
Three attributes of light can affect trout
vision: (1) intensity (photons ⋅ area–1time–1),
(2) spectral composition (wavelength [nm]), and
(3) polarization (the major plane of vibration in
which most photons oscillate). Recent research
has demonstrated that representatives of the
major extant clades of Salmoninae (i.e., rainbow
trout, cutthroat trout, brook trout, brown trout,
and Atlantic salmon) are able to detect polarized
light (Coughlin and Hawryshyn 1995, Novales-
Flamarique and Hawryshyn 1997, Parkyn and
Hawryshyn 2000) and can see light of varying
irradiance and spectral composition, including
ultraviolet, blue, green, yellow, and red (e.g.,
Douglas 1982, Bowmaker and Kunz 1987,
Hawryshyn et al. 1989, Deutschlander et al.
2001). Most of these studies have examined
the mechanisms underlying trout vision at the
cellular/physiological level using isolated tissues
or induced immobilization of whole organisms
(e.g., Hawryshyn and McFarland 1987, Haw -
ryshyn et al. 1989), whereas far fewer studies
have examined the behavioral effects of these
physiological differences in trout vision. Dou-
glas and Hawryshyn (1990) emphasized that

electrophysiological studies, although valuable,
were not reliable indicators of the response of
the whole animal: “Only behavioural (psycho -
physical) studies can tell us what the animal’s
visual system is truly capable of achieving.”

Photoreceptor cells (rods and cones) respond
to the number of photons striking the retina.
Scotopic vision is not possible until sufficient
photons have struck the retina to excite a ner-
vous impulse (e.g., Partridge 1990). Maximum
sensitivity to dim light has been defined as the
minimum number of photons to which a fully
dark-adapted animal will show a behavioral
response (Douglas and Hawryshyn 1990). Dark-
adapted scotopic vision is produced by a num-
ber of electrophysiological and biomechanical
changes in the retina (e.g., Bowmaker 1990,
Wagner 1990). Photopic vision occurs during
the day, whereas mesotopic vision is interme-
diate between photopic and scotopic vision.
Twilight periods span the transition from pho-
topic to scotopic vision. We compared the
maximum scotopic sensitivity of 4 species of
trout from twilight (mesotopic) to fully dark-
adapted vision. Maximum scotopic sensitivity
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in dark-adapted specimens of 4 species of trout
was determined by the earliest commencement
of visual behavior during a simulated dawn.

In the Rocky Mountains, introduced brook
trout, brown trout, and rainbow trout (common
names follow Nelson et al. 2004) have displaced
native cutthroat trout, reducing their distribu-
tion to a small fraction of their historic range
(e.g., Young et al. 1996). Introduced trout may
grow faster and achieve a greater reproductive
output than native cutthroat trout if they can
feed longer because of a greater scotopic sen-
sitivity. Thus, scotopic sensitivity may partially
explain the ability of introduced trout to exclude
native cutthroat trout.

We are aware of only 3 behavioral studies
using whole organisms to compare the scotopic
vision of different salmonid species. Henderson
and Northcote (1985) found that lake popula-
tions of Dolly Varden (Salvelinus malma) for-
aging under dim light were better at detecting
prey than cutthroat trout (Oncorhynchus clarki
clarki). Similarly, Robinson and Tash (1979)
found that brown trout (Salmo trutta) were
more efficient at eating brine shrimp at lower
light levels (starlight > 0.001 lux) than Apache
trout (Oncorhynchus gilae apache). These data
indicate that at least 1 species of brook trout and
brown trout have greater scotopic sensitivity
than cutthroat trout. Confer et al. (1978) found
that the reaction distance of lake trout (Salmo
namaycush) and brook trout (Salmo fontinalis) to
planktonic prey was similar at illuminances
equal to 1.0 lux, suggesting that different
species in the same genus may have similar
scotopic sensitivity.

Thus, we hypothesized that the scotopic
vision of brown trout and brook trout would
be more sensitive than that of fine-spotted
Snake River cutthroat trout (Oncorhynchus
clarki bouvieri). However, we had no basis for
predicting possible differences in the scotopic
sensitivity among rainbow trout (Oncorhynchus
mykiss), fine-spotted Snake River cutthroat
trout, brown trout, and brook trout, because of
the absence of previous research. Similarly,
there are no studies documenting 24-hour fluc -
tuations in light intensity in stream ecosystems
(day, twilight, and night). Field measurements,
combined with laboratory experiments to deter-
mine the scotopic sensitivity of these trout, al -
lowed us to determine the percentage of time
that light levels are greater than scotopic
thresholds for each species. These percentages

determine the maximum amount of time dif-
ferent species can forage in different reach
types.

