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a b s t r a c t

Canopy and surface fuels in many fire-prone forests of the United States have increased

over the last 70 years as a result of modern fire exclusion policies, grazing, and other land

management activities. The Healthy Forest Restoration Act and National Fire Plan establish

a national commitment to reduce fire hazard and restore fire-adapted ecosystems across the

USA. The primary index used to prioritize treatment areas across the nation is Fire Regime

Condition Class (FRCC) computed as departures of current conditions from the historical

fire and landscape conditions. This paper describes a process that uses an extensive set of

ecological models to map FRCC from a departure statistic computed from simulated time

series of historical landscape composition. This mapping process uses a data-driven, bio-

physical approach where georeferenced field data, biogeochemical simulation models, and

spatial data libraries are integrated using spatial statistical modeling to map environmen-

tal gradients that are then used to predict vegetation and fuels characteristics over space.

These characteristics are then fed into a landscape fire and succession simulation model

to simulate a time series of historical landscape compositions that are then compared to

the composition of current landscapes to compute departure, and the FRCC values. Inter-

mediate products from this process are then used to create ancillary vegetation, fuels, and

fire regime layers that are useful in the eventual planning and implementation of fuel and

restoration treatments at local scales. The complex integration of varied ecological models

at different scales is described and problems encountered during the implementation of

this process in the LANDFIRE prototype project are addressed.
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1. Introduction

Wildland fire suppression activities over the last 70 years have
significantly reduced wildland fire occurrence in many his-
torically fire-prone forests of the United States resulting in
excessive buildups of ground surface and canopy fuels which
may now tend to foster fires of abnormally high intensities
and severities (Mutch, 1994; Ferry et al., 1995; Kolb et al.,
1998; Keane et al., 2002c). The United States’ Healthy Forest
Restoration Act (http://www.fireplan.gov/) and the National
Fire Plan’s Cohesive Strategy (http://www.fs.gov/) establishes
a national commitment to reduce fire hazard and restore fire
to those ecosystems where it has been excluded for decades.
The implementation of this national fire management effort
will require extensive multi-scale spatial data for prioritizing
and planning fuel reduction and ecosystem restoration treat-
ments across the entire nation (GAO, 2002, 2003, 2004). These
spatial data layers must provide essential fuel, fire regime,
and vegetation information critical for designing treatments
and activities at spatial scales compatible with effective land
management.

National fire management agencies have identified the
Fire Regime Condition Class (FRCC) as one of the primary
metrics used for distributing resources and prioritizing treat-
ment areas for the implementation of the Cohesive Strategy
across the USA (Hann, 2004). FRCC is an ordinal index with
three categories that describe how far the current landscape
has departed from historical conditions (Hann, 2004) (see
http://www.frcc.gov/ for complete details). The FRCC’s pri-
mary use is to identify and prioritize those areas that are in
need of treatment so fire management can distribute fund-
ing, fire fighting resources, and personnel to those regions
with undesirable FRCC distributions to implement restora-
tion activities and fuel reduction treatments (Laverty and
Williams, 2000) (see http://www.fireplan.gov for detail/). Ulti-
mately, these treatments can protect homes, save lives, and
restore declining fire-adapted ecosystems. The challenge then
is to create a scientifically credible and ecologically meaning-
ful national map of FRCC that can be used across multiple
organizational scales to distribute fire resources and prioritize
necessary fuel and restorative treatments.

This paper describes a research effort, called the LAND-
FIRE prototype project, that developed a process to map FRCC
using a complex integration of several ecological models. FRCC
was derived from a departure statistic computed from a com-
parison of current landscape conditions with simulated time
series of historical landscape composition. Maps of departure,
and many other vegetation, fire, and fuels attributes, were
created for two large test areas in the western US using a
data-driven, biophysical approach where georeferenced field
data, ecosystem simulation models, and spatial data libraries
were integrated to map environmental gradients that are then
used to predict current vegetation characteristics over space
(Franklin et al., 2000). These characteristics were then input
into a spatially explicit landscape fire and succession model
to simulate a time series of historical landscape compositions
that were then compared to the composition of current land-
scapes to compute departure, and eventually, FRCC values.
Intermediate products from this process were then used to
create additional fuels and fire regime layers that are use-

ful in the eventual planning and implementation of fuel and
restoration treatments at local scales.

