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Abstract: We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simu-
lated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest
types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensi-
tivity of estimates of Weibull median probability fire intervals (WMPI) to sampling design and to factors that degrade the
fire scar record: failure of a tree to record a fire and loss of fire-scarred trees. Accuracy was affected by all of the factors
investigated and generally varied with fire regime type. The maximum error was from degradation of the record, primarily
because degradation reduced the number of intervals from which WMPI was estimated. The sampling designs were
roughly equal in their ability to capture overall WMPI, regardless of fire regime, but the gridded design yielded more ac-
curate estimates of spatial variation in WMPI. Accuracy in WMPI increased with increasing number of points sampled for
all fire regimes and sampling designs, but the number of points needed to obtain accurate estimates was greater for fire re-
gimes with complex spatial patterns of fire intervals than for those with relatively homogeneous patterns.

Résumé : Nous avons évalué l’exactitude des intervalles des feux à un point donné à l’aide d’un modèle de simulation
qui a échantillonné quatre historiques simulés des feux spatialement explicites. Ces historiques variaient quant à la fré-
quence et la dimension des feux et ont été simulés dans un paysage plat avec deux types de forêt (sèche versus mésique).
Nous avons utilisé trois plans d’échantillonnage (aléatoire, grille systématique et stratifié). Nous avons évalué la sensibilité
des estimations de la médiane de Weibull des intervalles des feux à un point donné (MWIF) au plan d’échantillonnage et
aux facteurs qui causent la détérioration des données de cicatrices de feu : un arbre qui n’est pas marqué par le feu ou la
perte d’arbres portant une cicatrice de feu. L’exactitude était affectée par tous les facteurs qui ont été étudiés et variait
généralement selon le type de régime des feux. L’erreur maximum provenait de la dégradation des données, principale-
ment parce que la dégradation réduisait le nombre d’intervalles à partir desquels la MWIF était estimée. Les plans
d’échantillonnage étaient à peu près équivalents quant à leur capacité à capturer la MWIF globale, peu importe le régime
des feux, mais le plan en damier a produit des estimations plus exactes de la variation spatiale de la MWIF. L’exactitude
de la MWIF augmentait avec le nombre de points échantillonnés pour tous les régimes des feux et tous les plans d’échan-
tillonnage mais le nombre de points nécessaires pour obtenir des estimations exactes était plus élevé pour les régimes des
feux avec des patrons complexes d’intervalles des feux que pour ceux dont le patron était relativement homogène.

[Traduit par la Rédaction]

Introduction

In North America, estimates of historical fire frequency
are increasingly used to guide management of natural re-
sources, such as landscape-scale forest restoration and fuel
treatment (Wildland Fire Research Council 2006). However,
uncertainty in these estimates can reduce the scientific im-
pact of fire history reconstructions and erode their utility to
management. Historical fire frequency can be reconstructed
from a variety of proxy records, for example, the establish-
ment dates of postfire cohorts of trees (Reed 1994; Reed et
al. 1997) and charcoal found in lake sediments (Cwynar
1987; Clark 1990), but here we focus on fire frequency re-
constructed from fire scars on trees (Dieterich and Swetnam

1984). While estimating fire frequency from these scars is
straightforward, the accuracy of such estimates depends on
the completeness of the fire scar record and a sampling de-
sign that adequately captures that record. The magnitude of
errors introduced by both of these sources is likely to de-
pend on the homogeneity of fire regimes across the area
being sampled. The fire scar record may not be complete
because it can be degraded by natural processes that render
it patchy in time and space. For example, a tree may not de-
velop a scar from all of the fires that burn near it and fire
scars can be lost over time as fire-scarred trees and individ-
ual fire scars are consumed by subsequent fires or rot (Van
Pelt and Swetnam 1990). Fire history sampling has been the
subject of much recent debate (Johnson and Gutsell 1994;
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Fall 1998; Baker and Ehle 2001; Fulé et al. 2003; Reed and
Johnson 2004; Van Horne and Fulé 2006), but in general, er-
rors inherent in the record available for sampling have been
ignored in fire history studies. Accuracy in estimates of fire
frequency can only be evaluated if the true fire frequency is
known, which is never the case in field studies, and direct
comparison of different sampling designs in the same location
is generally impractical due to the time and effort needed to
process fire scars (Weisburg and Swanson 2001; but see Van
Horne and Fulé 2006). However, spatially explicit simulation
models can be used to generate simulated fire histories, which
can be degraded and sampled to mimic field studies (Li 2002;
Fall 1998; Lertzman et al. 1998) and thus help to identify the
relative contributions of patchiness in the fire scar record,
sampling design, and fire regime to errors in estimates of fire
frequency. This information may lead to changes in the de-
sign of fire history studies that reduce such errors.