Our objectives were to (1) experimentally
compare the scotopic visual sensitivity of brook
trout, brown trout, fine-spotted Snake River
cutthroat trout, and rainbow trout, (2) measure
light intensity within open versus shaded
reaches during the day, dusk, and night in 3
high-elevation mountain streams, and (3) review
the literature on the diel activity of trout.

METHODS

Laboratory Tests of Scotopic Sensitivity

All fish used in this study, as in other studies
on trout vision (e.g., Allen et al. 1973), were
raised in fish hatcheries (2 in Wyoming and 1 in
Colorado) because differences in the rearing
environment in a natural setting might have led
to variation in sco topic sensitivity. We selected
hatcheries with similar temperatures (12°–
15°C), water depths, water quality, food type,
and structure (open raceways) to minimize
environmental effects on differences in sco-
topic vision. None of the hatcheries were
shaded. We selected fish of each species within
the same size range (25–30 cm) because the
number of visual receptors (rods and cones)
and the concentration of scotopic pigments
(rhodopsin and porphyropsin) increase as trout
grow, making larger fish more sensitive to dim
light than smaller fish (e.g., Allen et al. 1982).

We determined the scotopic sensitivity of 30
adult fish from each of the 4 salmonid species
by recording the intensity of light at which in -
dividual fish first responded to a hand breaking
the path of light directly overhead or to food
floating at the surface of the water (hatchery
pellets, Purina Trout Chow). Fish appeared to
be startled by hand waving, which creates a
shadow over the entire retina that can be per-
ceived without highly acute vision. This startle
response to hand waving should occur at lower
light levels than a response that requires some
level of acuity, such as the detection and loca-
tion of drifting food. Also, trout may fail to re -
spond to food after visual detection, even when
they are starved, because of differences in in -
dividual behavior, whereas hand waving will
elicit a consistent reaction, as if to a predator,
and should provide a less variable signal of the
threshold number of photons striking the retina
to excite vision and a subsequent response.
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These experiments were conducted in an
oval recirculating laboratory stream (Frigidunits
Inc., Toledo, OH, www.frigidunits.com; Fig. 1).
The experimental and nonexperimental sections
were layered with natural gravels obtained from
Nash Fork Creek in Wyoming. Water depth
was 30 cm, current velocity 10 cm ⋅ s–1, and
temperature 13°–15°C. The stream was housed
in a large room enclosed in a warehouse to
block extraneous light. A window was blocked
with three layers of black plastic during exper-
imental observations. The laboratory stream,
including the tent where we stood to make
observations, was also enclosed in 3 layers of
black plastic (Fig. 1). Observers were sepa-
rated from the experimental section of the art -
ificial stream by 3 additional layers of black
plastic with a cutout viewing port (25 × 40 cm).
Fish were observed and instruments were read

under complete darkness with the aid of a hand-
held infrared flashlight (1000 nm–0.01 cm) and
nightscope (model 260, ITT G3 Night Mariner
Binoculars, www.ittnv.com) that magnified light
ranging from 400 nm to 0.01 cm to 50,000 times
brighter than ambient. Fish cannot see in the
infrared spectrum (Ali 1961) and thus are not
disturbed when observed with infrared radia-
tion (Fraser et al. 1993).

We connected 2 custom-made dim-light
sensors (Skye Instruments Ltd., Wales, U.K.,
www.skyeinstruments.com), 1 that measured
total illuminance and 1 that measured total irra-
diance, to a data logger (LI-COR 1000, www
.licor.com) and positioned them 5 cm above the
water’s surface to record the light intensity at
which fish first responded to hand waving or
food. The irradiance sensor had a flat spectral
response across the entire range of detectable
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Fig. 1. Laboratory set-up for determining the maximum scotopic sensitivity of brook trout (Salvelinus fontinalis),
brown trout (Salmo trutta), fine-spot Snake River cutthroat trout (Oncorhynchus clarki bouvieri), and rainbow trout
(Oncorhynchus mykiss).



wavelengths (400–720 nm) and a sensitivity of
2.0 × 10–5 μmol ⋅ m–2s–1 to 1.6 μmol ⋅ m–2s–1,
whereas the illuminance sensor had a sensitivity
of 0.0001–80 lux with a bell-shaped spectral
response curve across the range of wave-
lengths in this study (400–720 nm). This range
from blue (400 nm) to deep red (720 nm) was
appropriate for this study because trout cannot
see infrared radiation (approximately >720 nm)
and because there is very little light <400 nm
(UV) in the natural environment during twi-
light or at night after the sun has dropped below
the horizon (e.g., Williamson 1995, Rader per-
sonal observation). This is also the range of light
most available at twilight and at night and is
thus the most important range in dim-light
studies.