1.1. Background

The LANDFIRE prototype project found its origins in a Hardy
et al. (2001) project that created a set of coarse scale maps
of FRCC and other fire related variables for the contiguous
United States at 1 km2 spatial resolution (Schmidt et al., 2002)
(http://www.fs.fed.us/fire/fuelman). They used simplistic suc-
cession sequences pathways to represent possible historical
reference conditions for broad land cover types and tree den-
sity classes. Although these maps provided fire management
with a first-ever, broad picture of ecosystem condition across
the conterminous US, the layers had limited use because their
resolution and information content was too coarse and the
succession sequences were too general and subjective for use
at scales finer than a regional extent.

Fire management in the US needs a set of national data lay-
ers that are developed at a spatial resolution appropriate for
use across all government agencies and levels of management
(GAO, 2003, 2004) (selected as 30 m to match available satel-
lite imagery). These layers need to be spatially consistent so
that historical departures are interpreted the same across the
country, and developed using the best available science so that
the process could be repeated to monitor success of fire man-
agement policies. It was also important that a set of additional
maps be created from the intermediate products of this effort
to aid fire managers in the implementation of the prioritized
fuel treatment and ecosystem restoration activities.

Since FRCC is based on the departure of the current condi-
tions from historical conditions, we needed to find a concept
or construct to serve as the foundation of FRCC calculations.
A three category ordinal index seemed overly simplistic so we
thought that the computational foundation of FRCC needed to
accommodate additional detail so that additional resolution
could be employed to effectively prioritize across a wide range
of landscape sizes. We decided to use the notion of historical
range and variability (HRV) as the premise of all FRCC calcula-
tions instead of the qualitative assessment used in the coarse
scale effort (Landres et al., 1999; Swetnam et al., 1999; Keane
et al., 2002b). HRV is defined in this study as the quantification
of temporal and spatial fluctuations of ecological processes
and characteristics prior to western European-American set-
tlement (Hann and Bunnell, 2001; White and Walker, 1997).
The assumption is that the quantification of HRV can serve
as an ecologically meaningful and objective reference for
computing the departure of current landscape compositions
from historical trends. To use HRV in an operational context,
it was necessary to select a historical time span that best
reflects the range of conditions to use as reference for the
management of future landscapes; an assumption that may
be overly simplistic because of documented climate change,
exotic introductions, and human land use (Hessburg et al.,
1999a, 2000; Swetnam et al., 1999). We limited the temporal
context of HRV to the time span from circa 1600 to 1900 ad
because we felt this period was best represented by the his-
torical data, such as fire scar chronologies, that were needed to
quantify parameters in the landscape simulation model used
to generate HRV statistics.
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We selected landscape composition as the primary evalu-
ation criteria for computing FRCC (Hann and Bunnell, 2001).
Landscape composition is measured as the area occupied by
the combination of the following three attributes: (1) biophys-
ical setting described by Potential Vegetation Type (PVT), (2)
vegetation composition described by cover types, and (3) ver-
tical stand structure described by structural stage. We used
the concept of PVTs to map biophysical settings (areas of sim-
ilar environmental conditions defined by biotic and abiotic
attributes) because it is the primary construct in the landscape
model used to simulate historical time series. The PVT con-
cept approximates biophysical setting by assuming that the
“climax” vegetation that would eventually develop on an area
in the absence of disturbance can be used to identify unique
environmental conditions (Pfister et al., 1977; Daubenmire,
1962; Daubenmire, 1966). This approach has a long history in
vegetation mapping, and potential vegetation type classifica-
tions have been developed for most forests in the western U.S.
(Huschle and Hironaka, 1980; Pfister and Arno, 1980; Pfister,
1981). However, the PVT approach has had limited success
in non-forested environments because extensive disturbance
histories in rangelands has eliminated many climax indicator
species (Westoby, 1980).