Historical fire frequency is often quantified as fire inter-
vals, or the time between successive fires (Merrill and
Alexander 1987). To compute these intervals, physical sam-
ples containing scars are collected (Arno and Sneck 1977)
and can be cross-dated to assign the correct calendar year to
each fire scar (Dieterich 1980). Because a tree may not be
scarred by every fire that burns near it (Vines 1968; Romme
1980; Dieterich and Swetnam 1984; Fall 1998; Baker and
Ehle 2001), fire scar dates from nearby trees (e.g., within
1 ha) are often pooled to compute a composite point fire in-
terval that is assumed to be more complete than intervals
computed from individual trees (Dieterich 1980). These com-
posite point fire intervals are often characterized by their
mean (Arno and Sneck 1977; Kilgore and Taylor 1979), but
fire interval distributions are often positively skewed, so in-
stead a statistical distribution, such as the Weibull, is fit to
the distribution of intervals (Johnson 1979; Johnson and Van
Wagner 1985; Baker 1989; Grissino-Mayer 1999; Polakow
and Dunne 1999). The median of this distribution, or Weibull
median probability interval (WMPI) (Grissino-Mayer 1999),
is a measure of central tendency that is robust to positively
skewed distributions and is often used to characterize fire fre-
quency (Grissino-Mayer 1999; Polakow and Dunne 1999).

Our objective was to assess the accuracy (i.e., relative
magnitude of errors) in estimates of point fire intervals as a
function of (1) the number of intervals used in the estimate,
(2) the fire regime being sampled (i.e., fire frequency and
size), (3) sampling design and intensity, and (4) degradation
of the fire scar record resulting from failure of a tree to re-
cord a fire and from the loss of fire-scarred trees over time
to rot or subsequent fires. We accomplished objective 1 by
performing a bootstrap analysis of fire intervals computed
from fire scars at five real plots (1–3 ha), objective 2 by
generating four simulated fire histories from four different
fire regimes, and objectives 3 and 4 by sampling or degrad-
ing those fire histories (Fig. 1; Table 1).

Methods

Analysis 1: Effect of the number of fire intervals
To assess the sensitivity of estimates of median point fire

intervals to the number of intervals used to compute that es-
timate, we used observed fire intervals from five points at
which a range of number of intervals had been reconstructed

from fire scars (6–44 intervals) and determined the margin
of error with bootstrapping (Fig. 2). The fire intervals at
each point were composited from trees collected over 1–
3 ha (BCW plot 5, DCR plot 13, and IRC plot 2, Heyerdahl
et al. 2001; AJT, Heyerdahl and Alvarado 2003; BGH plot
6D, Heyerdahl et al. 2006). We fit a Weibull distribution
(Grissino-Mayer 1999) to the composite record of intervals
from each plot (Dieterich 1980) and generated 50 synthetic
lists of 80 fire intervals each using the Weibull parameters
determined for that plot. We applied a nonparametric boot-
strap to each synthetic list (1000 samples) to estimate the
margin of error for the estimated median interval calculated
as (Higgins 2004)

