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Multiphase surveys are often conducted in forest inventories, with the goal of estimating forested area and tree characteristics over large
regions. This article describes how design-based estimation of such quantities, based on information gathered during ground visits of
sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The relationship between
the ground visit measurements and the remote sensing variables is modeled using generalized additive models. Nonparametric estimators
for these models are discussed and applied to forest data collected in the mountains of northern Utah. Model-assisted estimators that use the
nonparametric regression fits are proposed for these data. The design context of this study is two-phase systematic sampling from a spatial
continuum, under which properties of model-assisted estimators are derived. Difficulties with the standard variance estimation approach,
which assumes simple random sampling in each phase, are described. An alternative assessment of estimator performance based on a
synthetic population is implemented and shows that using the model predictions in a model-assisted survey estimation procedure results in
substantial efficiency improvements over current estimation approaches.
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1. INTRODUCTION

Accurate estimation of forest resources over large geographic
areas is of significant interest to forest managers and forestry
scientists. Nationwide forest surveys of the U.S. are conducted
by the U.S. Department of Agriculture Forest Service Forest In-
ventory and Analysis (FIA) program (U.S. Department of Agri-
culture Forest Service 1992; Frayer and Furnival 1999; Gille-
spie 1999). In these surveys, design-based estimates of quan-
tities like total tree volume, growth and mortality, or area by
forest type are produced on a regular basis. We consider the es-
timation of such quantities within a 2.5 million-ha ecological
province (Bailey, Avers, King, and McNab 1994) that includes
the Wasatch and Uinta Mountain Ranges of northern Utah.
Forests in the area consist of pinyon-juniper, oak, and maple
generally in the lower elevations and lodgepole pine, ponderosa
pine, aspen, and spruce-fir generally in the higher elevations.
Many forest types intermix and swap elevation zones according
to other topographic variables, such as aspect and slope. Be-
sides having ecological diversity, the area hosts numerous large
ownerships, including national forests, Indian reservations, na-
tional parks and monuments, state land holdings, and private
lands. Each owner group faces different land management is-
sues requiring precise forest resource information. Figure 1 dis-
plays the region of interest and the sample points collected in
the early 1990s for the survey that we consider here. Although
this article focuses on this particular example, the general ap-
proach proposed here is applicable to other natural resource es-
timation problems as well.

Currently, forest survey data are collected through a two-
phase systematic sampling procedure. In phase one, remote
sensing data and geographical information system (GIS) cov-
erage information are extracted on an intensive sample grid.
Phase two consists of a field-visited subset of the phase one
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grid. During these field visits, several hundred variables are
collected, ranging from individual tree characteristics and size
measurements to complex ratings on scales of ecological health.

Once the data are collected, estimates of population totals
and related quantities need to be calculated and tabulated for the
overall region, as well as for various domains defined by politi-
cal subdivisions, types of forest, ownership category, and other
factors. There are literally thousands of estimates in the core ta-
bles put out by the FIA, with an even larger number of potential
“custom estimates” that can be requested by data users. It is de-
sirable that these estimates be internally consistent, in the sense
that tables “add up”; that is, the estimate of a sum of subdomain
totals equals the sum of the subdomain total estimates. Herein,
the problem of making sensible estimates for a large number
of quantities in a straightforward and internally consistent way
is called generic inference. This can be contrasted with specific
inference, in which the statistician responsible for producing es-
timates is studying a small number of variables and is able to
build custom models for the dataset at hand.

In the generic inference context, the statistician has neither
time nor resources to conduct detailed analyses of all response
variables. Therefore, often the only practical way to produce
estimates is through design-based estimation, in which survey
weights are constructed and applied to all variables and do-
mains of interest. These weights are derived from the sampling
design but are adjusted based on ancillary information avail-
able for the sampled universe and/or collected as part of the
survey. The ancillary information is used to calibrate the sur-
vey weights (making them sum to population quantities that are
known or precisely estimated) and to improve the efficiency of
the survey estimators. Once the weights are computed, users of
the data can easily produce estimates for any variable of inter-
est. Subdomain analyses are also simplified, because the linear
form of the estimators guarantees internal consistency.

A large number of techniques for adjusting survey weights
based on auxiliary information are available. The use of aux-
iliary information in surveys dates back at least to Laplace
(see Cochran 1978), who used a ratio estimator. The earli-
est references to regression in surveys include those by Jessen
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Figure 1. Representation of the Study Region in Northern Utah. Each triangle represents a field-visited phase two plot. Each dot in the magnified
section represents a remotely sensed phase one plot. In the notation of the text, there are n1 = 24,980 phase one plots, located δ1 = δ2 = 1 km
apart in both horizontal and vertical dimensions, and n2 = 968 phase two plots, located h1δ1 = h2δ2 = 5 km apart in both dimensions.

(1942) and Cochran (1942). Typically, auxiliary information is
incorporated into the survey inference through parametric lin-
ear models, leading to the familiar ratio and regression esti-
mators (e.g., Cochran 1977), poststratification estimators (Holt
and Smith 1979), best linear unbiased estimators (Brewer 1963;
Royall 1970), generalized regression estimators (Cassel, Särn-
dal, and Wretman 1977; Särndal 1980; Robinson and Särndal
1983), and related estimators (Wright 1983; Isaki and Fuller
1982). Fuller (2002) has provided an excellent review. Recent
advances in the use of auxiliary information include nonlinear
estimation (Wu and Sitter 2001), nonparametric survey regres-
sion estimation (Kuo 1988; Dorfman 1992; Dorfman and Hall
1993; Chambers, Dorfman, and Wehrly 1993; Breidt and Op-
somer 2000), and the calibration point of view (Deville and
Särndal 1992).

The approach currently used for the FIA is based on two-
phase poststratification (Scott et al. 2004), which does not take
advantage of the increasing availability of various inexpensive
auxiliary data derived from remote sensing sources. Thus there
is a tremendous opportunity to both reduce costs and improve
the precision of forest survey estimates. The need for this is all
the more pressing because scientists within the Forest Service
and other institutions have been using remote sensing and other

GIS data to develop predictive and analytical models describ-
ing forest characteristics, often with the help of nonparametric
or semiparametric techniques. This has been done in the spe-
cific inference context, in which significant effort is directed
toward finding appropriate models for a small number of impor-
tant variables. Although these modeling efforts have led to im-
proved understanding of the relationships between key forestry
variables and remotely sensed information, so far this has not
been reflected in corresponding improvements in forest survey
estimates.

This article aims to explain how the results from specific in-
ferential efforts by forestry specialists can be used to improve
the quality of their generic inference outputs as well. We do
this by incorporating multidimensional nonparametric super-
population models into the framework of model-assisted esti-
mation (Särndal, Swensson, and Wretman 1992) and then ap-
plying the resulting estimation approach to the two-phase FIA
data. This extends the nonparametric model-assisted methodol-
ogy of Breidt and Opsomer (2000), who considered only uni-
variate models and single-phase estimation.

The remainder of the article is organized as follows. Sec-
tion 2 begins by developing the methodological framework
needed for this application, including the two-phase system-
atic sampling design for a continuous spatial domain of in-
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terest (Sec. 2.1), two-phase model-assisted survey estima-
tion (Sec. 2.2), and nonparametric model-assisted estimation
(Sec. 2.3). We discuss the data and generalized additive model
(GAM) fits for the northern Utah mountains forest inventory in
Section 3.1, and show how to incorporate the fits into a generic
model-assisted estimation strategy in Section 3.2. Evaluation of
the efficiency gains from this procedure is complicated by the
lack of good variance estimators for systematic sampling, as
discussed in Section 4.1, so we evaluate the methodology in a
synthetic population in Section 4.2. A brief discussion follows
in Section 5.

2. METHODOLOGY

2.1 Two-Phase Systematic Sampling From
a Spatial Domain

The northern Utah mountains data were collected in two
phases on a regularly spaced grid (see Fig. 1). We describe
the design properties of model-assisted estimation in this con-
text by first considering a rectangular spatial domain, D =
[0,L1] × [0,L2], where Lk = n1kδk = n2khkδk, with njk and hk
as positive integers and δk as positive real numbers. On D, we
define two grids: a fine phase-one grid and a coarser phase-two
subgrid. In dimension k, δk denotes the “grid spacing” (in km)
for the phase-one grid, and hk denotes the number of phase-one
grid points between phase-two grid points, so that hkδk repre-
sents the grid spacing (in km) for the phase-two grid. In the
sampling situation depicted in Figure 1, δk = 1 km is the spac-
ing between two neighboring phase-one dots in both the hor-
izontal and vertical dimensions, and hkδk = 5 km is the corre-
sponding spacing between two neighboring phase-two triangles
in both dimensions. Then n1 = n11n12 is the phase-one sample
size and n2 = n21n22 is the phase-two sample size, both over D.
An irregular spatial domain like that in Figure 1 is handled by
intersecting it with the rectangle D. We continue to use n1 and
n2 to denote the sample sizes for both phases over the irregular
domain as well.