We modified this potential vegetation concept to match the
scale and limitations of the LANDFIRE prototype mapping pro-
cess. We assumed that the potential vegetation for forested
ecosystems could be keyed from plot-level tree data based
on tree species’ shade tolerance using the hypothesis that
the tree species with the highest shade tolerance will eventu-
ally, without disturbance, become dominant on that plot and
therefore will tend to have a high fidelity to a unique biophys-
ical setting (Daubenmire, 1966). We made no inference that
the shade-tolerant species is the “climax” species since the
term climax has many limitations and misconceptions. One
common misconception is that the PVT classification is a veg-
etation classification; in this study, the PVT classification is a
biophysically based site classification that uses plant species
names as indicators of unique environmental conditions. And
because of succession modeling protocols described later, the
PVT classification categories had to match the existing cover
type classification categories.

The best sources for describing HRV of landscape composi-
tion are spatial chronosequences created from historical maps
or data. But, temporally deep chronosequences of historical
landscape conditions are scarce for most of the US, especially
prior to 1900 (White and Walker, 1997). Maps from many sim-
ilar landscapes across a large geographic region (substitute
space for time) can also be used to quantify the HRV of land-
scape characteristics (Hessburg et al., 1999a,b). Unfortunately,
while these landscapes may appear biophysically similar, they
often have different environmental, disturbance, and biolog-
ical histories (Swanson et al., 1997; Turner et al., 1994). We
decided on a simulation approach for quantifying HRV where
chronosequences of maps generated from a simulation model
are used to compute historical landscape statistics. Many spa-
tially explicit ecosystem simulation models are available for
quantifying HRV (see Gardner et al., 1999; Mladenoff and Baker,
1999; Keane and Finney, 2003; Keane et al., 2004a), but most
are computationally intensive, difficult to parameterize and
initialize, and complex in design, thereby making them dif-

ficult to use in a national application (Keane et al., 2004a).
Simulation has an advantage over the previously mentioned
two sources in that it allows a spatially consistent method of
generating historical chronosequences over large regions by
efficiently integrating point and stand-level fire and vegetation
field data into a spatial context. This approach can also create
alternate time series reflecting different landscape histories,
such as climate change scenarios, so that a full complement of
range and variation statistics can be computed. The approach
can be easily replicated with new and improved spatial models
or with more accurate input parameters as they are measured
on the landscape.

2. Methods

2.1. Study areas

The LANDFIRE prototype project used two large areas in the
western United States – the Central Utah Highlands and
the Northern Rocky Mountains (Fig. 1) – to design, test, and
implement mapping methods. These landscapes were cho-
sen because they represented a wide variety of vegetation
assemblages common the western Unites States and because
pre-processing of the Landsat 7 satellite imagery had been
completed as part of the Multi-Resolution Land Characteri-
zation project conducted primarily by the USGS in Sioux Falls

Fig. 1 – The two mapping zones used to prototype the
LANDFIRE mapping methods. (a) Zone 16 Central Utah
mapping zone and (b) zone 19 Northern Rockies mapping
zone.
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South Dakota. We adopted the use of MRLC map zones for
spatially stratifying the United States into workable spatial
areas. We selected a small area within each mapping zone
to demonstrate the resolution of LANDFIRE products for this
paper.

The 69,907 km2 Central Utah Highlands mapping zone
begins at the northern tip of the Wasatch Mountains in South-
ern Idaho and extends through central Utah to the southern
border of Utah. Elevations range from 980 to 3750 m. Vege-
tation communities range from alpine forb communities in
the Uinta and Wasatch Mountains in the northern portion of
the map zone to desert scrub communities in the southern
deserts. Extensive areas of Piñon-Juniper/Mountain big sage-
brush and both evergreen and deciduous shrub communities
are found at mid-elevations throughout the Central Utah High-
lands mapping zone. Climate of the Central Utah Highlands
mapping zone is highly variable with 30-year average temper-
atures range from −4 ◦C in the high Uinta Mountains to 15 ◦C in
the southern deserts and average annual precipitation varying
from 10 cm in the southwestern deserts to nearly 2 m in the
northern mountains.

The 117,976 km2 Northern Rockies mapping zone begins
in at the Canadian border in northern Montana and extends
south into eastern Idaho. Elevations range from 760 to
3400 m. Vegetation communities range from alpine forbs in
the highest mountain ranges to prairie grasslands east of
the Continental Divide. Forested communities are common
with spruce-fir communities found at the upper subalpine
and extensive forests of lodgepole pine, western larch,
Douglas-fir and ponderosa pine at middle elevations. Thirty-
year average temperatures range from −5 ◦C in the high
Mountains of Glacier National Park to 15 ◦C in the valley
bottoms. Annual average precipitation varies from 14 cm
in the valley bottoms to nearly 3.5 m in the northern
mountains.

