers would account for the majority of the
cover types in a typical postfire scene.

Mixture Tuned Matched Filtering (MTMF) is a type of
spectral mixture analysis that performs a ‘partial’ spectral
unmixing by identifying only a single, user-defined endmember
at a time (Boardman, 1998). The response of the endmember of
interest is maximized and the unknown background is
suppressed (Harsanyi & Chang, 1994). The result is similar to
traditional spectral mixture analysis in that grayscale images
(scale 0–1, where 1 is a perfect match) of the endmember of
interest are produced. The advantage of this technique is that it
is unnecessary to identify all possible endmembers in a scene,
and it may be superior for vegetation mapping (Boardman et al.,
1995; Glenn et al., 2005; Harris et al., 2006; Mundt et al., 2005;
Williams & Hunt, 2002). MTMF may also outperform standard
mixture modeling in the case of subtle, subpixel occurrences
(Boardman, 1998), which is often the case after a fire, e.g.,
small litter or ash fractions. Dominant spectral signatures, such
as exposed soil or charred blackness after a fire, make it difficult
to discern minor vegetation fractions in an image (Smith et al.,
1990). The ability to distinguish even small patches of
remaining vegetation or patches of ash would provide a better
indication of fire effects on soil.

2. Study area

Between 8 June and 2 July 2002, the Hayman Fire burned
more than 55,000 ha within the South Platte River drainage on the
Front Range of the Rocky Mountains between Denver and
Colorado Springs, Colorado (Graham, 2003) (Fig. 1). The South
Platte River flows from southwest to northeast through the burned
area, with the Cheesman Reservoir (a municipal water source) at
risk for contamination via runoff and erosion. The long-term
average annual precipitation is 400 mm at the Cheesman weather
station (elevation 2100 m) (Colorado Climate Center, 2004).
Elevations within the burned area extend to over 3000 m and
precipitation at higher elevations is likely to be greater than that
measured at the weather station. The region is semi-arid, with a
late summer monsoon season characterized by short-duration,
high-intensity storms. The region is underlain by the granitic
Pikes Peak batholith, with frequent rock outcrops (Cipra et al.,
2003). The main soil types are Sphinx and Legault series, which
are coarse-textured sandy loams, gravelly sandy loams and clay
loams (Cipra et al., 2003; Robichaud et al., 2003). The dominant
tree species are ponderosa pine (Pinus ponderosa) and Douglas-
fir (Pseudotsuga menziesii) (Romme et al., 2003).

An initial burn severity map of the Hayman Fire was created
from a 16 June 2002 SPOT image (Annette Parsons, pers. comm.,
2005) because Landsat data were not immediately available. This
burn severitymapwas used by rapid response postfire assessment
teams to guide postfire stabilization and rehabilitation planning,
but within the scope of this project, the map was used only to
select ground plot locations (Fig. 1). Landsat data were used at a
later date to calculate initial and 1-year postfire (extended) dNBR



Fig. 1. Burn severity map of the Hayman Fire. Transect locations and an example transect layout is shown.
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values. The initial dNBRvalueswere classified to create a Burned
Area Reflectance Classification (BARC) map. The available
cloud-free dates of the Landsat pre-fire, immediate postfire, and 1-
year postfire images were 12May 2001, 2 July 2002, and 11 June
2003, respectively. In this study, we compare the BARCmap and
dNBR values to the ground data and hyperspectral data.

3. Data acquisition

3.1. Ground measurements

Ground reference validation data were collected between 17
July and 2 August 2002. Approximately 60 sample plots were
selected in each of the three burn severity classes as delineated
by the BAER burn severity map. East–west transects were
established in visually homogenous burn sites at least 20 m
from roads. The transects were intended to be 200 m in length
(Fig. 1), with central reference plots at 0 m (west endpoint),
50 m, and 200 m (east endpoint). The locations of the central
reference plots were located with a GPS unit. At each reference
point three 20 m radials were established at 0, 120 and 240°,
respectively, with a tape and a compass. The sample plots were
4 m in diameter at the end of each of these radials. These groups
of three plots are referred to as plot clusters.