Implementation of the two-phase systematic sampling design
requires random placement of the phase-one grid on D, fol-
lowed by random selection of the phase-two subgrid. Let uk
represent independent uniform(0,1) random variables and let
dk represent independent discrete uniform{1,2, . . . ,hk} random
variables, with the uk and dk independent of each other. Given
u = (u1,u2), the phase-one sample is the randomly located grid

G1(u) = {(
(u1 + i1 − 1)δ1, (u2 + i2 − 1)δ2

)}

for i = (i1, i2) ∈ {1, . . . ,n11} × {1, . . . ,n12}.
Given d = (d1,d2), the phase-two sample is the randomly se-
lected subgrid on G1(u),

G2(u,d) = {(
(u1 + d1 + (j1 − 1)h1 − 1)δ1,

(u2 + d2 + (j2 − 1)h2 − 1)δ2
)}

for j = (j1, j2) ∈ {1, . . . ,n21} × {1, . . . ,n22}.
The union of all possible phase-two subgrids is the phase-one
grid:

⋃
d G2(u,d) = G1(u). Figure 1 shows the realization of

G1(u) (dots) and G2(u,d) (triangles) for the region of interest in
northern Utah. For this dataset, there are exactly h = h1h2 = 25
possible phase-two samples for each realized phase-one sam-
ple.

2.2 Two-Phase Model-Assisted Estimation

To motivate the model-assisted approach, we begin with a
discussion of the two-phase difference estimator. Let z(s) de-
note the response variable of interest, defined for s ∈ D but ob-
served only for s ∈ G2(u,d), and let z0(s) represent a different
variable that is known for all s ∈ G1(u). Note that neither z(·)
nor z0(·) is assumed stochastic, and in particular neither de-
pends on the random vectors u and d. Define a set of rectangles,
Di = [(i1 − 1)δ1, i1δ1] × [(i2 − 1)δ2, i2δ2], which partition the
domain D. Then the population total,

θ :=
∫

D
z(v)dv =

∑

i

∫

Di

z(v)dv

=
∫

[0,1]×[0,1]

∑

s∈G1(u)

z(s)

1/(δ1δ2)
du, (1)

can be estimated with the two-phase difference estimator,

θ̂ :=
∑

s∈G1(u)

z0(s)

1/(δ1δ2)
+

∑

s∈G2(u,d)

z(s) − z0(s)

1/(δ1δ2 h)

=
∑

d′

∑

s∈G2(u,d′)

{
z0(s)

1/(δ1δ2)
+ z(s) − z0(s)

1/(δ1δ2)

I{d=d′}
1/h

}
, (2)

with I{d=d′} = 1 if d = d′ and 0 otherwise, where the summation
over d′ is over all possible values for the random pair (d1,d2).
This is the continuous-domain equivalent of the two-phase dif-
ference estimator described by Särndal et al. (1992, p. 358). To
simplify notation, we suppress the dependence of θ̂ and subse-
quent population total estimators on u and d.

Because the indicator I{d=d′} has expectation 1/h, we have

E(θ̂ | u) =
∑

d′

∑

s∈G2(u,d′)

z(s)

1/(δ1δ2)
=

∑

s∈G1(u)

z(s)

1/(δ1δ2)
. (3)

Using (1), it is then immediate that

E(θ̂ ) =
∫

[0,1]×[0,1]
E(θ̂ | u)du = θ. (4)

In addition, by standard results on systematic sampling from a
finite population, we have that

var(θ̂ | u) = |D|2
n2

2

(
1 − 1

h

)
S2(u), (5)

where |D| = ∫
D dv,

S2(u) =
∑

d t2d(u) − (
∑

d td(u))2/h

h − 1
,

and

td(u) =
∑

s∈G2(u,d)

(z(s) − z0(s)). (6)

As shown by (4), the estimator θ̂ is design-unbiased regard-
less of the relationship between z and z0. Its design variance is
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given by

var(θ̂ ) = var(E(θ̂ | u)) + E(var(θ̂ | u))

=
∫

[0,1]×[0,1]
(E(θ̂ | u) − θ)2 du

+ |D|2
n2

2

(
1 − 1

h

)
E(S2(u)). (7)

The first component of the variance does not depend on the
choice of z0, but the second component of the variance will
be small if z0 is a good predictor of z, because it depends on
“residuals” of the form (6). In the following result, (4) and (7)
are combined to show that θ̂ is design-consistent under an as-
ymptotic formulation in which the sampling density in D in-
creases (“infill asymptotics”), assuming integrability conditions
on z and z0. This result is similar to consistency results obtained
in design-based stereology (Arnau and Cruz-Orive 1996), but
the two-phase structure is novel.

Result 1. If z(·) and z0(·) are bounded and continuous al-
most everywhere on D, then θ̂ converges in mean square to θ

as njk → ∞ with D fixed.

In the absence of useful information from the first-phase
sample, the simple expansion estimator

θ̂exp =
∑

s∈G2(u,d)

z(s)

1/(δ1δ2h)
, (8)

obtained from (2) with z0 ≡ 0, can be used. In most cases of
two-phase sampling, however, relatively inexpensive auxiliary
information, {X(s)}s∈G1(u), is collected at each phase-one site.
This information can be used to construct predictors of z guided
by a superpopulation model,

E[z(s) | X(s)] = μ(X(s)). (9)

Typically, μ(·) is estimated from regression of {z(s)} on {X(s)}
for s ∈ G2(u,d), and the resulting fits {μ̂(X(s))} for phase one
are then substituted into (2) to form the model-assisted estima-
tor

θ̂ma =
∑

d′

∑

s∈G2(u,d′)

{
μ̂(X(s))

1/(δ1δ2)
+ z(s) − μ̂(X(s))

1/(δ1δ2)

I{d=d′}
1/h

}
.

(10)

Unlike z0(·), μ̂(·) usually does depend on u and d, so the un-
biasedness argument in (4) and the variance expression in (7)
no longer hold exactly. However, under mild conditions that we
do not explore further here (see Kim 2004 for the univariate
nonparametric regression case), the model-assisted two-phase
estimator should follow the traditional model-assisted para-
digm and remain asymptotically design-unbiased and consis-
tent, with approximate variance given by

var(θ̂ma) =
∫

[0,1]×[0,1]
(E(θ̂ma | u) − θ)2 du

+ |D|2
n2

2

(
1 − 1

h

)
E(S2

e(u)), (11)

where

S2
e(u) =

∑
d t̂2d(u) − (

∑
d t̂d(u))2/h

h − 1
,

t̂d(u) =
∑

s∈G2(u,d)

(
z(s) − μ̃(X(s))

)
,

and μ̃(·) is obtained from the (hypothetical) regression of {z(s)}
on {X(s)} for s ∈ G1(u). Expression (11) is the extension of the
linear model-assisted result of Särndal et al. (1992, p. 362) to
a continuously defined population and a nonparametric super-
population model.

It is now clear why a model can improve the efficiency of the
estimator. If the model fits the data well, then the variance of
the residuals z(s) − μ̃(X(s)) can be expected to be smaller than
the variance of the z(s). If the model is misspecified, then the
residual variance can be equally large or even (in some extreme
cases) larger than the response variable’s variance. Hence the
efficiency gains of the model-assisted estimator depend on se-
lection of a good model for μ(·) in (9). However, regardless of
the correctness of the model, design consistency is maintained.
This characteristic of model-assisted estimation has been estab-
lished in other contexts and stands in contrast to purely model-
based estimation, for which model misspecification can lead to
biased or inconsistent estimators. This is an important consid-
eration for generic inference, because any assumed model is
unlikely to be equally appropriate across all of the variables for
which estimates need to be constructed.

The estimator θ̂ma has some additional desirable properties
if the regression method used to obtain μ̂(·) is linear, in the
sense that μ̂(X(v)) = ∑

s∈G2(u,d) r(v, s)z(s) for a set of regres-
sion weights {r(v, s)} that depend on the auxiliary variables
{X(s)}s∈G1(u), but not on the {z(s)}s∈G2(u,d). If μ̂(·) is linear,
then

θ̂ma =
∑

s∈G2(u,d)

{ ∑

v∈G1(u)

r(v, s)

1/(δ1δ2)
−

∑

v∈G2(u,d)

r(v, s)

1/(δ1δ2h)

+ 1

1/(δ1δ2h)

}
z(s)

=
∑

s∈G2(u,d)

w(s)z(s), (12)

with survey weights {w(s)} independent of the {z(s)}. This
survey-weighted form holds for generalized regression estima-
tors, including ratio and linear regression estimators, as well
as the poststratification estimator currently used for the FIA.
The survey weights are ideal for generic inference, because
they can be used for any variables collected in the same survey,
and to the extent that such variables follow model (9), they will
benefit from the efficiency gain. Thus it is desirable to specify
model (9) as flexibly as possible.

2.3 Model-Assisted Estimation Using Generalized
Additive Models

Suppose now that μ(X(s)) is the GAM

μ(X(s)) = E(z(s) | X(s))

= g
(
m1(X1(s)) + · · · + mr(Xr(s))

)
(13)

for some known link function g(·) and unknown smooth func-
tions mk(·), k = 1, . . . , r, where the Xk(s) are known subsets



404 Journal of the American Statistical Association, June 2007

of the vector X(s). Such a model can be fitted using, for in-
stance, the gam() local scoring estimation routines (Hastie
and Tibshirani 1990) in S–PLUS. Given a set of estimated
functions m̂k(·), k = 1, . . . , r, model predictions μ̂(X(s)) =
g(m̂1(X1(s)) + · · · + m̂r(Xr(s))) are then readily calculated for
all phase-one points.