2.2. General description of modeling effort

As mentioned, the computation of FRCC requires a compar-
ison of current conditions with a time series of historical
reference conditions. In this study, current conditions were
described from maps of PVT, cover type, and structural
stage (Fig. 2). The PVT map was created using predictive
landscape modeling where biophysical gradients created
from mechanistic ecosystem simulation computer models
were employed as predictor variables. The current cover
type and structural stage maps were derived from a super-
vised classification of Landsat 7 ETM+ imagery and several
of the simulated biophysical layers. Historical conditions
were described from a simulated time series of landscape
composition generated from a spatially explicit landscape
dynamics model that used the PVT maps as input. FRCC
was quantified from a departure metric that was com-
puted by statistically comparing the simulated historical time
series of landscape composition with the current condi-
tions for each combination of PVT, cover type, and structural
stage.

Since the mapping protocols needed to be scientifically
credible and repeatable with a minimum of subjectivity, we
based all methods on a data-driven, empirical approach where

Fig. 2 – Flow chart of the process used to create the FRCC
map and all other ancillary data layers for the LANDFIRE
prototype project. The acronyms are defined as follows:
DEM: digital elevation model, PVT: potential vegetation
type, PET: potential evapotranspiration, NPP: net primary
productivity (kg m−2), GIS AML: geographic information
systems macro language, PPT: precipitation (cm). WXFIRE
and LF-BGC are ecosystem models while LANDSUM is a
landscape dynamics model and HRVSTAT is a statistical
model.

the majority of mapped and simulated entities were predicted
from complex spatial statistical modeling. To accomplish
this, we created the LANDFIRE reference database (Fig. 2)
that contains georeferenced data from thousands of plots
obtained from a variety of sources, most importantly, the
USDA Forest Service Forest Inventory and Analysis (FIA) pro-
gram. These data were used for many purposes including
(1) developing training sites for imagery classification; (2)
parameterizing, validating, and testing simulation models; (3)
developing vegetation classifications; (4) creating statistical
models; (5) determining data layer attributes; (6) describing
mapped categories; (7) assessing the accuracy of maps, mod-
els, and classifications (Franklin et al., 2000). The LANDFIRE
reference database is the heart of the mapping process and
the source of nearly all LANDFIRE products.

All methods and procedures implemented for this study
are extensively detailed in a technical report edited by Rollins
and Frame (2006) (see Keane and Rollins, 2006). In this paper,
we present a general summary of these methods emphasiz-
ing the use of ecological modeling. A flow chart in Fig. 2 is
included as reference. All satellite image processing was done
at the EROS Data Center (EDC) in Sioux Falls, South Dakota,
USA while all other modeling and classification tasks were
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accomplished at the Missoula Fire Sciences Laboratory (MFSL)
in Missoula, MT, USA.

2.3. Describing current conditions

2.3.1. Developing the map unit classifications
Previous attempts at mapping vegetation across large regions
(Keane et al., 1996; Hann et al., 1997; Schmidt et al., 2002)
revealed that it was difficult to fit most existing vegeta-
tion classifications into a large scale mapping effort because
existing classifications rarely match the resolution and the
predictive ability of the satellite imagery and there are often an
insufficient number of classification categories to describe the
diversity of vegetation across large regions. Most existing clas-
sifications are limited in application to unique ecosystems or
geographic areas, and many of the existing national vegetation
classifications were developed for description rather than for
mapping. The one possible exception was the National Veg-
etation Classification System (NVCS) (Anderson et al., 1998;
Grossman et al., 1998), but we found that (1) it was diffi-
cult to scale the NVCS categories to the detail required by
the HRV succession model, (2) it was difficult to key LAND-
FIRE reference database plots to the NVCS types, and (3)
it was difficult to use the system because it was not fully
developed.