We decided to report part of our results in
lux because (1) the lux sensor allowed us to
compare our results with previous behavioral
studies on the visual response of salmonids (e.g.,
Robinson and Tash 1979, Mazur and Beau -
champ 2003), (2) data from both sensors were
highly correlated and provided similar results
over the range of wavelengths used in this study
(400–720 nm), and (3) illuminance allowed us
to compare our lab results with our field mea-
surements, which were recorded with lux sen-
sors during the daylight hours. The critical in -
formation (the maximum scotopic sensitivity
of these species) will be reported as both irra-
diance and illuminance.

Each trial began in complete darkness and
light levels were gradually increased at a rate
of 22.0 × 10–4 μmol ⋅ m–2min–1 (0.005 lux ⋅
min–1). We collected preliminary data during 2
sunrises under clear skies in June 1997 to dup-
licate in the laboratory the natural rate at which
light increases. We used our custom-made dim-
light sensors to record light intensity every
second for 90 minutes before the sun crested
the horizon. Values varied between 6.1 × 10–5

μmol ⋅ m–2min–1 (0.003 lux ⋅ min–1), during
the early transition from dark to light, to 2.5 ×
10–2 μmol ⋅ m–2min–1 (1.2 lux ⋅ min–1), as the
sky grew progressively lighter. We used the
average rate of increase during the 1st and
darkest half of the transition from dark to light,
which is also consistent with the natural rate
of change measured at early twilight (dusk and
dawn) by Fraser and Metcalfe (1997). To dupli -
cate the natural rate of irradiance increase in
the laboratory, it was necessary to wrap the light
source (15-watt incandescent tungsten bulb) in

3 pieces of neutral shade cloth. The light
inten sity of the bulb was controlled by a com-
puter-operated rheostat (Solar 1000, Niche Engi -
neering) that gradually increased the voltage
and the irradiance at the specified rate. A sim-
ilar method of gradually increasing light inten-
sity to simulate a natural sunrise has been pre-
viously designed for a variety of laboratory
uses (Allen 1980).

We used an SR9000 spectroradiometer (Ma -
cam Photometrics, www.macam.com) to com-
pare the spectral composition of our incandes-
cent bulb to the natural spectrum at dawn,
dusk, and night at 3 levels of intensity: 2.0 ×
10–3 w ⋅ m–2nm–1 (~0.5 lux), 3.8 × 10–4 w ⋅
m–2nm–1 (~0.1 lux), and 1.89 × 10–4 w ⋅
m–2nm–1 (~0.05 lux). A decrease in voltage at
bright intensities can cause the spectrum of in -
candescent bulbs to change, progressively pro -
ducing smaller proportions of blue light. How-
ever, decreasing the voltage from dim light to
lower intensities of dim light did not change the
spectrum, which was skewed toward a greater
proportion of red light (Fig. 2).

We decided to use an incandescent bulb
rather than a full-spectrum fluorescent light
because we could gradually increase the inten-
sity of the incandescent bulb using the com-
puter-operated rheostat to simulate a natural
dawn. The intensity of full-spectrum lights is
often controlled with a wedge-shaped neutral
density optic filter (e.g., Sontag 1971). However,
this requires immobilizing an animal and re -
straining it to a specific area, thus precluding
behavioral analyses. Also, a preliminary exercise
showed that adding or removing single layers of
fine shade cloth from a full-spectrum light pro -
vided a step-wise increase in light intensity that
was too coarse for our objectives.

Each species was tested separately during
the same time of year because previous research
has shown that trout scotopic visual pigments
increase during the winter and that this increase
is associated with an increase in nocturnal
behavior (e.g., Allen et al. 1982, Rimmer and
Paim 1989). Cutthroat trout and brook trout
trials were completed during August and Sep-
tember 1997, and rainbow and brown trout tri-
als were completed in August and September
1999. Fish were transported from the hatcheries
to our laboratory within 24 hours in a 3000-L
aerated tank. Thirty individuals of each species
were tested over a 10-day period (3 fish per
day). All fish were tested from 09:00 to 16:00
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during each trial. Before a trial, each fish was
starved for 72 hours and dark-adapted for 8
hours. All fish were exposed to a diel cycle of
12 hours of night and 12 hours of day under
full-spectrum fluorescent lights for at least 7
days prior to being dark-adapted. Under com-
plete darkness, we removed a single fish from
the holding section, placed it in the observation
area, and provided a 40-minute acclimation
period (Fig. 1). Trials did not begin until each
fish was calm and facing upstream. Examining
each fish alone eliminated the effects of intra -
specific interactions on their behavior, which
could cause some fish to fail to respond to a
visual signal.