The actual transect lengths were between 50 and 400 m,
depending on topography and the uniformity of burn severity.
The shorter transects only had reference points at each end,
while the longer transects had reference points at the endpoints
as well as at 50 m from the west endpoint, and in the case of the
400 m transect, at 250 m from the west endpoint. In the low
burn severity class there were three 50 m transects with six plots
each and five 200 m transects with nine plots each, for a total of
63 plots along eight transects. In the moderate burn severity
class there were six 200 m transects and one 50 m transect for a
total of 60 sample plots along seven transects. In the high burn
severity class, there were five 200 m transects and one 400 m
transect for a total of 60 sample plots along six transects. The
spatial and directional layout of the transects and sample plots
was designed to encompass the spatial variability of the field
measurements by sampling at short and long distances between
sample plots (35 to 435 m apart) as well as sampling in different
directions so that variation from slope position would be
captured. Measurements from the 3 plots were averaged to the
plot cluster scale, to minimize spatial variability at a finer scale
than the geolocational certainty of the hyperspectral imagery.

Fractional cover of all present ground cover components was
visually estimated within the 4-m circle at each plot. Minor ground
cover fractions, which were often grasses, forbs, shrubs, woody
debris, or stumps were estimated first. Avalue of 1%was recorded
if there was a trace of the material within the plot. The more
abundant fractional ground cover components (exposed mineral
soil and rock, ash, and litter) were then estimated in 5% increments
with the largest cover component estimated last. All cover fractions
were required to sum to unity. Exposed mineral soil and rock were
considered ground cover for the purpose of accounting for all
physical space within a plot. New litter, mostly postfire needlecast



Fig. 2. Spectral reflectance of the image-derived endmembers that were used in
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from scorched trees, was estimated separately from scorched litter
that was present at the time of the burn to best capture the ground
conditions immediately after the fire. Thus, new litter was not
included in the cover fractions that summed to unity. Percent green
and percent char (scorch) of all ground cover (b1 m high)
components were later calculated, and percent soil and rock were
added together into an inorganic cover fraction, to better test
correlations between the ground and hyperspectral image data. For
clarity, the combination of soil and rockwill be referred to as soil or
soil cover.

The number of trees, their species, height, diameter, crown ratio,
and percent green, brown and black crownwere measured in the 7-
m circle. To estimate the percent of the plot that was occluded by
overstory canopy vegetation, four densiometer measurements were
taken, one in each of the four cardinal directions, at the edge of the
4-m circle plot. The mean percent canopy cover was calculated
from these four measurements and was applied to the entire plot,
with the remainder considered understory, or ground cover. The
fractions of green and scorched canopy vegetation were calculated
as a percent of the total canopy cover of the plot and added to the
surface vegetation measurements. For clarity, ‘ground’ data from
this point on refers to surface combined with canopy vegetation
measurements at each plot.

3.2. Field spectrometer data

From 17–19 July 2002, bright-target ground-calibration field
spectra were collected through cooperation with the USGeological
Survey, using an ASD (Analytical Spectral Devices1, Boulder,
Colorado, USA) Pro-FR field spectroradiometer. Spectra were
collected with the bare tip foreoptic from a height of ∼1 m (FOV
22°), and were assumed to be reasonably homogenous at that
resolution. The ASD Pro-FR reports reflectance for 2151 channels
at 1-nm spacing over the 350 nm to 2500 nm wavelength range,
spanning nearly the same portion of the EM spectrum as the Probe I
sensor used for airborne imaging. The field spectroradiometer was
calibrated against a Spectralon (Labsphere1, North Sutton, New
Hampshire, USA) 100% reflective panel immediately before and at
frequent intervals during field spectra collection. Spectralon is a
bright calibration target with well-documented reflectance in the
400 nm to 2500 nm region of the EM spectrum, and is used to
convert relative reflectance to absolute reflectance. An absorption
feature at 2130 nm unique to Spectralon was corrected before the
field spectra were related to the image spectra (Clark et al., 2002).
The calibration field spectra were collected over spectrally
homogenous granitic rocks on the north shore of the Cheesman
Reservoir. All spectra were inspected for quality, and outliers were
discarded. The mean spectrum of ∼200 granitic rock spectra was
convolved to the bandwidth wavelengths of the Probe I sensor.

3.3. Airborne hyperspectral imagery

Fourteen adjacent flight lines of airborne hyperspectral
imagery were collected on 10 August 2002 over the Hayman
1 Trade names are included for the benefit of the reader and do not imply
endorsement by the US Department of Agriculture.
Fire between 1630 and 1900 UTC (solar noon 1905 UTC). The
Probe I whisk-broom sensor was flown at 2100 m AGL and
collected data along a track ∼28 km long and 2.3 km wide-
corresponding to a 512 pixel-wide swath with each pixel 5 m by
5 m at nadir. Reflected EM energy from the surface was
received in 128 contiguous spectral bands that spanned 432 nm
to 2512 nm, with a spectral bandwidth of 11 nm to 19 nm. An
on-board GPS and inertial measurement unit (IMU) acquired
geolocation data that were matched with the spectral data
collection. The geolocation data, together with 30-m digital
elevation models, were used to generate Input Geometry (IGM)
files, which were later used to georeference the results.