We created our own vegetation composition (cover type)
classification using a top-down approach where our cat-
egories were designed to be (1) relevant to management,
(2) conducive to modeling, (3) discriminated from satellite
imagery, and (4) identifiable from plot data. Rather than
construct a system that exclusively classified all vegetation
types within the entire U.S., we decided to first identify
those vegetation types that we could successfully discrimi-
nate with the satellite imagery and identify in the reference
database. We developed classification categories for forests
and rangelands based on a blend of many national efforts
(Holdridge, 1947; Kuchler, 1975; Eyre, 1980; Running et al.,
1994; Shiflet, 1994; Bailey, 1995; Grossman et al., 1998) and
synthesized a list of vegetation map units within the con-
text of the two prototype mapping zones. This list was
reviewed for each study area by conducting a series of infor-
mal workshops between project technical personnel and local
ecologists.

We based the vegetation composition classification on the
canopy cover of the dominant species and called the classes
cover types (Long et al., 2006b). We then created a set of
keys to identify cover type for each plot in the LANDFIRE ref-
erence database based on the dominance of plant cover by
species. The set of cover types were compared to available
field data and those types represented by less than 50 plots
were dropped. Remaining cover types were tested using map-
ping classifiers in an iterative process for their separability
in spectral and biophysical domains and were additionally
evaluated to ensure they fit within the landscape modeling
framework. This process continued until we finally had mutu-
ally agreed upon a final cover type list for each prototype area.
We cross-referenced the LANDFIRE vegetation classification
with all other national classifications to provide linkages to
other mapping efforts.

The structural stage classification proved somewhat easier
but contained far less detail than the cover type classifica-
tion because of the inability of the imagery to detect complex
vertical canopy structure. Structure is important to define
pathways of successional development in the landscape mod-
eling effort. We decided to base our structure classification on
two structural components that we could discriminate from
image analysis: canopy cover and average height. These two
attributes are mapped using a statistical modeling approach
where cover and height are regressed against spectral val-
ues and other ancillary data layers (Rollins and Frame, 2006).
We constructed a four-category forest structural classification
where there were two categories of height (short, tall) and two
categories of cover (low, high) and the thresholds that delin-
eate between each structural category is based on the PVT
and cover type and calculated from the reference database.
Only two structural stage categories were used to describe
shrubland and grassland structure: low and high canopy
cover.

2.3.2. Simulating biophysical gradients
Many studies have shown that augmenting satellite imagery
with a quantitative description of the biophysical environ-
ment (temperature, elevation, precipitation, for example)
improved the mapping of ecological characteristics, such as
vegetation and fuels (Franklin et al., 1986, 2000; Keane et al.,
2002a; Ohmann, 1996; Ohmann and Spies, 1998; Rollins et
al., 2004). Environmental gradients are important for mapping
vegetation and ecosystem characteristics because they define
potential species niches by describing the biophysical envi-
ronment. Indirect gradients, such as elevation, were included
in the biophysical mapping effort because they can be proxies
for other unknown or immeasurable gradients. The addition
of biophysical layers to predict ecosystem attributes increased
mapping accuracy by over 20% in some cases (Rollins et al.,
2004; Cibula and Nyquist, 1987).

In the mid 1990’s, we developed a mapping process called
Landscape Ecosystem Inventory System (LEIS) that used data
from local weather stations, coupled with various input spa-
tial data layers, to simulate and summarize a wide variety of
climate and ecosystem processes (Keane et al., 2002a; Rollins
et al., 2004). This system used a collection of computer mod-
els, including the BGC biogeochemical model (Running and
Coughlan, 1988; Running and Gower, 1991; Thornton and
White, 1996; White et al., 2000; Thornton et al., 2002), to create
a set of biophysical layers that were then used to map fuels
and vegetation. We redesigned two of the major programs in
LEIS to access the 1 km national DAYMET weather database
built by Thornton et al. (1997) (see http://www.daymet.gov/ for
details) so that simulated environmental gradient data layers
would be nationally consistent and comprehensive. DAYMET
is a computer program that generates daily spatial surfaces
of temperature, precipitation, humidity, and radiation over
the complex terrain of the conterminous US by extrapolat-
ing weather data from over 1500 weather stations across a
1 km grid using a Gaussian kernel (Running and Thornton,
1996; Thornton et al., 1997, 2000). The DAYMET program was
executed for 18 years of weather data (1980–1997) across the
contiguous US to create the DAYMET weather database that
contains daily estimates of minimum and maximum tempera-
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ture, precipitation, radiation, and vapor pressure deficit across
a 1 km grid. The 18-year period has the highest number of
weather stations in mountainous terrain with SNOWTEL and
RAWS weather records becoming common.