When the link function g(·) is the identity link, model (13) is
referred to as an additive model, and the resulting regression es-
timator μ̂(·) is linear in the sense described in Section 2.2. But
if g(·) is not the identity link, then local scoring estimators are
not linear, and the resulting estimator θ̂gam is no longer a linear
combination of the {z(s)}s∈G2(u,d), so that weights are not avail-
able. In the next section we discuss an approach for obtaining
weights from a GAM for the forestry application.

3. APPLICATION TO FOREST INVENTORY

3.1 Generalized Additive Models for the Forest
Inventory Data

Field data used in this study were collected on a 5-km sam-
ple grid (Fig. 1). On the n2 = 968 phase-two sample plots, nu-
merous forest site variables and individual tree measurements
were collected, including a binary classification (FOREST) of
the plot into “forest” or “nonforest.” The FOREST variable is
critical in the inventory because many other response variables
are defined to be zero on nonforested sites. In this article we
consider five additional FIA variables, all of which follow this
definitional constraint: NVOLTOT, total wood volume in cu-
bic ft per acre; BA, tree basal area per acre; BIOMASS, total
wood biomass in tons per acre; CRCOV, percent crown cover;
and QMDALL, quadratic mean diameter in inches. For the pur-
pose of illustration, we develop model-assisted estimators for
these six variables; however, it should be noted that in practice,
our estimation method would be applied generically to all other
variables collected as part of the FIA.

The phase-one data for this study consist of remotely sensed
information extracted on a 1-km grid (n1 = 24,980 points) in
which the 5-km grid of field plots is embedded (see Fig. 1). The
ancillary variables used in our models came from three sources:

1. Digital elevation models produced by the U.S. Defense
Mapping Agency, which provided elevation (ELEV90
CU), transformed aspect (TRASP90), and slope (SLP
90CU).

2. 30-m resolution thematic mapper (TM) imagery, from
which we extracted the vegetation cover type of the U.S.
National Land Cover dataset (Vogelmann et al. 2001) col-
lapsed to seven vegetation classes (NLCD7). In addition,
letting MRLC00Bk denote the kth TM spectral band, we
used MRLC00B5 by itself and we computed a Normalized
Difference Vegetation Index (NDVI) as (MRLC00B4 −
MRLC00B3)/(MRLC00B4+ MRLC00B3).

3. Spatial coordinates (Xs and Ys).

More details on these variables have been given by Moi-
sen and Edwards (1999) and Frescino, Edwards, and Moisen
(2001). Those works (as well as Moisen and Frescino 2002)
illustrate the use of parametric and nonparametric models re-
lating remotely sensed data to forest attributes observed dur-
ing field visits. Taking a similar approach here, we model

the response variable FOREST as a nonparametric function of
the ancillary predictor variables mentioned earlier through a
GAM with a logit link function g(·). We fitted model (13) us-
ing gam() in S–PLUS. Component functions were obtained
through loess smoothers with local polynomials of degree 1 and
a relatively large smoothing parameter. (See Opsomer 2002 for
an explanation of the loess smoothing method and smoothing
parameter selection.) Values for the smoothing parameters were
selected through trial and error to achieve a visually reasonable
fit while trying to avoid a model with excessive degrees of free-
dom. Predictor variables ELEV90CU, TRASP90, SLP90CU,
MRLC00B5, and NDVI entered the model as univariate smooth
terms, whereas Xs and Ys contributed as a bivariate smooth
function and NLCD7 entered as a categorical variable in the
model. Plots of the smooth terms in the FOREST model are
shown in Figure 2.

3.2 Model-Assisted Estimation Using the Generalized
Additive Model Fits

To allow incorporation of the result of the GAM fitting in
the generic estimation for FIA survey variables, survey weights
must be constructed. Because of the presence of the logit link
in the model for FOREST, the regression estimator is not linear
(as noted in Sec. 2.2), so that no regression weights are avail-
able to construct linear survey weights. One possible solution to
this problem is to use a “model calibration” step as done by Wu
and Sitter (2001) in single-phase estimation for nonlinear re-
gression models. This approach uses the GAM predictions for
the FOREST variable on phase one, which we denote here by
μ̂F(s), as an auxiliary variable in a linear regression model,

[z(s)]s∈G2(u,d) = [μ̂F(s)X′(s)]s∈G2(u,d)β + error

= Cβ + error, (14)

so that the row vector of n2 regression weights is given by
[r(v, s)] = [μ̂F(v)X′(v)](C′C)−1C′. Survey weights then can be
constructed using (12) and applied to all survey variables. Be-
cause of the dependence of the regression weights on the μ̂F(s),
the resulting model-assisted estimator is not strictly linear, but
can be considered approximately linear by treating the μ̂F(s) as
fixed with respect to the design. (Results in Wu and Sitter 2001
suggest that this approximation is legitimate asymptotically.)

Although this is a suitable approach in general, the special
structure of the relationship between the presence/absence of
forest and the other variables suggests a more appropriate cal-
ibration regression model than that given in (14). For every
phase-one site s ∈ G1(u), we construct an indicator variable that
is 1 when the GAM-predicted probability of forest is greater
than the empirical proportion of forest in phase two,

ÎF(s) =
{

1 if μ̂F(s) ≥ θ̂F,exp/|D|
0 otherwise,

with θ̂F,exp as in (8) with z taken to be the binary variable
FOREST. Then the regression model (14) is replaced by

[z(s)]s∈G2(u,d) = [X′(s) × ÎF(s)]s∈G2(u,d)β + error, (15)

so that the covariates consist entirely of interactions between
the forest indicator and other auxiliary variables. The variables
that we used in X(s) are linear terms for the same variables as
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Figure 2. GAM Model Fits for Binary Indicator of Forest/Nonforest (FOREST).

used in the GAM FOREST model, with nonforest categories in
NLCD7 collapsed to ensure full rank. Note that this regression
model predicts 0 for the response variable at any phase-one site
for which FOREST is predicted to be 0 by ÎF(s).

Regression weights and the model-assisted estimator θ̂ma are
built from this regression model in the same manner as de-
scribed for model (14). Once again, the resulting model-assisted
estimator is not strictly linear, but can be approximated as lin-
ear. This approximation yields a survey weighted form for the
estimator θ̂ma, with weights that can be applied to all survey
variables as required for generic inference. When these survey
weights are applied to the variable FOREST, the estimator is
very close, but not identical, to that obtained directly from the
GAM.

The weighted estimator is internally consistent when applied
to domains within the region of interest; for example, esti-
mated BIOMASS for the entire region is the sum of the esti-
mated BIOMASS for each ownership domain within the region
(national forest, Indian reservation, etc.). Furthermore, the sur-
vey weights are calibrated for the auxiliary variables on the
part of phase one predicted to be forest; that is, the phase-
two estimated totals agree exactly with the phase-one estimated
totals on predicted forest:

∑
s∈G2(u,d) w(s)(X′(s) × ÎF(s)) =

δ1δ2
∑

s∈G1(u)(X
′(s) × ÎF(s)).

To evaluate the model-assisted estimation procedure, we
compare four different estimators on the six response variables.
For the FOREST variable, we estimate the mean proportion of

forest in the region of interest using the following four estima-
tors:

1. EXP, the expansion estimator in (8)
2. PS, a two-phase poststratified estimator with the seven

categories of variable NLCD7 as poststrata, representing
a standard estimation strategy in FIA

3. REG, a model-assisted estimator as in (10), with para-
metric regression on the dummy variables for NLCD7
plus linear terms for ELEV90CU, TRASP90, SLP90CU,
MRLC00B5, NDVI, Xs, and Ys

4. GAM, the GAM-assisted estimator from (10), with the
model described in Section 2.3 fitted by local scoring.

For the remaining five variables, we estimate the means over
the region using the first three estimators but replace the fourth
(GAM) by the model-assisted estimator that uses the regression
model with interactions (15), denoted by REGI.

Table 1 shows the estimates for all six variables (column 3),
along with the estimated standard errors (column 4). Follow-
ing standard FIA practice, these estimated standard errors as-
sume simple random sampling with replacement in phase one
and without replacement in phase two. The last column in Ta-
ble 1 shows the estimated relative efficiency (i.e., the ratio of the
estimated variances) of the different estimators compared with
GAM or REGI, depending on the variable. These empirical re-
sults suggest that the GAM estimator and the related regression
estimator with interactions (REGI) dominate the simple expan-
sion estimator, the poststratification estimator, and the paramet-
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Table 1. Estimation Results for Northern Utah Mountains Data

Estimated Estimated relative
Study Estimated standard efficiency of
variable Estimator mean error GAM/REGI

FOREST EXP .51 .02 1.83
(forest/ PS .54 .01 1.38
nonforest REG .54 .01 1.18
binary) GAM .54 .01

NVOLTOT EXP 845.81 44.07 1.79
(total wood PS 877.41 39.10 1.41
volume in REG 877.67 35.35 1.15
ft3/acre) REGI 853.85 32.98

BA EXP 45.19 2.01 1.70
(tree basal PS 47.12 1.77 1.33
area per REG 47.29 1.63 1.12
acre) REGI 46.01 1.54

BIOMASS EXP 13.51 .69 1.96
(total wood PS 14.01 .60 1.51
biomass in REG 14.00 .54 1.19
tons/acre) REGI 13.60 .49

CRCOV EXP 21.02 .86 1.73
(percent PS 22.03 .77 1.39
crown REG 22.18 .68 1.09
cover) REGI 21.64 .65

QMDALL EXP 3.77 .15 1.26
(quadratic PS 3.95 .14 1.08
mean diameter REG 3.96 .14 1.01
in inches) REGI 3.89 .14

NOTE: Estimators are expansion (EXP), poststratification (PS), regression with linear terms for
all variables (REG), generalized additive model on the same variables (GAM), regression with
linear terms for interactions between GAM predicted forest/nonforest indicator and all variables
(REGI). The estimated standard error and relative efficiency (estimated design variance of each
estimator divided by estimated design variance of GAM or REGI) use simple random sampling
approximation.

ric regression estimator. In particular, the estimated gain in effi-
ciency over the currently used poststratified estimator is >30%
for all variables except QMDALL.