½1� Merr ¼ 2
ffiffiffiffiffiffiffiffiffiffi
MSE

p

incrementally removing an interval from the record and re-
peating this process until we reached five intervals. We iter-
ated the random removal of intervals five times at each level.
The 50 replicates of the synthetic lists, as well as multiple in-
stances of interval removal, served to eliminate artifacts that
might have arisen as an effect of any particular random draw.
We used nonlinear fitting procedures to fit power functions to
the mean margin of error, averaged across all synthetic lists,
as a function of the number of intervals (SAS Institute Inc.
1989). For this analysis, we used the median as a nonpara-
metric measure rather than the WMPI to eliminate the need
for another fitting routine within this bootstrap procedure
and because the median and WMPI were nearly identical.

Analysis 2: Simulated fire histories
We developed a simple stochastic simulation model to

generate four simulated fire histories, one each from four
different fire regime types (Table 2). The simulation land-
scape was flat and square with no barriers to fire spread. To
reduce edge effects (Keane et al. 2002), we ran initial simu-
lations on a landscape (64 � 64, 1 ha cells, total area
4096 ha) but used only the central portion (50 � 50, 1 ha
cells, total area 2500 ha) in subsequent analyses. The land-
scape included coarse-scale heterogeneity in forest type
(half dry forest and half mesic) arranged in a random aggre-
gated pattern (Fig. 3a). Fires were more likely to occur and
be patchy in dry forest (probabilities 0.7 and 0.95, respec-
tively) than in mesic forest (probabilities 0.3 and 0.65, re-
spectively). Dry forest cells were thus more than twice as
likely to be the location of a fire start and burned more con-
sistently across cells than those in mesic forest. However,
fires were homogeneous within each 1 ha cell.

We simulated fires with two independent Weibull proba-
bility distribution functions, one for fire occurrence and one
for fire size. Over the simulation (4000 one-year time steps),
the interval between successive fires was drawn from the
first distribution, and a circular fire, with size drawn from
the second distribution, was placed on the landscape. The
center cell of each fire was determined randomly but con-
strained by the probability of fire start location by forest
type. The Weibull distributions were defined by their scale
(b) and shape parameters (c):

½2� Wðb;cÞ ¼ bð�logðRÞÞð1=cÞ

where R is a random number drawn from the uniform distri-
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bution (Evans et al. 1993). The shape parameter describes
the nature of the variability in the distribution. We assumed
a constant flammability over time and thus held the shape
parameter for fire occurrence constant at 1. In this form,

the Weibull distribution is equivalent to the negative expo-
nential distribution (Johnson and Gutsell 1994, Van Wagner
1978) and has the convenient property that the mean of the
distribution is equal to the scale parameter. The shape para-

(3) How does sampling design and intensity
affect accuracy of (i) overall point fire intervals
and (ii) spatial variation in point fire intervals?

Sample each of the 4 fire histories with 3 designs
(10 replicates each):

(1) random
(2) gridded
(3) stratified by forest type

and vary number of points sampled
with each design (10 levels)

(4) How does degradation of the fire-scar record
(failure to record a fire and loss of fire-scarred tress)
affect the accuracy of overall point fire intervals?

Degrade the quality of each of the 4 fire histories in one
of two ways (10 replicates each):

(1) vary probability of scarring and number of trees sampled
per plot (5 levels each)

(2) vary the length of the record (5 levels)

(2) Do differences in fire regimes (frequency, size) affect
accuracy of reconstructed point (1 ha) fire intervals?

Simulate 4 fire histories from 4 different fire regimes:
(1) infrequent - small
(2) infrequent - large
(3) frequent - small
(4) frequent - large

(1) How does the number of fire intervals affect
the accuracy of the estimated median fire interval?

Simulate fire interval distributions from observed
interval distributions at 5 fire history plots (50 replicates each).

Bootstrap analysis to assess error as a function
of the number of intervals (1000 samples each).

(1) How does the number of fire intervals affect
the accuracy of the estimated median fire interval?

Fig. 1. Overview of study design and simulation modelling used to assess the accuracy of estimates of the Weibull median probability
interval (WMPI) reconstructed from fire scars.