We modified the WXGMRS program in LEIS to create the
WXFIRE program and modified the Biome-BGC program to
create the LF-BGC program (Fig. 2). The WXFIRE program
scales DAYMET weather data to finer spatial resolutions using
biophysical principles and summarizes weather into impor-
tant climate descriptors, such as potential evapotranspiration,
over the 18-year record (Keane et al., 2006a; Holsinger et al.,
2006). The LF-BGC program simulates ecosystem processes
at a daily time step to compute carbon, water, and nitrogen
fluxes and outputs summaries of these fluxes for the 18-year
DAYMET record. These two programs provided the ability to
create consistent and comprehensive biophysical data layers
for LANDFIRE mapping and modeling tasks, especially for cre-
ating the PVT map.

2.3.3. Creating the PVT map
We keyed the PVT for each forested plot in the reference
database based on the presence (>1% cover) of the most shade
tolerant tree species from canopy cover or tree density data
measured for that plot. All tree species present on a plot were
sorted by shade tolerance using the information in the liter-
ature (Fowells, 1965; Minore, 1979; Burns and Honkala, 1990).
We arranged the rangeland cover type categories along a mois-
ture gradient from xeric to mesic communities and keyed
plots in the reference database on species presence, rather
than dominance. Although this approach for rangelands had a
number of flaws (Westoby, 1980), most importantly the inabil-
ity to consistently model successional development, it proved
to be the best considering the limited resources and data
available.

Maps of PVT were created using an integrated landscape
modeling and statistical analysis approach (Franklin, 1995;
Franklin et al., 2000; Ohmann and Spies, 1998; Rollins et al.,
2004). Classification trees were used to create the statistical
models for mapping PVT from the simulated environmen-
tal gradients. The PVT classification trees were developed
using the See5 machine-learning algorithm (Quinlan, 1993,
1986, http://www.rulequest.com/) and were applied within
an ERDAS Imagine interface. See5 uses a Classification and
Regression Tree (CART) approach for constructing a tree, gen-
erating a tree with high complexity and pruning it back to a
more simple tree by merging classes (Breiman et al., 1984).
We selected CART-based classification methods because, as a
non-parametric alternative for regression, CART may be more
appropriate for broad scale mapping than parametric methods
(De’ath, 2002; Iverson and Prasad, 1998; Michaelsen et al., 1994)
and CART-based statistical models may be trained hundreds
of times faster than some other non-parametric classifiers
like neural networks and support vector machines (Huang et
al., 2001; Huang and Townshend, 2003; Moisen and Frescino,
2002), yet CART is comparable to and performs similarly with
regard to accuracy to these methods (Friedl and Brodley, 1997;
Huang et al., 2001; Franklin, 2003; McDonald and Urban, 2006;
Moisen and Frescino, 2002). Last, CART has been successfully
used for modeling and mapping vegetation at broad scales as
in the MRLC 2001 project so the EROS Data Center had exten-

sive expertise in this method (Homer et al., 2002; Huang et al.,
2001).

2.4. Creating cover type and structural stage maps

The mapping of current vegetation conditions using the cover
type and structural stage vegetation classification as map
units was accomplished using Landsat 7 TM satellite imagery
and the set of simulated biophysical data layers. Landscape
metrics (patch shape and size) and the PVT layer were also
used to guide cover type and structural stage mapping. Many
classification algorithms have been developed for deriving
vegetation cover type from satellite imagery (Knick et al., 1997;
Homer et al., 1997; Cihlar, 2000). In this study, we created cover
type maps using a training database developed from the ref-
erence database, Landsat TM 7 satellite imagery, biophysical
gradient layers, the PVT map (for limiting the types of veg-
etation that may exist in any area), and classification tree
(CART) algorithms similar to those used to map PVT. Land-
sat TM 7 images were acquired on three different dates over
the time period between 1999 and 2001 to capture growing
season dynamics to maximize the discrimination between
cover types (Yang et al., 2001). Raw satellite digital numbers
were converted to at-satellite reflectance for the six Land-
sat TM 7 bands according to Markham and Barker (1985) and
the Landsat TM 7 Science Data User’s Handbook (Irish, 2000).
We used at-satellite reflectance based coefficients to calculate
Tasseled-cap brightness, greenness and wetness, which have
been found useful for vegetation characterization (Cohen et
al., 1998; Huang et al., 2002).