Ideally, the hyperspectral imagery would have been acquired
simultaneously with the field spectra and ground data, but
smoke, weather, and logistical issues made a time delay
unavoidable. The most likely differences in the ground
conditions between the times that the ground data and airborne
imagery were collected are ash removal and char redistribution
due to wind and rain, increased needlecast on the ground, and
green revegetation, particularly near water sources. We were not
able to measure the percent change of any of these differences at
the plots; however, casual field observations during this time
period and at the time of image acquisition suggested that
changes in these conditions were minor and that the image
captured the approximate ground conditions at the time of
ground data collection.

3.4. Atmospheric correction of hyperspectral data

The airborne hyperspectral data were converted to reflec-
tance using ACORN software (Atmospheric CORrection Now,
the MTMF unmixing process. The soil spectrum is a bright, high albedo
spectrum that is abundant in the Hayman Fire area. Gray ash is a mixture of
white ash and black char. Scorched vegetation is charred and non-
photosynthetic, while green vegetation is still alive one month after the fire.



Fig. 3. Red, green, blue (RGB) color composite of the unmixed image; the white line is the approximate fire perimeter for reference. Red pixels represent ash, green
pixels represent green vegetation, blue pixels represent soil, and black pixels represent background material.
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Analytical Imaging and Geophysics LLC, Boulder, CO)
without any additional artifact suppression (Analytical Imaging
& Geophysics, 2002). ACORN uses a radiative transfer model
to calculate atmospheric gas absorptions and scattering; these
characteristics are then used to convert sensor radiance to
Table 1
Number of plots with target material present or detected (n), means, medians,
ranges and standard deviations (std.) of the measured ground cover and spectral
values (MTMF scores) of each endmember classified by soil burn severity

Ground
cover

Burn
severity

Ground cover (%) MTMF scores

n Mean Range Std. n Mean Range Std.

Ash Low 20 15 0–36 10 13 7 0–31 10
Moderate 20 12 4–30 7 16 8 0–25 7
High 20 25 5–68 17 18 26 0–89 30

Soil Low 21 26 2–70 18 18 2 0–22 5
Moderate 20 46 5–81 20 15 3 0–10 3
High 20 56 22–85 20 18 6 0–18 6

Scorched
vegetation

Low 21 55 2–89 22 19 13 0–79 19
Moderate 20 48 20–87 19 17 23 0–59 18
High 20 29 13–49 9 19 4 0–21 6

Green
vegetation

Low 21 18 2–31 9 19 11 0–43 11
Moderate 20 6 0–23 7 14 2 0–17 4
High 12 1 0–5 1 7 1 0–3 1

The total N in each class is the number of plot clusters: low burn severity (21);
moderate (20); high (20).
apparent surface reflectance. The non-smoothed reflectance
data were further refined with a radiative transfer ground-
controlled (RTGC) calibration (Clark et al., 2002). This process
involved calculating a multiplier from the differences between
the mean image-reflectance spectrum over the area where
bright-target calibration field spectra were collected and the
corresponding average field-reflectance spectrum. The multi-
plier was then applied to each flight line of ACORN corrected
image-reflectance data separately (Laes et al., 2004). Due to the
geographic extent of the data and the changes in atmospheric
conditions in the time required to acquire all 14 flight lines,
residual atmospheric effects were still apparent in the corrected
data. Thus, each flight line was processed and analyzed
separately to avoid exacerbation of these residual differences.

4. Data analysis

4.1. Image analysis

Eleven water vapor bands near 1400 nm and 1900 nm and
two other noisy bands (895 nm and 2512 nm) were excluded
from image analysis. The remaining 115 bands of RTGC-
corrected image-reflectance data were reduced further with the
Minimum Noise Fraction (MNF) transformation to 20 MNF



Fig. 4. Grayscale images of the mixture tuned matched filter (MTMF) scores: a) ash MTMF, b) soil MTMF, c) scorch MTMF, and d) green MTMF. Bright areas
represent higher fractional cover; scale is 0–1. An approximate fire perimeter (white line) is shown for reference.
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bands. The MNF transformation is essentially a two-phase
principal component analysis that segregates the noise from the
data resulting in a reduced number of bands containing the most
meaningful information (Green et al., 1988). The first 20 MNF
bands were evaluated based on the associated eigenvalues and
determined to have the most spectral information and the least
amount of noise. The MTMF partial-unmixing algorithm
(Boardman, 1998) was applied to the 20 MNF-transformed
bands on all 14 flight lines separately.