4. VARIANCE ESTIMATION UNDER
SYSTEMATIC SAMPLING

4.1 Potential Problems With the Simple Random
Sampling Approximation

The estimated efficiencies in Table 1 are somewhat suspect,
because they rely on asymptotic variance approximations, and
they act as if the actual systematic samples were in fact drawn
through simple random sampling. This last point is potentially
serious when the number of possible systematic samples is
small, as in this 1-in-25 systematic subsample. To illustrate this
problem, we reconsider the case of the difference estimator of
Section 2.2 when a nonrandom “model” z0(s) is available for
all s ∈ G1(u), and assume that the residuals z(s) − z0(s) are in-
dependent normal (0, σ 2) random variables. Conditioning on
phase one, the model average (over all possible realizations
of the normal residuals) systematic sampling variance in (5)
is equal to the model average of the simple random sampling
variance estimator,

|D|2
n2

(
1 − 1

h

)( ∑

s∈G2(u,d)

{z(s) − z0(s)}2

−
( ∑

s∈G2(u,d)

{z(s) − z0(s)}
)2/

n2

)/
(n2 − 1) (16)

(see Cochran 1977, thm. 8.5), a fact often used to justify the
simple random sampling variance estimator for a population
thought to be “random.” But such model unbiasedness is not
so interesting for a given realization of the population. Indeed,
consider

F = systematic sampling variance in (5)

simple random sampling variance estimator in (16)
.

Under the foregoing assumptions, it is immediate that this ratio
is F -distributed with h − 1 numerator degrees of freedom and
n2 − 1 denominator degrees of freedom. As n2 → ∞,

F = 1 + Op

({
2(1 + h/n2)

h − 1

}1/2)
,

so that—at least in this simple case—the simple random sam-
pling variance estimator is inconsistent unless h, the number
of possible phase-two systematic samples, tends to infinity. In
the northern Utah mountains dataset, n2 = 968 but h = 25.
The quartiles of the corresponding F distribution are .792 and
1.181. Thus, in about half of the possible realizations of the
population, the simple random sampling variance estimator will
be off by ±20% or more. The .025 quantile is .514, and the
.975 quantile is 1.655, so departures on the order of ±50% are
easily possible.

This problem of variance estimation is basically intractable
given only the sample, because it amounts to a sample of size 1.
Indeed, all of the variance estimators for systematic sampling
given by Wolter (1985, sec. 7.2.1) will perform poorly, because
they all are forced to rely on within–systematic sample variation
to approximate between–systematic sample variation. There-
fore, we consider an alternative procedure based on generating
a synthetic population.

4.2 Assessing Variability and Efficiency Using
a Synthetic Population

Because the standard variance estimators are potentially un-
reliable in this context, we undertake a numerical experiment to
assess the efficiencies of the various estimators. Our approach is
to construct a synthetic population that closely mimics the one
from which we are sampling, draw all possible systematic sam-
ples from that population, and calculate exact design properties
of estimators across these samples. This will allow us to assess
(1) the performance of the standard variance estimators for a
sampling problem with known design variances and (2) the ex-
act design efficiencies of the various estimators for a synthetic
population constructed to resemble the real population.

This synthetic population approach represents a departure
from generic inference, because it requires specification of a
population model for each variable, and the validity of the re-
sulting variance assessment depends on the model’s correct-
ness. So, although this procedure would be impractical to im-
plement for all variables in a large-scale survey like the FIA,
we believe that performing this type of variance assessment for
at least a few key survey variables might be useful to assess the
overall reliability of the estimation methodology.

We begin by fitting large parametric models to each vari-
able listed in Table 1. The first model is a logistic regression
for the forest/nonforest indicator; it includes six dummy vari-
ables for the categories of NLCD7, fourth-order polynomials for
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ELEV90CU, TRASP90, SLP90CU, MRLC00B5, NDVI, and
the two spatial coordinates, as well as a first-order interaction
term for the spatial coordinates. The models for the remaining
response variables contain similar terms and are fitted as linear
regressions to the positive responses after suitable transforma-
tion (typically square root).

Using these fitted models, we create synthetic populations of
response variables on all of the phase-one sites. In this proce-
dure, we condition on phase one because its percentage contri-
bution to the empirical variances of the estimators was found
to be small, around 5–7% for all six variables, and its contri-
bution is common to all of the estimators; see (7). The sim-
ulated FOREST variable is generated with unequal probabil-
ity Bernoulli random variables using the phase-one covariates,
yielding a realistic spatial distribution of forest. The remaining
response variables are generated on the transformed scale with
Gaussian noise, then mapped back to the original scale. These
response variables are set to 0 wherever the simulated FOREST
variable is 0.

An alternative procedure for generating the synthetic phase-
one sample would be to use the GAM-fitted model that we ob-
tained previously. But we chose not to do this, so as not to bias
the results in favor of that estimator. Instead, by generating data
from a model for which the GAM only provides an imperfect
fit, we expect to be better able to capture the sample-to-sample
variability induced by the GAM fitting procedure.

Once the complete phase-one sample is populated as a re-
alization from the foregoing model, we draw all 25 possible
phase-two systematic samples, compute the estimated mean
and the simple random sampling estimate of the standard de-
viation for each sample, and then compute averages and vari-
ances of these estimates over the 25 samples. Note that these
25 samples represent the entire conditional randomization dis-
tribution of the estimators, so that empirical means and vari-
ances are exactly the conditional expectation and conditional
variance, given phase one. The expectations of the estimators
for the synthetic populations (not shown) are comparable to the
corresponding estimates for the actual populations given in Ta-
ble 1. Similarly, the expectations of the simple random sam-
pling standard deviation estimates for the synthetic populations
are comparable to the corresponding estimates for the actual
populations given in Table 1. These comparisons suggest that
the synthetic populations reproduce at least the second-order
moment structure of the real data fairly well.

Because these 25 samples constitute all possible samples
from the known population, we can evaluate the design bias of
the estimators exactly. As expected, the expansion estimator is
exactly unbiased for the synthetic population mean, and the re-
maining estimators are all essentially unbiased (relative biases
no more than .25% in all cases) because of their model-assisted
structure.

The synthetic population also allows us to evaluate the appro-
priateness of the simple random sampling approximation for es-
timating the variance of the estimators obtained under system-
atic sampling. The last column of Table 2 confirms that these
estimated variances are indeed quite unreliable, behaving some-
what like the hypothetical F random variable described in Sec-
tion 4.1. Therefore, inference for systematic samples such as

Table 2. Relative Efficiency (design variance of each estimator divided
by design variance of GAM or REGI) and Percent Bias of

the Simple Random Sampling Variance Estimator

Relative Percent bias
Simulated efficiency of of variance
variable Estimator GAM/REGI estimator

FOREST EXP 4.51 12.62
(forest/ PS 3.13 9.33
nonforest REG 1.92 24.77
binary) GAM −31.01

NVOLTOT EXP 1.31 −23.71
(total wood PS 1.14 −32.11
volume in REG 1.07 −43.88
ft3/acre) REGI −52.71

BA EXP 2.02 19.35
(tree basal PS 1.55 19.81
area per REG 1.19 20.97
acre) REGI 8.93

BIOMASS EXP 1.67 17.48
(total wood PS 1.12 34.31
biomass in REG 1.14 −1.32
tons/acre) REGI −14.61

CRCOV EXP 1.49 −4.04
(percent PS 1.36 −20.93
crown REG 1.17 −31.38
cover) REGI −44.01

QMDALL EXP 2.55 5.92
(quadratic PS 1.79 23.70
mean diameter REG 1.20 50.32
in inches) REGI 13.27

NOTE: Values are computed over all 25 possible systematic subsamples from the phase one
sample for the synthetic population. Estimators are the same as in Table 1.

those used for the FIA should be done with some caution. Al-
though easy-to-implement but inaccurate generic variance esti-
mators, such as the simple random sampling approximation, are
likely to continue to be used in this type of survey, we recom-
mend at least some evaluation based on alternative procedures
such as that presented here.

Finally, we can exactly evaluate design variances for the
five estimators in the synthetic population. Table 2 (column 3)
shows the relative efficiencies (design variance of each esti-
mator divided by design variance of GAM or REGI) obtained
over the 25 samples. The PS estimator, which is the Forest Ser-
vice standard, is better than the EXP estimator in all cases, but
even the simple regression estimator REG usually offers gains
over both the expansion estimator and the PS estimator. The
GAM estimator is much more efficient than its competitors for
the FOREST variable, and the regression estimator with GAM-
dependent interaction terms (REGI) is more efficient than its
competitors for all of the other variables. Even though the ex-
act sizes of the efficiency gains differ somewhat, these results
confirm those obtained for the different estimators for the orig-
inal sample shown in Table 1: Real gains are obtained with the
GAM-assisted and related regression estimators.