The structural stage map was developed from maps of
canopy closure and canopy height that were created using
satellite imagery coupled with output from physically based
models, spectral mixture models, and empirical models. EDC
used regression trees in a CART framework, applied through a
ERDAS Imagine interface, to map the relationships between
canopy closure and height and spectral information from
Landsat TM 7 imagery, biophysical gradient layers, and the
reference database (Zhu and Evans, 1994). The resultant
maps represented these two structural variables continuously
mapped across each prototype mapping zone (Huang et al.,
2001). The final structural stage layer was created by keying
the continuous canopy closure and height layers to structural
stage categories based on threshold values assigned to each
PVT based on an analysis of the species data in the LANDFIRE
reference database. This integrated height and closure infor-
mation was also used to compute wildland fuel characteristics
and successional status of exiting landscapes. The cover type
and structural stage classes formed the structural framework
for the vegetation modeling described in the next section

2.5. Describing historical conditions

2.5.1. The simulation model
The simulation model selected to quantify the HRV of land-
scape composition for the LANDFIRE prototype effort is in a
class of models called Landscape Fire Succession Models that
are unique in that they spatially simulate the complex process
of fire and vegetation succession across landscapes (Keane et
al., 2004a). We researched many of these models to determine
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Fig. 3 – An example of a spruce-fir (SF) succession pathway model used in LANDSUMv4 for the LANDFIRE prototype project.
Cover type names are as follows: SH: mountain shrub, WP: whitebark pine, SF: subalpine fir. Structural stage names are
defined as—LCLH: low cover low height early succession stage, HCLH: high cover low height mid-seral stage, HCHH: high
cover high height late succession stage, LCHH: low cover high height disturbance maintained late succession stage. T1–11
identify unique succession classes. Cover type categories are linked along pathways of successional development based on
shade tolerance. The terminal cover type (SF: spruce-fir HCHH) is potential vegetation type (PVT) category because it
represents the most shade tolerant tree species.

if which would be appropriate for LANDFIRE implementa-
tion and found most were inadequate for a variety of reasons
including (1) extensive input data requirements, (2) difficult
parameterization, and (3) excessive computation demands.
Once we identified the limited data sources available for model
parameterization and initialization (i.e., LANDFIRE reference
database and subsequent map products) and evaluated the
landscape models in this context, we found that the LANDSUM
model appeared to have the best fit, primarily because it strat-
ifies landscapes by biophysical settings and it has minimal
input requirements (Keane et al., 1996, 1997a,b, 2002b).

LANDSUMv4 is the fourth version of the LANDSUM model
developed specifically for the LANDFIRE prototype project
(Keane and Lisa, 2006a) (Fig. 2). It contains a determinis-
tic simulation of vegetation dynamics where successional
communities are linked along multiple pathways of devel-
opment that converge in an end-point community (Fig. 3).
All disturbances, except fire, are stochastically modeled at
the stand-level from probabilities specified by the user. Fire
ignition is computed from input fire frequency probabilities
(fire parameters in Fig. 2) specified by PVT, cover type, and
structural stage categories. Fire is spread across the land-
scape based on simplistic slope and wind factors. LANDSUM
does not mechanistically simulate fire growth because of the
lack of fuel and daily weather inputs and limited computing
resources for national simulations. The effects of simulated
fires are stochastically simulated based on the fire severity
types as specified in disturbance input files (Keane and Lisa,
2006a). Finally, LANDSUM outputs the area occupied by PVT-

cover type-structural stage combinations within small areas
called landscape reporting units (described later).