A library of image-derived endmembers representing gray ash
(a mixture of white ash and black char), soil, and scorched and
green vegetation was created for each flight line for use in the
unmixing process. The endmembers were identified using the
Pixel Purity Index (PPI) routine (Boardman et al., 1995) in ENVI
(Environment for Visualizing Images) software (Research
Systems Inc., Boulder, CO). The purest pixels, containing one
homogenous cover type, in each flight line were identified with
the PPI. By examining the spectral signature of each pixel and our
a priori knowledge of most of the fire area we were able to select
pixels in each flight line that represented ash, soil, scorched and
green vegetation. Themean spectral signature of the pure pixels in
each class was calculated for use in the spectral unmixing. These
endmembers from flight line 7 are shown in Fig. 2. All the
libraries were transformed toMNF space using the same statistics
file as derived from theMNF transformation of the corresponding
flight line. By creating a different library for each flight line, any
residual atmospheric effects (after the RTGC calibration) were
present in both the library and the corresponding flight line, thus
minimizing their effect on the unmixing process. A disadvantage
of this method is that a slightly different library was used for each
flight line, somewhat reducing the consistency from one flight
line to the next, which is apparent in themosaicked image (Fig. 3).

Two gray-scale output images were produced for each input
spectrum on each flight line: a matched filter score and an



Table 2
Pearson correlation coefficients (r) between ground and image data (n=61 plot clusters)

Ground cover Hyperspectral imagery Landsat imagery

Green MTMF Scorch MTMF Ash MTMF Soil MTMF NBR Immediate dNBR Extended dNBR

Green vegetation (%) 0.70 – −0.29 −0.35 0.76 −0.76 −0.68
Litter (%) 0.53 0.27 – −0.49 0.76 −0.71 −0.48
New litter (%) – 0.69 −0.29 – 0.29 −0.24 −0.19
Scorched vegetation (%) 0.29 0.46 – −0.32 0.53 −0.49 −0.25
Ash (%) – – 0.65 – −0.36 0.44 0.50
Soil (%) −0.53 −0.25 – 0.47 −0.62 0.50 0.24

Non-significant correlations are denoted by (–), other correlations are significant at p-valueb0.05.
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infeasibility value (Boardman, 1998). TheMTMF score indicates
how well the image pixel compares to the library reference
spectrum andmeasures how spectrally abundant thatmaterial is in
the image pixel. Spectral abundance in an image pixel
corresponds to physical abundance in the same location on the
ground. A score of zero means no match to the input endmember
and no presence of the material in a pixel, while a score closer to
one indicates a better match to the input endmember and greater
abundance of the material in the pixel. The infeasibility (IF) value
shows how likely or unlikely the match is. In general, pixels that
combine higher MTMF scores with low IF values are a better
match to the endmember spectrum. A scatterplot of MTMF score
versus infeasibility is used for the selection of pixels that best
match the library reference spectrum and to eliminate pixels
where high IF values occurred with positive MTMF scores (i.e.,
false positives) (Laes et al., 2004).

As the MTMF routine is a partial-unmixing process, the sum
of the MTMF scores at each pixel was almost always less than
unity because unidentified background material existed in
nearly every pixel. The MTMF routine projects the mean of the
background data to zero (i.e., half of the background will have
negative values). Negative MTMF scores or MTMF scores
greater than 1 (for at least one of the four endmembers) were
present on ∼90% of pixels, both of which are physically
meaningless. These values were re-scored as 0 or 1 to indicate
no match or a perfect match, respectively, to the input
endmember. Finally, all MTMF scores were multiplied by 100
to assess the 1:1 correlations with the ground data.