Table 1. Summary of analyses 1, 3, and 4 (Fig. 1).

Factors (number of levels) Levels

Analysis 1: Number of intervals used in calculation of median (5 fire history plots)
Synthetic lists of intervals 50 lists for each plot
Bootstrap samples 1000 samples
Replicates of interval removal 5 iterations at each number of intervals
Number of fire intervals (76) 5–80 intervals in increments of 1

Analysis 3: Sampling design and intensity (10 replicates each)
Fire regime (4) Infrequent–small, infrequent–large, frequent–small, frequent–large
Sample design (3) GRID, RANDOM, or STRATA
Sampling intensity (10) 16, 25, 36, 49, 64, 81, 100, 144, 196, or 256 points

Analysis 4: Degradation of the fire-scar record (10 replicates each)
Fire regime (4) Infrequent–small, infrequent–large, frequent–small, frequent–large
Probability of scarring (5) 0.1, 0.3, 0.5, 0.7, or 0.9
Number trees sampled per point (5) 1, 2, 3, 4, or 5
Length of record, shape parameter (4) 1, 2, 3, or 4
Length of record, scale parameter (9) 100–500 in increments of 50

Note: Analysis 2, the development of the synthetic fire regimes, is described in Table 2.
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meter for fire size was held constant at 1.5. We did not in-
clude any changes in fuel or forest state over time.

By holding the shape parameters constant for both proba-
bility distributions and by using the same landscape and as-
sociated parameters for all simulations, we reduced
differences in fire regimes between simulated fire histories
to two parameters: the scale parameter for fire occurrence
and the scale parameter for fire size. We simulated four fire
histories with different fire frequencies and sizes (Table 2):
infrequent–small, infrequent–large, frequent–small, and fre-
quent–large. Each fire history contains a record of point fire
intervals for each of the 2500 one hectare cells in the simu-
lation landscape. As a measure of how well the influence of
differences in fire regimes by forest type was translated to
each of the four fire histories that we simulated (i.e.,
smoothness in WMPI), we assessed a global measure of au-
tocorrelation in point WMPI across the simulation landscape
(isotropic Moran’s I computed for adjacent cells, Goodchild
1986). Higher values of Moran’s I indicate a smoother, more
autocorrelated map (i.e., cells near one another have similar
WMPI) than do lower values.

Analysis 3: Effect of sampling design and intensity
To assess the sensitivity of estimates of point fire inter-

vals to sampling design, intensity, and fire regime type, we
sampled each of our four simulated fire histories with three
different sampling designs in which points (i.e., 1 ha cells
and their corresponding fire interval records) were selected
from the landscape using systematic grids (GRID), simple
random sampling (RANDOM), or stratified random sam-
pling by forest type (dry or mesic, STRATA). Each sam-
pling design was applied with 10 different levels of
sampling intensity (i.e., number of points sampled: 16, 25,
36, 49, 64, 81, 100, 144, 196, and 256 one hectare cells)
with 10 replicates each (Fig. 1; Table 1). We assessed two
measures of accuracy in point fire intervals estimated from

each combination of sampling design, intensity, and fire re-
gime type: (i) overall WMPI and (ii) spatial variation in
WMPI across the landscape. To assess the accuracy of the
overall mean point fire interval, we computed the difference
in WMPI of the overall distribution of point fire intervals
(i.e., intervals computed in each 1 ha cell and pooled across
the landscape) and WMPI from the distribution used to gen-
erate the fire history being assessed. We fit power functions
to the distribution of errors from each combination of sam-
pling design, intensity, and fire regime type and identified
accurate estimates of WMPI as those that were within 10%
of the true value. Although we recognize that different stud-
ies have different accuracy needs, we used 10% accuracy as
a simple way of comparing results among our analyses.