5. CONCLUSION

Auxiliary information from remote sensing or other sources
is becoming increasingly available to organizations involved in
natural resource surveys. Scientists in these organizations are
already developing detailed prediction models for many vari-
ables of interest, but they have tended not to use these prediction
models in their survey estimation procedures. We have shown
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how nonparametric model-assisted estimation techniques can
be used to incorporate the results of such modeling efforts in
the production of survey estimates. Even in the case of fairly
complex models and multiphase designs, estimators can be con-
structed that are generic, in the sense that they can be easily
applied to all variables in a survey and do not depend on a
particular model for statistical validity. The overall approach
of combining complex models and model-assisted estimation
is applicable to a wide range of surveys and can provide large
gains in efficiency for relatively little cost.

In the particular application considered in this article, we
have provided some theoretical justification for GAM-assisted
survey inference in the context of two phases of systematic
sampling from a spatial domain. We applied the GAM-assisted
methodology in a survey of forest resources in the mountains
of northern Utah, a region important for its ecological and land
use diversity.

Theoretical properties of this approach in complex surveys,
whether using GAM or other nonparametric methods, deserve
further investigation. Important open issues include model se-
lection and selection of the smoothing parameters for the non-
parametric regression fitting algorithms, because this affects
both the estimates of the quantities of interest and their esti-
mated variances.

In the course of this research, the unsatisfactory behavior of
the traditional estimator of the design variance under system-
atic sampling became apparent, and we used an alternative ap-
proach, based on a synthetic population, to evaluate our pro-
posed estimation procedure. Future research into these types
of alternative variance estimation methods, including choice of
models and robustness to their selection, certainly appears to be
warranted.

APPENDIX: PROOF OF RESULT 1

Because the estimator θ̂ is unbiased by (4), it suffices to show that
its variance goes to 0. By hypothesis, both z and z0 are Riemann-
integrable on D, so that, from (3),

lim
n11,n12→∞ E[θ̂ | u] = θ a.s.,

and, from (6),

lim
n21,n22→∞|D| td(u)

n21n22
=

∫

D
(z(v) − z0(v))dv a.s.

Because z and z0 are bounded, we have that

lim
n11,n12→∞

∫

[0,1]×[0,1]
(E[θ̂ | u] − θ)2 du

=
∫

[0,1]×[0,1]
lim

n11,n12→∞(E[θ̂ | u] − θ)2 du

= 0

and

lim
n21,n22→∞|D|2 E[S2(u)]

(n21n22)2
= |D|2E

[
lim

n21,n22→∞
S2(u)

(n21n22)2

]
= 0,

so that mean squared consistency follows.

[Received March 2003. Revised January 2005.]
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Comment
David RUPPERT

This stimulating article is an ingenious combination of sur-
vey methods and “mainstream statistics.” The authors use non-
parametric regression to improve estimates from natural re-
source surveys while maintaining the traditional inferential
methods of survey methodology than rely on randomization of
the sample rather than on a model. This is quite an achieve-
ment, and I congratulate them. There is certainly too little con-
tact between survey sampling and the rest of statistics, probably
because many statisticians lack knowledge of sampling theory.
Thus an article such as this combining the two areas is a wel-
come addition to the literature.

The authors’ results clearly demonstrate that the model-
assisted estimator θ̂ma works well in this example. In a case
study such as this, the main goal is, of course, to find a method-
ology suitable for the problem at hand, but it is natural to
wonder whether the methodology can be recommended as a
general-purpose tool. This discussion addresses two related
questions: “When does θ̂ma work well relative to θ̂exp (and vice
versa)?” and “why does the model-assisted estimator work very
well in this case study?”

The authors’ result 1 assumes that z(s) and z0(x) are continu-
ous almost everywhere. Translating mathematical assumptions
such as this into something operational is challenging. Should
we think of FOREST as continuous almost everywhere or not?
This question may not be fully answerable, but I believe that for
practical purposes, FOREST is discontinuous, and the patchi-
ness of forests is the main reason why the GAM/REGI method-
ology that the authors develop is successful in their case study.
Assuming that z is continuous, the expansion estimator can be
written as

θ̂exp =
∑

s∈G2(u,d)

z(s)

1/(δ1δ2h)
=

∑

s∈G1(u)

z{w(s)}
1/(δ1δ2)

≈
∑

s∈G1(u)

z(s)

1/(δ1δ2)
≈ θ, (1)

where w(s) is the point on the coarse grid in the same cell as s.
Therefore, the accuracy of θ̂exp should be greatest when z is very

David Ruppert is Professor of Engineering, School of Operations Research
& Information Engineering, Cornell University, Ithaca, NY 14853 (E-mail:
dr24@cornell.edu). This research was supported by National Institutes of
Health grant CA57030 at Texas A&M University.

smooth, so that z(s) is close to z{w(s)} and
∑

s∈G1(u)
z(s)

1/(δ1δ2)
is

close to θ .
The model-assisted estimator can be written as

θ̂ma =
∑

d′

∑

s∈G2(u,d′)

{
μ̂{X(s)}
1/(δ1δ2)

+ z(s) − μ̂{X(s)}
1/(δ1δ2)

I{d=d′}
1/h

}

=
∑

s∈G1(u)

{
μ̂{X(s)}
1/(δ1δ2)

+ z{w(s)} − μ̂[X{w(s)}]
1/(δ1δ2)

}
.

This estimator is accurate when the model achieves good pre-
dictions, so that μ̂{X(s)} is close to z(s) and μ̂[X{w(s)}] is close
to z{w(s)}. Smoothness of z is not required for accuraty.

To compare the expansion and model-assisted estimators, we
simulated a one-dimensional example for simplicity. The sim-
ulation model was z(s) = sin{kπs(1 + 2s2)}, where k is either
2 (smooth) or 5 (less smooth). Here “smoothness” refers not
to the number of derivatives (which is infinity) but rather to
how fast the function oscillates. When sampled on a fixed grid,
an oscillatory function will appear discontinuous if the oscilla-
tions are sufficiently rapid compared with the spacings between
grid points. Moreover, x(s) = logistic{k2(z(s) − .5)} + σε, ε ∼
N(0,1), where k2 is fixed at 2 and σ is either .01 (model rather
accurate) or .1 (model less accurate). The regression of z(s)
on x(s) was estimated by a penalized spline (Ruppert, Wand,
and Carroll 2003). The coarse grid had 20 points; the fine grid,
100 points.

We start with the case where k = 2 and σ = .01. The per-
formances of the expansion and model-assisted estimators for
one simulated dataset are shown in Figure 1. Boxplots of the ab-
solute errors of the expansion and model-assisted estimators for
100 simulated datasets are shown in Figure 2. In this case, the
expansion estimator is better than the model-assisted estimator.

Next, we look at the case where k = 5 and σ = .01 in Fig-
ures 3 and 4. Because k is large, z oscillates rapidly and the
expansion estimator is less accurate than when k = 2. Because
here, as in the previous case, σ is small (.01), the model-assisted
estimator is rather accurate and, as shown in Figure 4, more ac-
curate than the expansion estimator.

Finally, we look at the case where k = 5 and σ = .1 in Fig-
ures 5 and 6. Because k is again large, z the expansion esti-
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Figure 1. Results for One Dataset for the Case Where k = 2 and
σ = .01. The solid line is the process z. The large circles show the eval-
uation of z on the coarse grid. The asterisks show the values on the fine
grid of the estimate of z used in the expansion estimator; that is, z(s) is
estimated by z{w(s)}, and the expansion estimator is proportion to the
sum of z{w(s)} over the fine grid. The dashed line is the model-based
estimate of z. The dashed line is close to the solid line, demonstrating
that the model-based predictions are rather accurate in this case. The
model-assisted estimator is proportional to the sum of these predictions
over the fine grid.

mator is less accurate than when k = 2. But because σ is now
large, the model-assisted estimator is somewhat inaccurate and,
as shown in Figure 6, less accurate than the expansion estimator.

In summary, we can expect the model-assisted estimator to
perform well relative to the expansion estimator when z is dis-
continuous, or at least highly oscillatory, and z can be predicted
accurately from x. It seems likely that both of these conditions
are true in the authors’ case study.

The REGI estimator is an interesting adaptation of a general
methodology (model-assisted estimator) to particular features

Figure 2. Boxplots of the Absolute Errors on the Expansion and
Model-Assisted Estimators Showing That in the Case Where k = 2
and σ = .01, the Expansion Estimator Is More Accurate Than the
Model-Based Estimator.

Figure 3. Results for One Dataset for the Case Where k = 5 and
σ = .01. The solid line, large circles, asterisks, and dashed line are
the same as in Figure 1. The dashed line is close to the solid line,
demonstrating that the model-based predictions are rather accurate in
this case.

of this case study (FOREST is discontinuous). In essence, it
uses one model to predict the presence or absence of forest and
a second model to predict variables of interest, such as total
wood volume, but only where forest is predicted to exist.