We also needed to determine if these fish
could respond to food pellets by olfaction with -
out a visual cue. Therefore, a trial began by ad-
ding 2 food pellets every 30 seconds upstream
from the experimental section for 3 minutes
under complete darkness to ensure that fish
could not locate pellets by olfaction. Also, after 3

minutes and 6 feeding possibilities, the smell of
food should have initiated a feeding response as
the light levels increased. The fish had 15 sec-
onds to locate the food during each 30-second
interval before the pellet exited the experi-
mental section. Every 30 seconds a hand was
waved 4 times, without touching the water,
directly above the fish. At the 4th minute, irra-
diance began to increase (22.0 × 10–4 μmol ⋅
m–2min–1, 0.005 lux ⋅ min–1), and food additions
and waving continued at 30-second intervals for
20 minutes. After 20 minutes irradiance reached
0.04 μmol ⋅ m–2s–1 (0.1 lux), which is the ap -
proximate irradiance of a clear night with a full
moon (Contor and Griffith 1995). We used a
nightscope to record the light level when a fish
first responded to either hand waving or when
it first oriented toward and responded to food.
In order to prevent disturbing the fish, waving
stopped after the 1st response; however, food
was added every 30 seconds throughout the 20-
minute trial. If a fish failed to respond, it was
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Fig. 2. Spectral composition of our laboratory light source (incandescent bulb) at 3 levels of intensity: 2.0 × 10–3 w ⋅
m–2nm–1, ~0.5 lux (A); 3.8 × 10–4 w ⋅ m–2nm–1, ~0.1 lux (B); and 1.89 × 10–4 w ⋅ m–2nm–1, ~0.05 lux (C).



replaced with another fish and the trial was
rerun.

Field Light Measurements

We measured light intensity in a shaded
reach and in an open reach in 3 Rocky Moun-
tain streams during the day, dusk, and night to
estimate the amount of time different species
can forage in different reach types. West St.
Louis Creek is a 2nd-order tributary of St. Louis
Creek, which is a 3rd-order mountain stream
draining the USDA Fraser Experimental Forest
in Grand County, Colorado (latitude 39°53�N,
longitude 105°54�W). Nash Fork Creek is a 3rd-
order stream draining the eastern slope of the
Medicine Bow Mountains in Albany County,
65 km west of Laramie, Wyoming (latitude
41°21�N, longitude 106°13�W). Riparian vege-
tation along shaded stream reaches consisted
of lodgepole pine (Pinus contorta), spruce (Picea
spp.), and fir (Abies lasiocarpa), but vegetation
along reaches with an open canopy was domi-
nated by low-growing willows (Salix spp.) and
grasses. All reaches were located at similar ele-
vations (~2800 m asl), and the open reaches
were downstream from and adjacent to the
steeper, shaded reaches.

We used our custom-made low light sensors
(lux and μmol ⋅ m–2min–1) to measure dim lev-
els of light (last part of dusk and night) and a
standard bright-light lux sensor (LI-210, LI-
COR Biosciences, www.licor.com) to measure
illumination during the day and the 1st part of
dusk. Although we were interested in dim-light
differences in light intensity, the bright-light
lux sensors (400–720 nm) were included to
show relative differences between shaded and
open reaches. Thus, dim and bright readings
were expressed in lux because we only had lux
sensors for bright light.

We evaluated light intensity with respect to
(1) time of day, (2) cloudiness, (3) the lunar
cycle, and (4) shading by riparian vegetation.
Light intensity was measured during day
(11:00–18:00), dusk (19:30–21:30), and night
(23:00–02:00) once a week for 7 weeks (July and
August 1999) at 3 stations in the shaded
reaches and 3 in the open reaches in each
stream. The mean, minimum, and maximum
light intensity was recorded at each station
every 5 seconds for six 15-second intervals
evenly spaced over a 20-minute period during
the times indicated above. The weather (e.g.,
cloudy versus clear) was noted during each

period at each station, and nighttime intensity
was measured during each phase of the lunar
cycle (no moon, part moon, or full moon). Sen-
sors were leveled in the same position on the
bank 0.5 m from the surface of the water at
each station on each sampling date. These
cylindrical sensors primarily detect light from
directly overhead, which was appropriate
because light arriving directly from its source
(moon and stars) constitutes the majority of
the total intensity at night (Endler 1993).