To assess the sensitivity of estimates of the spatial varia-
tion in WMPI, we compared the maps of true WMPI with
interpolated maps of WMPI at the sampled points. For each
combination of sampling design, sampling intensity, and fire
regime type, we fit splines to maps of WMPI at the 1 ha
points sampled for that analysis (Figs. 3b and 3c; Sandwell
1987). Then for every 1 ha cell in the landscape, we com-
puted the absolute difference between WMPI from the inter-
polated map and the reference WMPI and pooled these
values across the landscape. We fit power functions to the
distribution of mean absolute values of the difference in
WMPI across all cells. This method of interpolating WMPI
between sampled points has not been used widely in fire
history studies but is well established in other fields. We
used this approach because it enabled us to generate predic-
tive surfaces given only values known at points, in this case,
the WMPI value calculated from the fire intervals for that
cell.

Analysis 4: Effect of degradation of the fire scar record
We assessed the sensitivity of estimates of point fire inter-

vals to degradation of the fire scar record and fire regime

Table 2. Summary of parameters and assumptions used in analysis 2 to simulate four fire histories from four different
fire regimes (combinations of infrequent/frequent and small/large) with a simple spatial fire regime model.

Fire controls for simulation parameters

External to landscape Internal by vegetation type

Fire occurrence (years) Fire size (ha) Dry forest Mesic forest

Fire regime Shape Scale Shape Scale P start P burn P start P burn

Infrequent–small 1 10 1.5 250 0.7 0.95 0.3 0.65
Infrequent–large 1 10 1.5 250 0.7 0.95 0.3 0.65
Frequent–small 1 5 1.5 500 0.7 0.95 0.3 0.65
Frequent–large 1 5 1.5 500 0.7 0.95 0.3 0.65

Fire: model assumptions
No change in flammability over time
Time between fires for landscape drawn from the Weibull distribution and independent of fire extent
Fire is homogeneous within each 1 ha cell
Fire shapes are circles, with size drawn from the Weibull distribution

Properties of simulation landscape
Topography: flat
Vegetation: equal proportions of dry and mesic forest
Landscape area: 64 � 64, 100 m � 100 m (1 ha) cells, total area 4096 ha
Analysis area: 50 � 50, 100 m � 100 m (1 ha) cells, total area 2500 ha

Note: P start and P burn are the probabilities of a fire igniting and burning, respectively.
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type in two separate analyses (Fig. 1; Table 1). First, for
each of the four fire histories, we populated each 1 ha cell
with a range of number of trees (one, two, three, four, or
five trees). Each tree was initialized with the full record of
fire years that had occurred in that cell and then separately
subjected to a series of stochastic events designed to mimic
failure to record a fire. We set the probability of each tree
recording a fire at p (values from 0.1 to 0.9 with increments
of 0.1, assumed to be a Poisson process) and the probability
of failing to record a fire at 1 – p. If a tree failed to record a
fire, that individual scar was removed from the record for
that tree. We did not consider misidentified or misdated fire
scars, as both are generally avoidable (Weisburg and Swan-
son 2001). For each cell, we computed fire intervals from a
composite of the degraded record of all trees in that cell. We
pooled these fire intervals across the landscape and esti-
mated an overall WMPI. We identified accurate estimates
of the true WMPI as estimates from the degraded record
that were within 10% of the true value.

Second, for each of the four fire histories, we modelled
the loss of fire-scarred trees over time by treating the record
of fire years in each cell as an independent record for which
the earliest year was drawn from a Weibull survivorship
function defined as