Once each flight line was unmixed, the resulting score and
infeasibility images were georeferenced, and all the flight lines
were combined into a single image mosaic. This image
contained eight continuous gray-scale bands: IF and score
images for each of the component spectra of ash (ash score),
scorched vegetation (scorch score), green vegetation (green
score), and soil (soil score). The mosaicked image revealed
location discrepancies between features on adjacent flight lines.
Where the flight lines overlap, up to 30-m (6-pixel) differences
were visible. Fortunately, most of the ground plots did not fall in
these overlap regions between flight lines. To evaluate the
accuracy of the georeferenced image, distances and directions to
road intersections were measured for about half of the transects,
and errors of 5 m to 10 m (1–2 pixels) were found to be
common. To compensate for some of the geolocational
uncertainty and the effects of surrounding pixel radiance,
pixel values within a 5-m radius footprint around each plot
location were averaged. Similarly, the means of 3 MTMF scores
and 3 dNBR values (extracted from the BARC map) were
calculated for each 3 plot cluster in the same manner as was
done for the ground data so that all data were being compared at
the same spatial scale.

NBR values were calculated from the hyperspectral imagery
using approximately the same wavelengths that van Wagten-
donk et al. (2004) used to calculate dNBR with AVIRIS data.
These wavebands, at 780 nm and 2371 nm, correspond to
Landsat bands 4 and 7, respectively (see Eq. (1)). As only
postfire hyperspectral data were available, the differenced NBR
(dNBR) values were not calculated. The hyperspectral NBR
values were extracted at the plot locations and averaged for each
plot cluster.

4.2. Statistical analysis of unmixing results relative to ground
measurements

Detailed ground observations from the 61 plot clusters were
used to evaluate the image unmixing results. Correlations
between the 61 ground data values and the spectral abundance
from the unmixing results (MTMF scores) were assessed for
each endmember using the Pearson correlation statistic (SAS
Institute Inc., 1999). Correlations between ground data and the
hyperspectral NBR values, and the Landsat-derived dNBR
(immediate and extended) values were also calculated, and all
correlations were regarded as significant when p-valueb0.05.
Linear regressions (SAS proc REG) with ground data as the
independent variables and spectral data as the dependent
variables were used to further examine the relationship between
the ground and spectral data.

5. Results

5.1. Comparison of unmixing results with ground measurements

The presence of ash was spectrally detected in 47 of the 60 plot
clusters that had ash present. Green and scorched vegetation were
accurately detected in 40/53 and 55/61 of the plots, respectively,
and at least a trace of soil was spectrally detected in 51/61 plots with
soil or rock present (Table 1). MTMF scores of the selected
endmembers were abundant across the entire image, especially
within the fire perimeter (Fig. 4). The means and medians of the
measured ground values were generally higher than the
corresponding MTMF scores (Table 1 and Fig. 5), yet the positive



Fig. 5. Scatterplots of mixture tuned matched filter (MTMF) scores versus the ground data: a) ash, b) soil, c) scorched vegetation, and d) green vegetation. Best-fit
linear regression lines are shown as solid lines while a 1:1 line is shown as a dotted line.

475P.R. Robichaud et al. / Remote Sensing of Environment 108 (2007) 467–480
correlations between the ground measurements and the MTMF
scores indicated that as more of a material was measured on the
ground, the MTMF scores increased as well (Table 2).

The strongest correlation between a ground measurement and
MTMF score was green vegetation (r=0.70), which can be
attributed to the relative ease of detecting the canopy vegetation
with an airborne sensor (Table 2). Green MTMF scores were also
significantly correlated with litter (r=0.53), which may reveal a
certain amount of moisture or greenness left in some of the litter
on the ground, most likely in the areas burned at low severity.
Litter (r=0.27), new litter (r=0.69), and scorched vegetation
(r=0.46) had the strongest correlations with the scorch MTMF
score; these were the driest and partially charred vegetation
components. Percent soil and rock had a significant correlation
with the soil MTMF score (r=0.47). Ash was the only variable
positively correlated with the ash MTMF score (r=0.65). In the
areas with more prevalent ash cover, MTMF was an even better
predictor. When ash cover exceeded 25%, the correlation with
MTMF was 0.74 while the correlation with dNBR was 0.48.
When ash cover was less than 10%, the correlation with MTMF
was 0.10 while the correlation with dNBR was only 0.02
(although neither correlation is statistically significant at
pb0.05).

The NBR values from the hyperspectral imagery were
significantly correlated to all of the major ground cover classes
(Table 2). The strongest correlations were with green vegetation
and litter (r=0.76). The weakest correlations were with new litter
(r=0.29) and scorched vegetation (r=0.53). NBR values were
negatively correlated with ash (r=−0.36) and soil (r=−0.62).