The averages of flow, width, percent shade,
gradient, and maximum pool depth were cal-
culated for each reach in each stream. Average
percent shading was digitally calculated using
photographs taken from the same height (1.83
m) in the middle of the stream with a wide-
angle lens aimed directly overhead into the can -
opy at 6 locations in each reach.

Literature Review on the 
Diel Activity of Trout

We reviewed the literature describing the
diel activity of trout because differences in the
time at which fish are most active should reflect
differences in scotopic visual sensitivity. For
each study we recorded the primary period(s)
of activity and indicated the strength of evi-
dence supporting the conclusions. Results from
casual or haphazard observational data were
less conclusive than systematic 24-hour obser-
vations, day versus night gut analyses, tracking
of 24-hour activity patterns using radioteleme-
try, or laboratory experimental data.

Statistical Analysis

A 1-way ANOVA and Tukey’s multiple
comparison tests (SAS Institute, Inc. 1997)
with 4 levels (salmonid species) were used to
compare the average light intensity of the 1st
response of individual fish to either hand wav-
ing or food in our laboratory experiment. Tests
for normality and homoscedasticity indicated
that the data were skewed for 2 of the 4
species. Therefore, analyses were run after a
loge transformation.

RESULTS

Laboratory Tests of Scotopic 
Visual Sensitivity

No fish responded to food (or waving) during
the 3-minute dark phase at the beginning of
each trial. This indicated that subsequent 
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re sponses as light intensity increased were
visual and not olfactory. Twelve fish (2 cutthroat
trout, 4 brown trout, and 6 brook trout) out of
120 failed to respond during this experiment,
and each was replaced by another fish. As
expected, all 4 species were startled and reacted
first to waving rather than food. Thirty-eight
percent of the fish did not feed at any point dur-
ing a trial, although 21% rose to a floating pellet
with out actually feeding. Because of this varia-
tion we did not analyze their response to food as
a reliable indication of the maximum dim-light
intensities at which these species could first
detect food floating at the surface. However, the
dim-light threshold showing a startle response
was consistent across each species. Thus, the
startle response was the basis for our dim-light
comparisons in this study.

The irradiance at which fish first reacted to
waving was significantly lower (F3, 116 = 64, P
< 0.0001) for brown trout and brook trout than
for cutthroat trout and rainbow trout (Fig. 3).
The average light intensity of the 1st response
of brown trout (1.1 × 10–4 μmol ⋅ m–2s–1,

~0.0054 lux) and brook trout (9.4 × 10–5 μmol ⋅
m–2s–1, ~0.0047 lux) was approximately half
that of cutthroat trout (2.5 × 10–4 μmol ⋅
m–2s–1, ~0.013 lux) and rainbow trout (2.2 ×
10–4 μmol ⋅ m–2s–1, ~0.012 lux). The brightest
in tensity at which brook trout first responded
(1.5 × 10–4 μmol ⋅ m–2s–1, ~0.0068 lux) was
less than the dimmest intensity at which cut-
throat trout (1.9 × 10–4 μmol ⋅ m–2s–1, ~0.01
lux) and rainbow trout (1.9 × 10–4 μmol ⋅
m–2s–1, ~0.01 lux) first responded (Fig. 3).
Also, brown trout’s first response was at a dim-
mer light level (2.36 × 10–4 μmol ⋅ m–2s–1,
~0.00012 lux) than for any of the other fishes’
first responses, whereas cutthroat trout’s first
re sponse was at the brightest (4.2 × 10–4 μmol ⋅
m–2s–1, ~0.02 lux).

The spectral composition of our lab light was
shifted toward longer wavelengths: orange and
especially red (Fig. 2). Blue and green wave-
lengths were poorly represented. Thus, differ-
ences in dim-light sensitivity between the 4
species in this study are based primarily on
their response to light with longer wavelengths.

Field Light Measurements

As expected, shading and light intensity var -
ied by stream and time of day (Fig. 4). St. Louis
Creek was the largest stream and had the least
shade, whereas West St. Louis Creek and Nash
Fork Creek were smaller with a dense canopy
over the shaded reaches (Table 1). Pool depth
is important because most trout in these streams
(brook trout) reside in pools and because light
can rapidly attenuate with an increase in water
depth (e.g., Wetzel 2001). However, there were
no pools deeper than 75 cm in any of the
reaches, and most were <60 cm deep. Thus,
our light sensors, which were positioned just
above the surface of the water, provided a good
estimate of the relative differences in the light
avail able to fish in the different reaches.