½3� pðxÞ ¼ e�ðx=bÞc

where x is a year, p(x) is the probability of a tree’s record
extending x years back in time, and b and c are the Weibull
scale and shape parameters, respectively. We used a range
of shape (1–4, increment 1) and scale parameters (100–500,
increment 50). We characterized the length of the record for

each fire regime type as that length for which 80% of the
cells have no fire intervals. This length varied from 160 to
800 simulation years. We pooled all the intervals remaining
in the cells across the landscape for each combination of re-
cord length and fire regime type and computed the difference
between this and the true WMPI. We identified accurate
WMPIs as those that were within 10% of the true value.
We have couched this form of degradation in terms of the
loss of fire-scarred trees over time. However, it also mi-
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Fig. 3. Maps of model (a) input and (b and c) output. All maps in-
clude 2500 one hectare cells.
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mics fire scar records that are short due to any other pro-
cess. Using this simple approach (Fall 1998), we explore
only the sensitivity of estimates of WMPI to fire scar for-
mation and degradation without attempting to model the
many complex factors that determine such formation and
degradation in the real world, such as fine-scale variation
in fuel, the presence of a scar from a previous fire, tree
species or age, subsequent fires, etc. (Swetnam and Baisan
2003).

Results

Analysis 1: Effect of the number of fire intervals
Estimates of median point fire intervals were subject to

wide margins of error when calculated from small numbers
of intervals ranging from 1.4 years for the AJT data set (6%
of the median) to 20.1 years for the BGH data set (91% of
the median) (Fig. 2).

Analysis 2: Simulated fire histories
As expected, true WMPI (computed for each 1 ha cell and

then pooled across the landscape) differed among the four fire
histories generated by our simulation model (Fig. 4). The in-
terval distributions for all four are positively skewed, as ex-
pected given that they are drawn from a Weibull distribution.
The overall point WMPI was 46 years for the frequent–large
fire history, and estimates of the overall point WMPI for this
fire regime type were considered accurate if they were within
4.6 years of this value (10%). The overall point WMPI was
78 years for the frequent–small (accurate if within 7.8 years),
83 years for the infrequent–large (accurate if within 8.3 years),

and 148 for the infrequent–small (accurate if within
14.8 years). Weibull median fire size was 306 ha for the
frequent–large fire history, 167 ha for the frequent–small,
307 ha for the infrequent–large, and 171 ha for the infre-
quent–small. Within each fire regime type, WMPI com-
puted at individual cells varied across the landscape by
roughly an order of magnitude (Figs. 3b and 3c), indicating
that different cells within the same landscape that are sub-
ject to the same underlying fire regime had very different
expressions of that fire regime. The fire histories with in-
frequent fires were less smooth (i.e., cells near one another
were less similar) than the fire histories with frequent fires
(Moran’s I = 0.75–0.79 versus 0.80–0.86, respectively).

Analysis 3: Effect of sampling design and intensity
Estimates of overall WMPI (computed at cells and pooled

over the landscape) were accurate (<10% error) for all three
sampling designs and all sampling intensities (16–256 points
sampled; top plots in Fig. 5). The accuracy of estimated
overall WMPI increased (i.e., percent error decreased) as
sampling intensity increased (i.e., number of sampling points
increased), but there was little difference in accuracy among
sampling designs, regardless of fire regime type or sampling
intensity. The maximum error in overall WMPI from this
analysis was 7%.

In contrast, the accuracy of estimated spatial variation in
WMPI varied with all three factors (bottom plots in Fig. 5)
but more strongly with fire regime type than with sampling
design or intensity. For the infrequent–small fire regime, es-
timates were not accurate for any sampling design, regard-
less of the number of sampling points. Accurate estimation
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Fig. 4. Properties of the four simulated fire histories from four different fire regimes (fire frequency and size) over the 4000 years of the
simulation. Fire intervals were computed for each 1 ha cell and then pooled over the 2500 ha landscape. The boxes enclose the 25th to 75th
percentiles of the distribution, the whiskers enclose the 10th to 90th percentiles, and the vertical line across each box indicates the 50th
percentile. Circles mark all values lying outside the 10th to 90th percentiles, and all regimes but frequent–large have additional outliers
between 800 and 2500 years.
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of spatial variation in WMPI for the frequent–small fire re-
gime required 196–256 sampling points, for the infrequent–
large 100–144 sampling points, and for the frequent–large
16–49 sampling points. Similar to the overall estimates of
WMPI, accuracy in estimates of spatial variation in WMPI
increased with increasing number of sampling points for all
fire regime types, but the gridded sampling design yielded
slightly more accurate results regardless of fire regime type
or sampling intensity. The maximum error in spatial varia-
tion in this analysis was 24%.