When NBR values are differenced (dNBR), low values are
classified as low burn severity and values increase as the severity of
the burn, or the magnitude of change from pre-fire conditions,
increases. The strongest negative correlations between immediate
dNBR values and the ground data were with green vegetation (r=
−0.76) and litter (r=−0.71) (Table 2). As burn severity increased,
the correlations between dNBR values and ash (r=0.44) and soil
(r=0.50) became positive. The correlations between the extended
dNBRvalues (1-year postfire) were similar to the immediate dNBR
values, just slightly weaker (Table 2). The only correlation that was
stronger was between the extended dNBR and ash (r=0.50).

The results from the linear regressions show that the ground
cover and MTMF scores for all four endmembers were
statistically related and that MTMF scores may be used to
quantitatively predict ground cover components (Fig. 5). Ash and
green vegetation had the strongest relationships and the closest
1:1 fit with the MTMF scores (Fig. 5a, d). For comparison, the
results of the linear regressions between the ground data and the
dNBR values showed that as ash (r2=0.20) and soil (r2=0.25)
increased, so did the dNBR values and the overall burn severity
(Fig. 6a and b). As scorched (r2=0.23) and green vegetation
(r2=0.58) increased, dNBR values decreased along with burn
severity (Fig. 6c and d). The r2 coefficients were similar to those
for the regressions with MTMF scores for soil (r2=0.22) and
scorched vegetation (r2=0.21) (Fig. 5b,c). MTMF scores are a



Fig. 6. Scatterplots of dNBR values versus the ground data: a) ash, b) soil, c) scorched vegetation, and d) green vegetation. Best-fit linear regression lines are shown as
solid lines.
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better predictor of ash (r2=0.42), while dNBR values are better
predictors of green vegetation.

5.2. Postfire maps and spatial distribution of ground cover
components

The individual gray-scale fraction maps (Fig. 4) for each input
endmember may be viewed individually or in any combination in
a red–green–blue (RGB) color composite image for simultaneous
cover type detection (Fig. 3). The grayscale represents theMTMF
scores: black areas have zero value, or no match to the input
endmember, while the bright white areas have MTMF scores
greater than 0.3 (or∼30% cover in that pixel). AshMTMF scores
gave the best indication of the actual fire perimeter (Fig. 4a).
Therewere few light pixels outside of themain fire area, and those
that were outside were more of a gray color indicating a lower
MTMF score and a poor match to the ash endmember. Fig. 4b
represented soil abundance, both of which were widespread
throughout the entire image, not just within the fire perimeter. The
scorchMTMF score image (Fig. 4c)was similar to the ashMTMF
score image (Fig. 4a) in that the fire perimeter is discernible, yet
there are positive scorch MTMF scores outside the main fire
region. ScorchMTMF scoreswere positively correlatedwith litter
and new litter, both of which were present outside of the fire
perimeter. Green vegetation abundance was clearly more
prevalent outside of the fire area (Fig. 4d). Green vegetation
occurred within the fire perimeter mostly along stream networks
in valley bottoms. The outlines of some of the patches of ash
visible in Fig. 4a can be seen both in Fig. 4c and d, which are
remaining scorched and green vegetation in the transition areas
between burned patches. The combination of individual compo-
nents provided a better representation of the effects of the fire, as
each of the individual components (except for ash) were found
abundantly outside the main burned area.

The RGB (red, green, blue) color composite (Fig. 3) created
from layering individual unmixing results identified and
quantified relative ash, green vegetation, and soil. Ash was
indicated by red while exposed soil was a blue color, mixing
the two resulted in a purple or magenta color (Fig. 3). Green
vegetation was shown by the brightest green color and was
typically mixed with scorched vegetation, shown by a much
darker green color (Fig. 3). The fire perimeter was highlighted
on the northwest and southeast sides by extreme transitions
from ash to green vegetation. Low and moderate severity areas
were characterized by remaining green and scorched vegetation;
these areas were typically heterogeneous and had mixed patches
of both ash and soil (Fig. 3).