Light intensity varied 9 orders of magnitude
between extreme conditions: a clear sunny day
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Fig. 3. Differences in the mean maximum scotopic sen-
sitivity of 4 species of trout. Bars represent 1 standard
error about the mean, and stars are the extreme high and
low responses of individual trout within each species.

TABLE 1. Physical attributes of shaded and open reaches in 3 Rocky Mountain streams.

St. Louis Creek West St. Louis Creek Nash Fork Creek__________________ ___________________ __________________
Shaded Open Shaded Open Shaded Open

Mean flow (m3 ⋅ s–1) 0.093 0.098 0.039 0.055 0.072 0.068
Mean bankfull width (cm) 687 1740 273 320 635 830
Mean percent shade 41 0 70 0 64 0
Mean gradient (%) 2.1 1.5 3.1 1.7 3.6 0.6
Mean maximum pool depth (cm) 51 59 29 45 34 63



in the open versus a clear moonless night in the
shade. However, the level of starlight on a clear
moonless night in the shade was below the de -
tection limit of our dim-light sensors. Average
irradiance at dusk and the brightest nighttime
conditions (clear, full moon) were both 5 times
greater in the open than in the shade (Fig. 4).

As expected, cloudiness greatly reduced irra-
diance in both open and shaded reaches. Con-
trary to expectations, however, average light
intensities at night were similar in the open and
shaded reaches (1.61 × 10–4 μmol ⋅ m–2s–1,
~0.008 lux and 1.47 × 10–4 μmol ⋅ m–2s–1,
~0.007 lux, respectively) because, by chance,
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Fig. 4. Mean differences in light intensity during the day, dusk, and night between reaches with a closed (A) and open
(B) canopy in 3 mountain streams. Bars represent 1 standard error about the mean, and stars are the extreme high and
low values for each period. The line is a generalized curve for a 24-hour period.



we made more nighttime measurements under
cloudy conditions in the open than in the shade.
Our results are consistent with the summary
provided by Contor and Griffith (1995) in which
the intensity of starlight and moonlight in the
open can vary between 0.0005 lux and 0.001 lux
and between 0.05 lux and 1.0 lux, respectively.

Trout Diel Activity

We found 28 studies that reported the diel
activity of brown trout, 23 for cutthroat trout
and rainbow trout, and 10 for brook trout (Table
2). Brown trout and brook trout had the most
frequent occurrence of activity under dim-light
conditions. Seventy-five percent of the studies
reported twilight and/or nocturnal activity for
brown trout, 70% for brook trout, and 39% for
cutthroat trout + rainbow trout. Also, brown
trout had the highest percentage of reported
nighttime activity (64%) followed by brook trout
(30%) and cutthroat trout + rainbow trout
(13%).

DISCUSSION

We have shown that the maximum scotopic
threshold of brown trout and brook trout was
more sensitive than that of cutthroat trout and
rainbow trout. Confounding factors did not
compromise these results because all of these
fish were (1) raised in hatcheries under similar
light conditions, (2) similar in size, and (3) tested
during the same season at the same tempera-
tures. Also, these results were generally sup-
ported by our literature review in that a greater
percentage of studies reported dim-light activity
for brown trout and brook trout than for cut-
throat trout and rainbow trout, which were
primarily diurnal. Brook trout and brown trout
had average scotopic thresholds near 1.0 ×
10–4 μmol ⋅ m–2s–1 (~0.005 lux), whereas
Snake River cutthroat trout and rainbow
trout had average thresholds near 2.0 × 10–4

μmol ⋅ m–2s–1 (~0.01 lux). These thresholds
underestimated the scotopic sensitivity of
these fish because in tensity was measured
near the surface of the water and not in the
water where the fish were swimming. How-
ever, actual thresholds should be only slightly
lower because the water in our experimental
stream was shallow, clear, and pro duced a mini-
mum amount of attenuation.

The light source in our laboratory experi-
ment was skewed toward longer wavelengths of

orange and especially red at all of the dim-
light intensities used in this study. Thus, in
order to place these findings in their correct
environmental context, we need to discuss the
availability of light with longer wavelengths
under dim-light conditions in the natural en -
vironment. That is, the application of our lab
results to a natural setting depends on whether
the predominant wavelengths in the field
under dim light (twilight, moonlight, starlight)
are often skewed toward longer wavelengths,
especially red.

Although longer wavelengths attenuate rap -
idly with increasing water depth (Wetzel 2001),
red light should be plentiful in most mountain
streams because fish habitats (pools and runs)
are often <50 cm deep. In distilled water, 50%
of red light remains at approximately 1 m in
depth (Wetzel and Likens 1991). Thus, 75% or
more of the ambient red light should remain
after attenuation in most pool habitats in these
streams.