Analysis 4: Effect of degradation of the fire scar record
The accuracy of estimates in overall WMPI was affected

by both failure to record a fire and the loss of fire-scarred
trees over time. While these effects were similar in magni-
tude, they were opposite in sign, with failure to record a
fire tending to overestimate WMPI and shortened length of
record tending to underestimate WMPI. For failure to record
a fire, accuracy in WMPI was affected by both the number
of trees sampled and the probability of scarring (Fig. 6),
with accuracy increasing as number of trees or probability
of scarring increased. For example, in the infrequent–small
fire regime type, estimates of WMPI were accurate
(<10%) for a single tree if the probability of scarring was
greater than 0.9. However, accurate estimates could still be
obtained for a much lower probability of scarring (0.3) if a
greater number of trees were sampled (five trees). The
maximum error in overall WMPI from this analysis was
56%. Results for the other three fire regime types were of
the same magnitude (not shown).

For the loss of fire-scarred trees over time, accuracy in es-
timates of overall WMPI were affected by both fire regime
type and record length. Overall WMPI was accurate (<10%
error) only for very long records (>720 years) for the frequent–
large fire regime type. Accuracy in overall WMPI increased

with increasing record length. The maximum error in over-
all WMPI from this analysis was 68%.

Discussion

The accuracy of the WMPI that we estimated from our si-
mulated fire histories was affected by all of the factors we
investigated: sampling design and intensity and degradation
of the fire scar record. The greatest potential source of error
that we found was degradation of the fire scar record, i.e.,
the probability of scarring and the loss of fire-scarred trees.
Although the maximum error in the estimate of overall
WMPI was of comparable magnitude for both forms of deg-
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radation, they introduced biases of opposite sign. When the
probability of scarring was low and (or) the number of trees
from which fire records were composited at a point was low,
the WMPI was overestimated because removing individual
fire scars resulted in intervals that were longer than those
that actually occurred. In contrast, when fire-scarred trees
were lost over time, the WMPI was underestimated because
longer fire intervals were preferentially lost as the length of
the record was shortened (i.e., did not extend as far back in
time for our simulations). Thus, WMPIs computed from fire
histories with short records and long fire intervals are likely
to be inherently less certain than those with long records and
short intervals. However, the magnitude of the impact of
degradation that we observed here is likely higher than for
real fire histories because it depends on the total length of
the record. Our record length was unrealistically long for
fire scar records (4000 years), although not beyond the
range of fire records from charcoal (e.g., Greenwald and
Brubaker 2001; Hallett et al. 2003) and so included some
unrealistically long extreme fire intervals (e.g., 2500 years).
Both types of degradation introduced error into the estimate
of the WMPI by reducing the number of intervals from
which the WMPI could be estimated, similar to the results
of our analysis 1 (Fig. 2) in which the accuracy of the
WMPI increased as the number of intervals increased. These
results apply to intervals reconstructed at a single point on
the landscape or to intervals in a composite record made
from trees sampled within an area of any size. We used the
Weibull distribution but suggest that we would have ob-
tained similar results if we had drawn our simulated fire his-
tories from another of the distributions that are commonly
used to characterize fire intervals (McCarthy et al. 2001). In
the real world, some points on a landscape may lack suffi-
cient intervals to characterize a WMPI for that point, e.g.,
forests that typically sustain infrequent, high-severity fires.
Associating a measure of confidence in the WMPI for each
sampled point, such as the number of intervals used to com-
pute that WMPI, would help identify where fire history data
should be interpreted with caution.