6. Discussion

6.1. Comparison of unmixing results with ground measurements

The identification and quantification of postfire ground
cover characteristics can be used to estimate immediate postfire
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effects and potential watershed response. Remotely sensed data
can provide this information with varying degrees of accuracy.
Although the correlations between the ground data and the
MTMF scores were comparable to the correlations between the
ground data and the NBR and dNBR values (Table 2), an
MTMF score provided quantitative and more physically
meaningful information than a dNBR value. The positive
correlations between the ground data and the MTMF scores
suggested that MTMF scores can detect vegetation, ash, and soil
components on the ground with a modest degree of certainty
(r= 0.5 to 0.7). The ability to identify postfire ash is perhaps the
most significant improvement over previous mapping methods.
White ash is indicative of complete surface vegetation combustion,
and is most prevalent in the severely burned areas of a fire
(Landmann, 2003; Smith et al., 2005).While therewere significant
correlations between the NBR and dNBR values with ash, these
generally indicated that ash occurred in areas where the canopy
vegetation had burned at high severity. The ability to map ash and
char, or a mix of the two (gray ash), on the ground is an
improvement over previous methods. Burned areas with little or
no remaining vegetative cover may be targeted for postfire
stabilization and rehabilitation, while areas with remaining ground
cover (litter, new litter, or green vegetation) may recover naturally
and more quickly and have little need for postfire treatments.

Ideally, an MTMF score represents a physical percentage of a
material on the ground-surface, and a best-fit line of MTMF
scores versus the ground data would have a slope close to 1.0. In
this study, the MTMF scores were mostly lower than the values
measured on the ground, which was mainly due to the partial-
unmixing algorithm; scores were not constrained to sum to unity.
By the nature of the sampling design, the ground cover data did
sum to unity. If the target material (endmember) was not found in
the pixel, the pixel was classified as background material
(Boardman et al., 1995). The 183 ground plots were aggregated
to 61 plot clusters that spanned the range of burn severities found
within the burned area. Thus, every endmember was not found in
every pixel, which resulted in many zeros on the endmember
scatter plots (Figs. 5 and 6). The soil MTMF scores were
particularly low, which may be attributed to vegetation (both
canopy and understory) occlusion of the soil surface (Fig. 5b).
When ground data were collected, at least 10% new litter
covered the soil surface on 40% of the plot clusters, but the
percent soil exposed was estimated beneath the new litter cover.
By the time the image was acquired, ∼2 weeks after the end of
field data collection, there was likely additional needlecast,
further obstructing the soil surface imaging capabilities.

Overall, the MTMF scores of each of the endmembers, ash,
soil, scorched and green vegetation, were significantly related to
and representative of the measured ground data. The hyper-
spectral data were acquired more than 1 month after the fire and
during that time a few storms caused some runoff and erosion,
which changed surface conditions by redistributing ash and
litter. Stronger correlations may have been found if the ground
data and image data were collected concurrently. In addition, the
inability to precisely georegister the image made it necessary to
compare the MTMF scores to aggregated plot cluster areas
rather than single pixel or plot locations.
Similar to the results in van Wagtendonk et al. (2004), the
NBR values that were calculated using the hyperspectral data
provided similar or slightly stronger correlations with the
ground data than the dNBR values from Landsat data (Table 2).
Hyperspectral NBR was significantly correlated to all of the
major ground cover classes, each of which is indicative of the
degree of burn severity. However, the difference between the
Landsat-derived dNBR values and the hyperspectral NBR
values was minimal, and would not justify the greater
acquisition cost or processing time of hyperspectral data versus
Landsat data. If only calculating NBR, the most significant
benefit of hyperspectral data over Landsat data, would be the
finer scale of the hyperspectral imagery. The hyperspectral NBR
provides an estimate of burn severity at a 5 m scale rather than
the 30 m scale available with Landsat imagery. This higher
resolution would allow for more precise postfire stabilization
and rehabilitation planning.

6.2. Postfire maps and spatial distribution of ground cover
components

Burned areas with either dominant ash cover or mixed soil
and ash would likely be classified as high soil burn severity.
Dominant ash or soil cover indicates that little vegetation
remains on the ground to protect the soil from wind or water,
and as a consequence, the area has an increased potential for
postfire runoff and erosion. In this study, ash was the
endmember that best corresponded to the perimeter of the
burned area and was the strongest indicator of high burn
severity. Ash can vary in color from white to dark gray,
depending on the combination of ash and char (Landmann,
2003). Fires of different combustion efficiencies produce
combustion residues of variable reflectance, from dark colored
char, indicating incomplete combustion, to brighter ash, for
efficient combustion (Trigg & Flasse, 2001). The ash end-
member used in this analysis was a gray ash endmember. The
ash signature was selected from patches of pure pixels that
appeared light gray (when the image was displayed in true
color) with no remaining vegetation in the area. There are few
published spectra of mixed ash; Landmann (2003) published a
range of ash spectra from 9% white ash (89% black char) to
100% white ash. Smith et al. (2005) also published black and
white ash spectra. When these spectra were compared to the ash
endmember used in this analysis, we confirmed our endmember
was a mixture of white ash and black char, however, it is
difficult to determine an approximate ratio of the two.