I close by suggesting another estimator. This starts with the
same model as used by REGI to predict the presence/absence of
forest. Then, for those s where forest is predicted to exist, it es-
timates z(s) by z{w(s)}, where z is, for example, total wood vol-
ume. Because this methodology combines model-assisted es-
timation with the expansion estimator, it could be called the
“hybrid estimator.” I would be very interested to see how well
this hybrid estimator performs on the authors’ case study. It
should perform well when FOREST is discontinuous, but vari-
ables such as total wood volume are continuous when restricted
to forested areas.

Figure 4. Boxplots of the Absolute Errors on the Expansion and
Model-Assisted Estimators Showing That in the Case Where k = 5 and
σ = .01, the Model-Assisted Estimator Is More Accurate Than the Ex-
pansion Estimator.
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Figure 5. Results for One Dataset for the Case Where k = 5 and
σ = .1. The solid line, large circles, asterisks, and dashed line are the
same as in Figure 1. The dashed line is far from the solid line, demon-
strating that the model-based predictions are not very accurate in this
case.

Figure 6. Boxplots of the Absolute Errors on the Expansion and
Model-Assisted Estimators Showing That in the Case Where k = 5
and σ = .1, the Expansion Estimator Is More Accurate Than the
Model-Assisted Estimator.

Clearly, there is no uniformly most accurate estimator; thus
we need methods for choosing among the expansion, model-
assisted, and hybrid estimators when working with a particular
case study.

ADDITIONAL REFERENCE
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Comment
Mary C. CHRISTMAN

Opsomer et al. have provided an interesting example extend-
ing the two-phase model-assisted generalized difference esti-
mator (Sarndal et al. 1992) to the case in which the regression
component is replaced by a generalized additive model (GAM)
estimator. Then the result of that model is used for estimating
other response variables. One of the response variables (FOR-
EST) is modeled using a GAM, and the GAM estimator of
presence/absence of FOREST then is used as an explanatory
variable in the regression component of Sarndal et al.’s model-
assisted generalized difference estimator for five other response
variables. This approach follows the model calibration method
of Wu and Sitter (2001), in which the GAM estimator used as
a predictor for other variables is treated as fixed with respect
to the design. Such a method allows construction of survey
weights applicable for all response variables of interest. The au-
thors argue that the resulting estimators for the survey variables
are approximately linear, at least asymptotically.

To assess the efficiency of this approach to model-assisted
estimation, the authors compare their model estimators to three

Mary C. Christman is Associate Professor, Department of Statistics, Univer-
sity of Florida, Gainesville, FL 32611 (E-mail: mcxman@ufl.edu).

other estimators, one based on only phase-two data (ESP),
one based on poststratification (PS), and one based on Sarndal
et al.’s model-assisted estimator using linear regression (REG).
The main distinguishing feature between the authors’ GAM es-
timator and the REG estimator is that they add an additional
predictor variable based on the GAM modeling of FOREST
that modifies the regression model used to estimate the re-
sponse variables. They argue—and rightly so—that absence of
FOREST forces the other response variables to equal 0 and that
an appropriate model should recognize that fact. Because they
are interested primarily in whether GAM modeling provides
better efficiency than a regression approach, it would have been
more informative had they compared their GAM estimator with
a regression-type estimator that was otherwise identical to the
GAM estimator except with FOREST estimated using a logistic
regression model in place of the GAM.

From table 2, it appears that predicting presence/absence of
FOREST is more efficient when using a GAM than when using
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a logistic regression, but whether this translates into more effi-
cient prediction of the other survey variables is unclear, because
the REG estimators for those other variables do not incorporate
predictions of the presence or absence of FOREST. The GAM
approach likely still would be more efficient than the analogous
REG estimator with FOREST predictions incorporated, but this
would depend on the form of the logistic regression used to
predict FOREST. In fact, the authors used a logistic regression
model later in their approach to estimating variance that might
have been an appropriate model for comparing the REG and
GAM/REGI estimators.

Unfortunately, assessing the variance of systematic samples
is difficult when only one systematic sample is taken. In fact,
table 1 reports the variance as though the systematic samples
were taken as simple random samples in both phases. The au-
thors recognize that this is inappropriate and take advantage of
the two-phase nature of their sampling design to develop a tech-
nique that they call the “synthetic” approach to estimating the
systematic variance for comparing the different estimators. The
authors estimate the variance of the phase-two systematic sam-
ple conditioned on the phase-one sample. They argue that the
contribution of the phase-one sampling is small relative to the
sampling variance of phase two, and thus this is an appropriate
alternative to ignoring the systematic nature of the sampling and
treating the data as arising from random sampling. Now, ignor-
ing the sampling variability of the phase-one sample is equiva-
lent to treating the predicted value at each phase-one sampling
location as the block average for the grid cell (1 km × 1 km)
centered on the (x, y) coordinates of the location. If it is true that
the contribution of the phase-one sampling to the total variance
is in fact small, then this is a reasonable approach. If not, and
the scale of spatial variability is finer than the grid distances
in the phase-one sample, then the estimators are underestimat-
ing the true systematic sampling variance. One way to deter-
mine whether the variance is being underestimated would be
to take advantage of the data used in the survey. The predictor
variables were obtained from digital elevation models (DEM)
and 30-m resolution thematic mapper (TM) imagery and thus
can be determined for locations other than the sampled phase-
one systematic sample locations. Thus it would be possible to
apply the authors’ approach to creating a synthetic population
over different phase-one samples to determine the contribution
of the phase-one sample to the overall variance.

Assuming the authors’ argument that the contribution of
phase one to the empirical variances of the estimators is small
and constant across all estimators, the synthetic approach would
be valid for comparing the different estimators if the variance
of the GAM estimator was being estimated appropriately. The
variance of the GAM estimator is underestimated, because it
fails to incorporate the variance of the predictor of FOREST in
the estimators of the five survey variables in which it is used.
Hence, although the GAM estimator is likely more efficient
than the other approaches, it has not yet been shown to what
degree this is true. The authors have made a good first pass at
the comparison through their synthetic approach, but there re-
mains much to be done to determine better estimators of the
variance for two-phase systematic sampling designs in general
and of the GAM estimators used here in particular.

The GAM always outperforms the other estimation ap-
proaches, as expected when additional informative auxiliary
data are used, but what is fascinating is the bias of SRS estima-
tor of systematic variance for the different response variables
(table 2). The SRS (design-based) estimator of design-based
systematic variance is positively or negatively biased as the in-
traclass correlation

ρ =
p∑

i=1

n∑

j=1

∑

j′ 
=j

(zij − μ)(zij′ − μ)

pn(n − 1)σ 2

is less than or greater than −1/(N − 1) where N is population
size, n is the systematic sample size, p is the number of pos-
sible systematic samples of size n,μ is the population mean,
and zij is the value of the jth unit in the ith systematic sample.
In the example given by Opsomer et al., table 2 clearly shows
that the intraclass correlation varies significantly across both
the response variables and the estimators. This implies that the
effect of model-assisted estimation depends on which variable
is under consideration and, more importantly, that the choice
of model assistance induces an intraclass correlation that then
affects the efficiency of the estimator through this correlation.

Overall, the authors have provided an interesting and detailed
example of how GAMs might be incorporated into model-
assisted estimation and have provided impetus for further study
into the possible use of systems of simultaneous equations for
estimating a suite of response variables such as those of interest
to the Forest Service.

Comment
Roderick J. LITTLE

1. INTRODUCTION

I appreciate the editor’s kind invitation to discuss this inter-
esting article and also the choice of an environmental sampling

Roderick J. Little is Professor, Department of Biostatistics, University of
Michigan, Ann Arbor, MI 48109 (E-mail: rlittle@umich.edu).

topic for the Applications and Case Studies invited paper. Sam-
pling methods are a key contribution of statistics to science, and
these days are not as well represented in JASA as I would like.
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Moreover, environmental monitoring is currently a hot topic
in more senses than one, and the article concerns a real-world
problem with fascinating statistical issues.

I congratulate Opsomer, Breidt, Moisen, and Kauermann
(henceforth OBMK) on their progress in improving the forest
inventory survey estimates. There seems to be good evidence
that their methods result in gains in precision over previous al-
ternatives. The article continues these authors’ useful previous
contributions to robust survey modeling.

My discussion moves from the general to the particular. In
Section 2 I consider viewpoints on survey inference, compar-
ing the authors’ philosophy with my own. In Section 3 I discuss
the systematic sampling design of the Forest Inventory Survey,
challenges in variance estimation for this design, and possible
alternatives. In Section 4 I provide some general comments on
OBMK’s model-assisted estimation procedure. Finally in Sec-
tion 5 I make some more specific comments on the choice of
regression models in this setting.

2. MODES OF SURVEY INFERENCE

The inferential approach adopted in the article might be de-
scribed as “quasi-design-based, model-assisted” inference. The
approach is model-assisted in that OBMK use models to im-
prove the efficiency of the inferences, while basing the infer-
ence on design-based properties in repeated sampling. Design-
based, model-assisted inference is perhaps the prevailing mode
of survey inference these days, and is guided by the reason-
able aim of attempting to capture strengths of model and de-
sign approaches, as popularized by the work of Särndal and col-
leagues (e.g., Särndal et al. 1992). The “quasi” part (which I ad-
mit makes me somewhat “queasy”) arises because, as OBMK
clearly explain, design-based inference is not possible for the
systematic sample design, because the design variance cannot
be estimated. This leads to assessing variance estimates under
other designs and for a population simulated under a particu-
lar model. Because the standard errors for the latter are model-
based, we have model-based standard errors for design-based
model-assisted inference, a combination that I must say leaves
my head spinning!