During twilight as the sun approaches and
initially drops below the horizon the spectrum
is skewed towards red and blue light with a
33% reduction in green, yellow, and orange light
(Johnson et al. 1966, McFarland and Munz
1976). However, as the sun continues to drop
below the horizon, red light decreases and the
spectrum becomes increasingly blue because
blue light is the dominant color of skylight.
Thus, early twilight is dominated by red light
directly from the sun and blue skylight, and late
twilight is dominated by blue skylight unless
there are clouds overhead. Reddish light from
the setting sun will reflect off of the undersur-
face of clouds onto the surface of a stream,
prolonging the period when wavelengths are
skewed toward red (Endler 1993). Clouds pro-
duce a flat, white spectrum on the surface of a
stream only if the sun shines through them from
above (McFarland and Munz 1976, Endler
1993).

Although the moon reflects sunlight and has
a fairly flat spectrum, it is enriched in red wave -
lengths relative to full sunlight (McFarland and
Munz 1976). Also, when the moon is low on the
horizon, its light must pass through more of the
Earth’s atmosphere, causing an additional shift
towards the red end of the spectrum. The spec-
trum of starlight is also skewed toward red
wavelengths (Munz and McFarland 1973). Ad -
ditionally, McFarland and Munz (1976) mea-
sured the daylight spectrum of Carrabelle River
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TABLE 2. Literature review of the diel activity of several salmonid species. Strength of evidence is recorded in the last
column (1 = haphazard observational data, 3 = systematic observational data / diel gut analysis, 5 = telemetry/
experimental data).

Species Diel periodicity Citation Evidence

Oncorhynchus apache Diurnal Robinson and Tash 1979 5
Oncorhynchus clarki Diurnal Griffith 1974 1
O. clarki Diurnal Edmundson et al. 1968 1
O. clarki pleuriticus Diurnal Young et al. 1997a 5
O. clarki clarki Nocturnal Schutz and Northcote 1972 5
Oncorhynchus mykiss Crepuscular Newman 1956 1
O. mykiss Crepuscular Elliott 1970 3
O. mykiss Crepuscular Elliott 1973 3
O. mykiss Crepuscular Douglas 1982 5
O. mykiss Crepuscular Jenkins et al. 1970 5
O. mykiss Crepuscular Landless 1976 5
O. mykiss Diurnal Edmundson et al. 1968 1
O. mykiss Diurnal Eggers 1977 1
O. mykiss Diurnal Hoar 1953 1
O. mykiss Diurnal Angradi and Griffith 1990 3
O. mykiss Diurnal Tippets and Moyle 1978 3
O. mykiss Diurnal Campbell and Neuner 1985 3
O. mykiss Diurnal Young et al. 1997a 5
O. mykiss Diurnal Bisson 1978 5
O. mykiss Diurnal Boujard and Leatherland 1992 5
O. mykiss Fed at light levels >0.035 lux Tanaka 1970 5
O. mykiss Nocturnal Elliott 1973 3
O. mykiss Nocturnal Jenkins 1969 5
Salvelinus alpinus Nocturnal Dervo et al. 1991 3
Salvelinus fontinalis Crepuscular Newman 1956 1
S. fontinalis Crepuscular Boisclair 1992 3
S. fontinalis Crepuscular Hoar 1942 5
S. fontinalis Crepuscular Gibson and Keenleyside 1966 5
S. fontinalis Diurnal Griffith 1974 1
S. fontinalis Diurnal/crepuscular Allan 1981 3
S. fontinalis Continuously active Rader unpublished data 3
Salvelinus malma Diurnal Edmundson et al. 1968 1
S. malma Nocturnal Schutz and Northcote 1972 5
Salmo salar Crepuscular Hoar 1942 5
S. salar Diurnal Fraser et al. 1993 5
S. salar Diurnal Gibson and Keenleyside 1966 5
Salmo trutta Continuously active Tuša 1968 1
S. trutta Continuously active McIntosh and Townsend 1995 5
S. trutta Continuously active Oswald 1978 5
S. trutta Crepuscular Eriksson 1978 1
S. trutta Crepuscular McCormack et al. 1989 5
S. trutta Diurnal Bachman 1984 3
S. trutta Diurnal Borja et. al 1990 5
S. trutta Diurnal/crepuscular Swift 1962 3
S. trutta Diurnal/crepuscular Swift 1964 3
S. trutta Diurnal/crepuscular Elliott 1970 3
S. trutta Nocturnal Brynildson et al. 1963 1
S. trutta Nocturnal Butler and Hawthorne 1968 1
S. trutta Nocturnal Jenkins 1969 1
S. trutta Nocturnal Lewis 1969 1
S. trutta Nocturnal Dervo et al. 1991 3
S. trutta Nocturnal Shuler et al. 1994 3
S. trutta Nocturnal Chaston 1968 3
S. trutta Nocturnal Chaston 1969 3
S. trutta Nocturnal Elliott 1967 3
S. trutta Nocturnal Elliott 1973 3
S. trutta Nocturnal Young et al. 1997b 5
S. trutta Nocturnal Clapp et al. 1990 5
S. trutta Nocturnal Schutz and Northcote 1972 5
S. trutta Nocturnal Robinson and Tash 1979 5