The interaction of fire size and fire frequency was a pri-
mary driver of spatial complexity in our model. Spatial varia-
tion in point fire intervals was lowest for the frequent–large
regime and highest for the infrequent–small regime. Further-
more, the regimes with small fires resulted in patterns of
point fire intervals that retained the influence of forest
type, whereas the regimes with large fires yielded rela-
tively homogenous patterns. Although most real landscapes
include more complex topography and patterns of vegeta-
tion than our relatively simple landscape, we suggest that
the sources of error in estimates of WMPI that we simu-
lated are likely to be important across a broader range of
fire regime types and landscape complexity than we simu-
lated. For example, many surface fire regimes recon-
structed from tree rings have WMPI that are shorter or
longer than those that we simulated here. We expect that
regimes with shorter intervals would be less susceptible to
errors arising from short record lengths, whereas those with
longer intervals would be more so. More complex land-
scapes that include topography, barriers to fire spread, and
(or) more diverse vegetation would likely contribute to
high spatial heterogeneity in point fire intervals (Suffling

1993; Camp et al. 1997; Stephens 2001) and thus would
require many sampling points to accurately estimate spatial
variation in WMPI. Fire regimes with very large or very
many fires would likely yield relatively homogeneous spa-
tial variation in point fire intervals, similar to some sites in
Arizona for which relatively small differences in accuracy
were observed among sampling methods and intensities
(Van Horne and Fulé 2006). Finally, although we did not
consider interactions among potential sources of error, in
the real world, they act simultaneously.

In our simulations, the gridded sampling design was most
efficient at capturing spatial variation in WMPI, as has been
shown to be generally true when predicting spatial pattern
from point data (Burgess and Webster 1980; Haining 2003).
We assessed accuracy from maps in which mean fire inter-
vals were interpolated between sampled points, which is not
often done for fire history studies. Interpolation is funda-
mentally dependent on the distance between points and is
less reliable when those spaces are large than when they are
small (Press et al. 1992), which may be another reason
gridded sampling was more efficient in our simulations.

The accuracy of estimates of fire frequency from fire scars
has been the subject of recent debate (Baker and Ehle 2001;
Fulé et al. 2003; Baker 2006; Fulé et al. 2006; Kou and
Baker 2006; Van Horne and Fulé 2006). The magnitude of
error that we found was in some cases similar but in general
not as great as that found in another simulation study (Kou
and Baker 2006). Our interest was in assessing errors in point
fire frequency, so we only composited intervals across 1 ha
cells. As a consequence, the errors that we observed in point
fire intervals were not compounded by spatial heterogeneity
in fire intervals and the well-known scale dependence of
composite fire intervals that decrease as the compositing
area increases (Dieterich 1980; Arno and Petersen 1983).

Fire histories are reconstructed for a broad range of pur-
poses, some of which do not include accurate estimation of
overall mean fire intervals or their spatial variation. For ex-
ample, studies of the climate drivers of fire through time do
not require systematic sampling (e.g., Swetnam and Betan-
court 1990; Swetnam and Baisan 2003). Furthermore, while
we could accurately estimate overall WMPI for our simula-
tions with a small number of points (only 16 points over our
2500 ha landscape), such low numbers of sampled points
may not yield accurate reconstructions of fire size. We did
not simulate the full range of possible spatially explicit sam-
pling designs. For example, targeted sampling in which fire-
scarred trees are judgmentally located across landscapes to
maximize record length has yielded accurate reconstructions
of mean fire intervals in Arizona (e.g., Van Horne and Fulé
2006). We compared our analyses using an arbitrary accu-
racy cutoff of 10%, but this cutoff may not be appropriate
for all fire regimes. For example, at sites with frequent fires,
e.g., 6–10 years (Grissino-Mayer 1999), an error of 10% in
the WMPI would be 0.6–1 year, which may not be ecologi-
cally meaningful.

Our findings emphasize the need to consider variability
within and among fire regimes, as well as errors that may
be present in the record available for sampling, in the design
of fire history sampling projects. In many cases, particularly
where temporal depth is limited and fire intervals are long,
this variability results in significant uncertainty in fire inter-
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val estimates. Management goals based on fire history data
should reflect this uncertainty and bracket desired outcomes
appropriately.
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