These approaches reflect what to me is a form of “inferen-
tial schizophrenia” shared by many survey samplers, who tend
to be design-based for some problems, like inference for over-
all population quantities from large probability samplers, and
model-based for other problems, like nonresponse or small-area
estimation. This is all very pragmatic but is unprincipled, be-
cause design-based and model-based inference have conflicting
features, and to me it is illogical to simultaneously subscribe to
both theories.

I prefer a unified approach to survey inference that can be
applied to all problems (Little 2004). This approach might be
termed “Bayesian model-based, design-assisted.” The inference
is model-based and Bayesian but design-assisted in that key
features of the design are incorporated in the model to con-
vey robustness and stop it from going astray because of gross
specification errors. Bayesian model-based inference for finite
population quantities Q is based on the posterior predictive dis-

tribution of Q for a Bayesian model, and essentially involves
predicting values of nonsampled elements and propagating un-
certainty in those predictions. Models need to be robust to de-
sign features such as sampling weights, stratification and clus-
tering, and inferences should be “calibrated” in the sense of
having good repeated-sampling properties, such as design con-
sistency (Little 2006).

With large samples, I like models that make weak assump-
tions about functional forms, as in models involving splines
(Breidt and Opsomer 2000; Zheng and Little 2003, 2004, 2005).
Priors should be multilevel to incorporate clustering and limit
subjective features. In many cases, this approach yields infer-
ences similar to “superpopulation models” but with simpler in-
terpretations.

3. DESIGN–BASED INFERENCE FOR THE FOREST
INVENTORY SURVEY

As OBMK note, design-based inference is not possible for
systematic samples. Here randomization rests solely on two
sets of draws, U = (u1,u2), 0 < uj < 1, and D = (d1,d2),
1 ≤ dj ≤ 5, which shift the phase-one grid and phase-two sub-
grid in north/south and east/west directions. Design-based SEs
cannot be computed, because there is only one realization of
U and D—replication is needed to compute a randomization
variance. OBMK consider two fixes for this problem that as-
sume a different design and hope that the resulting answers are
not seriously wrong. They assume simple random sampling at
both phases, but comparisons with the inferences on the simu-
lated population appear to indicate that this assumption is not
very reasonable. More stratified alternative designs yield better
approximations to systematic designs, as discussed by Wolter
(1985); for example, one might create strata based on four ad-
jacent sampled sites and compute the variance using replica-
tion methods that drop one site and weight up the other three.
OMBK’s approach based on simulating an artificial population
is ingenious, but obviously model-based and hence inferentially
schizophrenic. If one is really serious about design-based infer-
ences, then it seems preferable to modify the design to make
it possible by introducing replications of U and D, rather than
pretending that the inference is design-based when it really is
not.

More generally, I am skeptical about the value of random-
ization for this systematic design based on just two random
draws. Different choices of U and D shift all of the sites in
one direction—so U = (.1, .1), D = (1,1) versus U = (.9, .9),
D = (5,5) might have a systematic effect on overall estimates
if latitude and/or longitude affect the outcome of interest. In
repeated samples, an “extreme” (U,D) is balanced by other
choices of U in other hypothetical samples—this is the promise
of design consistency. But why are other possible samples that
are not chosen relevant? Why not avoid an extreme choice and
center the grid and subgrid with U = (.5, .5), D = (3,3)? Al-
though this no longer is a probability sample, it surely is a bet-
ter way to limit latitude/longitude effects. The legitimacy con-
veyed by the random selection of a single (U,D) seems to me
phony—a sacrifice to the gods of randomization! A design with
considerably more than two random selections is needed to re-
alize the desired balancing properties of randomization.
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Meaningful design-based inferences involve confidence in-
tervals, not standard errors; an estimated standard error is only
as good as the coverage of its derived confidence interval. Sup-
pose that the phase-one grid is fixed and that quantities of in-
terest are defined to be the population average values on that
grid. Second-stage sampling yields only 25 possible repeated
samples. Thus for any procedure, only a finite number of cover-
ages are possible—0/25,1/25, . . . ,25/25—that is, a 95% con-
fidence interval does not exist! The frequentist interpretation
of the usual interval—an estimate plus or minus two standard
errors—becomes increasingly problematic as the number of
possible samples is reduced. These problems do not arise in
credibility intervals under the Bayesian paradigm.

A final comment on the design is that here all sites have same
selection probability. This is at the other extreme from what
environmental scientists like to do: sample “interesting areas”
purposively. A statistically principled compromise is to strat-
ify sites and oversample interesting ones with higher probabil-
ity. One criterion for “interesting” might be local heterogeneity
in the variables of interest. I wonder whether that approach is
worth considering in the forestry surveys considered here.

4. MODEL–ASSISTED ESTIMATION VERSUS
ROBUST MODEL–BASED ESTIMATION

The predictions from the regression models adopted by
OBMK are “calibrated” by adding the sample mean of the
residuals (design-weighted if there are design weights). The
rationale is to ensure design consistency (Särndal et al. 1992).
I prefer adopting regression models that yield design consistent
estimates without the calibration step. This is very easy to do, as
discussed by Firth and Bennett (1998). Examples of such mod-
els include all linear models that include the intercept term and
all generalized linear models with canonical links that include
the intercept.

Therefore, OBMK’s models can be made to yield design-
consistent estimates without calibration by simply adding an in-
tercept. One might think this is the same as calibration, but this
is not the case. Consider the simplest model with a single X and
no intercept, yi ∼ind N(βxi, σ

2). Calibration yields predictions
of the form ȳ + β̂(xi − x̄), which have the same form as predic-
tions from the model with an intercept yi ∼ind N(α + βxi, σ

2).
However, the calibration estimator fits a nonzero intercept, but
then estimates the slope assuming that the intercept is zero. This
seems to me a very strange thing to do! When an intercept is be-
ing fitted, surely it is more sensible to estimate the other regres-
sion coefficients with the intercept included in the model, thus
preserving the optimality of the predictions under the assumed
model. Does the calibration approach have any known advan-
tage over modifying the model in the manner suggested? (For
other examples in which calibration yields strange estimates,
see Little 1983.)

5. SPECIFIC REGRESSION MODELING COMMENTS
AND SUGGESTIONS

In justifying the use of GAMs, OBMK state that
“survey” (i.e., regression) weights. . . can be used for any variables collected in
the same survey, and to the extent that they follow (the assumed model), they

will benefit from the efficiency gain. Therefore, it is desirable to specify the
model as flexibly as possible.

This statement conveys the impression that there is nothing
to lose by modeling flexibly, but including predictors that are
not predictive adds variance, as in the case of poststratification
(Holt and Smith 1979). Thus throwing the “kitchen sink” into
the model has a downside. Furthermore, the choice of GAMs
sacrifices interactions for flexible main effects—for example, it
seems doubtful that the shape of the response surface over the
spatial coordinates is the same for all vegetation classes, but
this is assumed in OBMK’s models. Zheng and Little (2003,
2004, 2005) avoid the so-called “curse of dimensionality” of
nonparametric regression by confining the nonparametric part
to the relationship with the sampling weight. Because this is an
equal probability design, this tactic would lead to parametric
models (with intercept) in this setting, which, however, retain
the design consistency property.

OBMK note that the weights from regression are same for all
outcomes, if the same set of covariates is included in all mod-
els. In practice, one may want to tailor models for particular
outcomes (or sets of related outcomes). I believe that the impor-
tance of having the same set of regression weights is overstated,
given modern computing power.

The OBMK application involves outcomes that are meaning-
ful in forested locations but effectively zero in locations that are
not forested. They deal with these outcomes by interacting the
covariates with a variable ÎF indicating whether the predicted
probability of FOREST is above an estimated overall probabil-
ity from the expansion estimator, which is about .5. Thus ÎF = 0
means that the probability of being forested is below average,
not zero. A common two-stage modeling strategy in such set-
tings that seems preferable is a logistic regression on the indi-
cator for whether or not a sample site is forested, followed by
linear regression for the forest measures, restricted to sample
sites observed to be forested. Different prediction models may
well be useful for these two steps.

Finally, the bivariate smooth fit on spatial coordinates cap-
tures large-scale spatial structure, but local spatial structure also
may be important. Specifically, do residuals from the model
show any evidence of spatial correlation, and does including
X’s from phase-one sites neighboring the sample sites improve
fit? A simple approach to assessing the latter is to derive a best
predictor X̂ by the methods discussed by OBMK, and then in-
clude in the model values of X̂ for phase-one sites neighboring
the sampled site as well as for the sampled site itself.
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Rejoinder
Jean D. OPSOMER, F. Jay BREIDT, Gretchen G. MOISEN, and Göran KAUERMANN

We thank the editor for organizing the discussion of our arti-
cle and the discussants for their interesting and insightful con-
tributions.