in Florida and found that there was no light
with a wavelength shorter than 600 nm during
the day in this blackwater river. This redshift is
caused by plant leachates (e.g., tannins) that are
often abundant in the groundwater associated
with stream ecosystems. Thus, the prevalence of
a red-shifted spectrum in streams may also de -
pend on the concentration of plant leachates in
the groundwater and the amount of ground-
water inflow. Overall, this information suggests
that dim-light conditions in streams are often
skewed toward red wavelengths. Thus, our lab
results do represent differences in sensitivity
between these species under frequent natural
conditions. However, we cannot eliminate the
possibility that the variation in scotopic sensitiv-
ity among these species could change if similar
lab studies were conducted with predominantly
blue light.

Trout are visual predators, and light is one of
the most important factors determining prey
detection (e.g., Wilzbach et al. 1986, Forrester
et al. 1994). Over a 24-hour period, trout with
sensitive scotopic vision will be able to forage
longer than trout with poor scotopic sensitivity.
Species with better dim-light vision could have
higher 24-hour rates of consumption. Because
food may limit trout populations (Chapman
1966, Richardson 1993), higher rates of con-
sumption could produce faster growth and
greater fecundity. The light intensity necessary
to invoke a startle response was 2 times lower
in brown trout and brook trout than in Snake
River cutthroat trout and rainbow trout. Our
literature review showed that cutthroat trout
and rainbow trout were primarily active during
the day, which suggests that cutthroat trout as
a group may have poorer scotopic vision than
brook trout or brown trout. If so, these 2 species
may be able to forage longer over a 24-hour
period and during the course of a growing sea -
son than most, if not all, cutthroat lineages. This
may partially explain how brook trout and
brown trout exclude most cutthroat trout pop-
ulations in many mountain streams of the west-
ern United States (e.g., Behnke 1992).

Adult brook trout and brown trout spawn in
the fall, and young fish hatch early in the spring,
giving them a size advantage over the fry of
cutthroat trout, which spawn during the spring
and hatch later in the summer (e.g., Behnke
1992). For a variety of reasons, large body size is
an important factor in determining differences
in the fitness of stream salmonids (e.g., Fausch

1984, McIntosh et al. 1994). The ability of brook
trout and brown trout to feed longer over a 24-
hour period may allow them to sustain or even
increase this initial size advantage, which allows
them to maintain a greater overall fitness than
cutthroat trout. This fitness advantage may be
the best explanation for how introduced trout
(brook trout and brown trout) can cause the
local extirpation of native cutthroat trout.

Native cutthroat trout may be better able to
compete with introduced trout in open reaches
because brighter light intensities may reduce
the foraging advantage of brook trout and
brown trout. Light intensities from mid-twilight
to a moonless, starlit night were about 5 times
greater in open reaches than in shaded reaches
of this study. In open reaches, cutthroat trout
may be able to forage longer with greater effi-
ciency during the growing season than in
darker, shaded reaches. This suggestion is con-
sistent with the observation that coastal cut-
throat trout foraging efficiency and abundance
were greater in logged headwater streams of
the Oregon Cascades than in reaches shaded
by stands of mature riparian vegetation (Hawk -
ins et al. 1983, Wilzbach and Cummins 1986). If
so, native cutthroat trout restoration efforts may
have greater success in open versus shaded
stream reaches in the Rocky Mountains and
elsewhere.

Future research should extend the applica-
tion of our results on the scotopic sensitivity of
Snake River cutthroat trout to all cutthroat lin-
eages. It should examine the underlying phys-
iological mechanisms explaining differences in
scotopic sensitivity among these species. Also,
future research should explore the relation-
ship between the maximum scotopic threshold
of cutthroat trout, their foraging efficiency, and
their overall fitness versus that of introduced
trout in open and shaded reaches.
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