The other typical indicator of high burn severity is newly
exposed soil and rock. However, the Hayman Fire area is a dry,
mixed ponderosa pine and Douglas-fir forest with sparse
vegetation in many places as well as numerous rocky outcrops;
thus, it is expected that soil and rock will be detected throughout
the image regardless if the area burned. Therefore, ash was a
better indicator of effects directly from the fire. Often, a
combination of ash and soil can be used to evaluate the fire-
induced physical changes of the ground-surface and derive an
indication of the fire's effect on the soil. Kokaly et al. (2006)
made similar correlations between mapped postfire ash and soil

http://dx.doi.org/10.1016/j.rse.2006.08.006
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cover and the increased potential for runoff and erosion after the
Cerro Grande Fire in New Mexico. Regions that are at the
greatest risk of erosion are the areas where all vegetative ground
cover has been removed by the fire, i.e., ash or soil.

These results suggest that the ability to map discrete physical
ground cover characteristics (ash, soil, scorched and green
vegetation) using hyperspectral imagery surpasses the capabil-
ities of conventional multispectral burn severity mapping for
identifying areas with and without remaining vegetation cover
on the ground. Such a map would be useful in the time
immediately following a fire to help evaluate and prescribe
postfire erosion mitigation treatments.

6.3. Hyperspectral data limitations

Hyperspectral image data are useful to evaluate burned areas
after wildfires. However, if this information is to be used to
assist in postfire stabilization and rehabilitation decisions, then
timely data acquisition and analysis are essential. Within this
project, several operational issues became apparent: 1) because
of logistical, weather, and safety concerns and the presence of
smoke, image data are not easily acquired during or
immediately after a fire; however, rapid image acquisition and
data processing is essential if the image is to be used by postfire
assessment teams (Orlemann et al., 2002). 2) In areas requiring
large coverage, efforts must be made to maintain data quality
and consistency between flight lines (Aspinall et al., 2002). 3)
The large data files require that adequate personnel and
computer time, data storage, and processing capabilities be
available to produce a useful product. 4) And finally, the
predictive power of any image-to-ground postfire assessment is
limited ultimately by the presence of the overlying canopy.
Ground-surface features are most clearly imaged when canopy
cover is minimal, as the imaged vegetation fraction is
proportional to the areal abundance of overstory canopy cover
(Roberts et al., 1993).

All of these general limitations influenced this study. The
analysis of the data required the generation of an individual
reference library for each flight line. This cumbersome process
resulted in a final mosaic that was not entirely “seamless.”
Therefore, it is likely that only a few of the endmember libraries
may be useful on future fires in ponderosa pine and Douglas-fir
forests on similar soils. Additional research is needed to develop
an analytical procedure that can be used repetitively between
flight lines and, ideally, between fires. However, the spectral
endmembers types (ash, soil, scorched and green vegetation)
that were used in the unmixing were representative of soil burn
severity and were abundant on the ground plots within the
image, and these same endmembers could be used to evaluate
other burned areas.

7. Conclusions

The discrimination power of hyperspectral imagery allowed
postfire materials to be characterized within a 5-m pixel and
their physical abundance quantified for a corresponding ground
location. The hyperspectral unmixing results identified the
relative abundance of ground components (ash, soil, scorched
and green vegetation, litter and new litter) that were determined
to be important for evaluating soil burn severity. The measured
ground value of each component/endmember was significantly
related to the corresponding spectral MTMF scores based on an
assessment of 61 validation plots. Compared to Landsat data
which is currently used for postfire assessment, the additional
information provided by fine-scale hyperspectral imagery
makes it possible to more accurately assess the effects of the
fire on the soil surface. Quantifying ground cover character-
istics, rather than classifying NBR values derived from satellite
imagery, provided a better evaluation of the physical condition
of the soil surface. These surface fire effects, especially soil and
ash cover and the lack of any remaining vegetative cover, are
indicative of potential watershed responses. However, because
of logistical and safety concerns and the presence of smoke,
field and image data are not easily acquired during or
immediately after a fire. At the present time, using hyperspectral
imagery to evaluate burned areas has great potential, but further
research is needed to make these data products available for
postfire rapid response assessments.
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