1. RESPONSE TO RUPPERT

Ruppert created an interesting simulation experiment to com-
pare the efficiency of the expansion estimator and the nonpara-
metric model-assisted estimator. His results clearly show that
the results depend on the relative goodness of fit of the model
estimator μ̂{X(s)} and the “expansion estimator” z{w(s)}, as
estimators of the target function z(s). If z{w(s)} is a good ap-
proximation to z(s) (the situation in figs. 1 and 2), then model-
assisted estimation is unnecessary and can degrade the fit, es-
pecially in situations involving challenging model fits. A quali-
tatively similar situation is illustrated in figures 5 and 6, where
the increased noise in the model further degrades the goodness
of fit of the model relative to the naive approximation z{w(s)}.
In the third situation considered by Ruppert, the model-assisted
estimator improves the precision of the survey estimator when
the model can be estimated accurately, whereas z{w(s)} is not a
good approximation for z(s). This case is illustrated in figures
3 and 4.

Note that in the first two cases, the average efficiency of
the expansion and the model-assisted estimators are still close,
with the latter negatively affected by a small number of dra-
matic “model failures” as shown in the boxplots. It would be up
to the statistician computing model-assisted survey weights to
guard against this type of problem, by performing appropriate
model-fitting and weight diagnostics. Assuming that these ex-
treme cases can be successfully avoided, then the overall con-
clusion of Ruppert’s experiment (and indeed, much of survey
practice) is that model-assisted estimation has efficiency that
is either close to that of direct (expansion) estimation or po-
tentially much better, if the right model is found. Nevertheless,
these results clearly indicate that model selection is critical in
survey estimation. To date, formal methods for this purpose are
mostly lacking in survey statistics and certainly represent an in-
teresting avenue for future research.

Ruppert’s idea of combining the expansion estimator and the
predicted presence/absence of forest in a “hybrid estimator”

Jean D. Opsomer is Professor, Department of Statistics, Iowa State Univer-
sity, Ames, IA 50011 (E-mail: jopsomer@iastate.edu). F. Jay Breidt is Pro-
fessor, Department of Statistics, Colorado State University, Fort Collins, CO
80523. Gretchen G. Moisen is Research Forester, U.S. Department of Agri-
culture Forest Service, Rocky Mountain Research Station, Ogden, UT 84401.
Göran Kauermann is Professor, Department of Economics, University of Biele-
feld, 33501 Bielefeld, Germany.

would provide a good alternative to the REGI procedure that
we applied, if most of the predictive power of the model comes
from its ability to separate forested areas from unforested areas.
As described, Rupert’s estimator is a model-based predictor, be-
cause it has the form

θ̂hyb,mb =
∑

s∈G1(u)

z{w(s)}ÎF(s)

1/(δ1δ2)
.

We computed this estimator on the suite of variables NVOLTOT,
BA, BIOMASS, CRCOV, and QMDALL and found the estimates
to be systematically lower—sometimes much lower—than the
other estimate displayed in table 2. The reason for this can be
seen by considering an alternative, model-assisted version of
Ruppert’s hybrid, which combines the foregoing model-based
hybrid with a design bias adjustment,

θ̂hyb,ma =
∑

s∈G1(u)

z{w(s)}ÎF(s)

1/(δ1δ2)
+

∑

s∈G2(u,d)

z(s) − z(s)ÎF(s)

1/(δ1δ2h)

= θ̂exp +
∑

s∈G1(u)

z{w(s)}ÎF(s)

1/(δ1δ2)

(
1 − Is∈G2(u,d)

1/h

)
.

By arguments given in our article, this model-assisted hybrid
should be approximately design-unbiased. The bias adjustment
contains summands that are 0 if the site is not forested, so
z(s) = 0, or if the site is forested and the model correctly pre-
dicts that the site is forested. Otherwise, if the model incor-
rectly predicts that the site is not forested, then the summand
is z(s) > 0. Thus a positive bias adjustment is needed for the
model-based hybrid estimator. With this bias adjustment, the
model-assisted hybrid estimator performs similarly to REGI,
with differences due to the fact that REGI works harder at pre-
dicting z(s) on the phase-one grid.

2. RESPONSE TO CHRISTMAN

Christman argues that a parametrically specified logistic re-
gression model for the forest/nonforest indicator would provide
an appropriate comparison for the GAM we used. A carefully
chosen parametric model (constructed from, say, low-degree
polynomials) certainly would be able to capture the trends ob-
served in figure 2 and is in fact likely to result in a model-
assisted estimator that is more efficient than the nonparametric
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version. However, one of the important advantages of the non-
parametric approach is its flexibility, which implies that it is
able to capture patterns like those in figure 2 without having to
prespecify a parametric form. The price paid for this flexibility
in the model-assisted context is a (typically modest) reduction
in efficiency (see the simulation experiments in Breidt and Op-
somer 2000).

As noted by Christman, the synthetic population approach
will provide a valid measure of estimator uncertainty only if the
assumed model for the population is (approximately) correct.
Although we took care to model the relationship between the
phase-one and phase-two variables, we assumed that the sim-
ple random sampling approximation for the phase-one variance
was satisfactory, because it was estimated to represent only a
small portion of the overall variance and was unaffected by the
various regression estimation approaches. But a more complete
treatment of this problem could indeed be undertaken, and the
availability of “wall-to-wall” auxiliary information would make
modeling of the phase-one variance contribution possible.

For a given finite population and set of systematic samples,
the intraclass correlation provides a convenient measure for the
bias of the simple random sampling variance approximation.
Ignoring the effect of model fitting, the systematic sampling
variance and hence the intraclass correlation depend on the be-
havior of the z(s) − z0(s) [see (5) and (6)], which depend on
both the variable z itself and the model assumed in z0, as noted
by Christman. An interesting observation based on the synthetic
population results in table 2 is that whereas modeling, whether
based on poststratification, linear regression, or nonparametric
regression, has a significant effect on the bias of the variance
approximations, it does not seem to result in an overall bias re-
duction.

3. RESPONSE TO LITTLE

Today’s survey statisticians, both methodologists and prac-
titioners, must deal with increasingly complex data available
from different sources and of different reliability, and use these
data not only to produce summary tabular information for popu-
lations and domains (descriptive inference), but also to fit com-
plicated statistical models (analytical inference) to address vari-
ous hypotheses. Little describes many of the current approaches
combining model-based and design-based inference as “infer-
ential schizophrenia,” “pragmatic but unprincipled.” But these
approaches do have clear guiding principles, which can be sum-
marized as follows:

• Make descriptive inferences as model free as they can be.
For large probability samples, no model is needed; for
small area estimation, models are essential for borrowing
strength across related domains. Much of survey practice
lies between these two extremes, and it is here that non-
parametric modeling can be particularly useful.

• Make analytical inferences that properly reflect complex
design features. The “messy” nature of the approaches
used reflects both the messy nature of the data-generating
process and the degree to which the various sources of
uncertainty involved (e.g., sampling design, nonresponse,

measurement error, population model) can be reliably de-
scribed.

In the end, whether a resulting approach is mostly design-
based, mostly model-based, or a true hybrid, the key feature of
valid inference based on survey data is that the characteristics
of the design must be accounted for. A range of approaches is
being developed by researchers (including Little and ourselves),
and this is likely to remain an area of active research for many
years to come.

Systematic sampling is often used in surveys of spatial do-
mains, where it has some attractive characteristics, including
simplicity and intuitiveness, equal probability, and approxi-
mate self-balancing over broad domains of interest. This design
also suffers from a number of serious drawbacks, however, in-
cluding the lack of a design-based variance estimator, as well
as several other effects that are consequences of the low de-
grees of freedom, as noted by Little. Many solutions have been
proposed for variance estimation and for extending the sam-
pling design to circumvent this estimation problem (see Wolter
1985, chap. 7, for a review). One possible, albeit somewhat
“schizophrenic” (in Little’s terminology), approach, described
by Wolter (1985), consists of estimating the anticipated vari-
ance (i.e., the model-expected design variance) under a specific
model for the population. When this model is correct, it is gen-
erally possible to estimate the anticipated variance, and this es-
timate then can be used as a measure of the uncertainty of the
design-based estimator. This is conceptually similar to the syn-
thetic population approach that we used in our forestry appli-
cation. Clearly, both approaches are only as good as the model
used to represent the population and require careful attention to
model selection and model fit.

We agree with Little that using models that result in self-
calibration (i.e., models that produce calibrated predictions
without having to add the sample mean of the residuals) is desir-
able, and in fact for many regression models, the model-assisted
estimator is exactly equal to the design-weighted model predic-
tion (see Särndal et al. 1992, result 6.5.1). Because our final
model uses the covariate vector in (15), which does not contain
an intercept, it is not self-calibrated. However, we refitted the fi-
nal model with an intercept, and found that each of the resulting
estimates changed by <2%.

As noted by Little and clearly illustrated by Ruppert, a poor
choice of model can lead to model-assisted estimators that are
actually less efficient than expansion estimators. The choice of
the GAM in our application was motivated by the desire to
use a parsimonious multivariate model while maintaining the
ability to represent the complex relationship between the for-
est/nonforest indicator and the covariates. In the second step,
the choice of a parametric model for the other variables involv-
ing interactions with the predicted forest indicators was simi-
larly influenced by a desire to balance parsimony and compre-
hensiveness. More generally, the current paradigm of generic
inference for survey estimators, which dictates a single set of
weights to be interpreted as “adjusted sampling weights” for
all survey variables, makes model selection a particularly chal-
lenging problem.