2.5.2. Simulation design
We divided the two mapping zones (Fig. 1) into square
20,000 ha core areas (471 × 471 pixels of 30 m width) and then
surrounded these core areas by a 3 km buffer (Fig. 4) based on
an analysis of results from numerous simulations (Pratt et al.,
2006a,b). The combined core and buffer area was called the
simulation landscape. We divided the core area into 900 m by
900 m squares called landscape reporting units that defined
the spatial extent of the comparison of historical to current
landscape composition conditions units (Fig. 4). Landscape
reporting unit size was selected to correspond to the coarse
scale analysis (Hardy et al., 2001; Schmidt et al., 2002) and to
be applicable to land managers. Simulated landscape compo-
sition (area by PVT-cover type-structural stage combinations)
and total area burned were summarized for these 0.81 km2

landscape reporting units every 50 years for 5000 years of sim-
ulation for zone 16 and 10,000 years for zone 19. The time
interval and span were selected based on results of a sensitiv-
ity analyses that showed that reporting intervals less than 50
years contained significant temporal autocorrelation and that
reporting time spans of less than 5000 years did not generate
enough observations (>100) to obtain a statistically significant
sample for computing departure (Keane et al., 2002a,b,c; Steele
et al., 2006). We initialized simulation landscapes using the
most dominant cover type-structural stage combination for
each PVT on the landscape and then ran the model for 500
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Fig. 4 – An illustration of simulation landscapes with the core area surrounded by a buffer zone. The interior area was then
stratified into landscape reporting units of 900 m × 900 m where landscape composition was summarized and compared
across historical and current conditions.

years to remove any initial effects. Current conditions were
summarized for each landscape reporting unit using the PVT,
cover type, and structural stage maps derived from satellite
imagery discussed previously.

LANDSUMv4 succession and disturbance parameters were
quantified by a team of ecologists who used the reference
database, information from published studies, and expert
knowledge (in that order) to describe and quantify the succes-
sional pathways (see Fig. 2) for each PVT (Long et al., 2006a;
Pratt et al., 2006a,b). This team built succession pathway
models using an interactive model called VDDT: Vegetation
Dynamics Development Tool (Beukema and Kurz, 1998; Kurz
et al., 1999) that allowed the testing and refinement of input
parameter sets in a non-spatial domain. Fire frequency param-
eters were taken from fire history studies conducted within
the two prototype areas (Heyerdahl et al., 1995). Fire size
parameters were computed from the NIFMID database as
compiled by Schmidt et al. (2002). Successional development
parameters were also taken from other modeling efforts or
estimated by analyses of data from succession studies (Stage,
1997).

2.6. Computing departure and FRCC indices

The idea that spatially explicit historical ecological data can be
used as reference to guide land management is somewhat new

and only recently has been put into practice (Reed et al., 1998;
Hessburg et al., 1999b; Landres et al., 1999; Keane et al., 2002b;
Swetnam et al., 1999). Although the theory appears somewhat
sound, its implementation into land management is still in its
infancy so it has not been critically evaluated. There are few
standardized methods for quantitatively comparing historical
time series with today’s landscapes and objectively evaluat-
ing their differences. Standard parametric statistics may not
be appropriate for historical time series since the sequences
may be autocorrelated in time and space. Also, landscape map
units are correlated to each other because a decrease in the
area of one map unit will result in increases in others. It is also
difficult to ascertain the thresholds of significant difference
that determine whether human intervention using fuel treat-
ments is warranted. Because of this, we decided to develop an
alternative statistically based method for comparing the sim-
ulated historical chronosequences with the imagery derived
current conditions. We also calculated departure and FRCC
using the FRCC field methods detailed by Hann (2004), which
use a simple measure of similarity to calculate departure.

The statistical methods for computing departure from his-
torical conditions were developed by Steele et al. (2006) using
a statistical technique that is sensitive to the autocorrelation
of chronosequential data over time, space, and mapped cate-
gories (see HRVSTAT in Fig. 2). This technique, implemented
in the HRVSTAT program, computes an index of departure
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that varies from zero (no departure) to one (most departed)
and a measure of statistical significance computed as a prob-
ability value (p-value). HRVSTAT was designed to work with
any chronosequence, not just the simulated time series, so
that local land management offices can replace the simulated
data with actual historical observations if they exist. FRCC
was calculated by stratifying departure and probability value
statistics into three classes based on an analysis of the fre-
quency and range of values across the mapping zone (Pratt et
al., 2006a,b; Steele et al., 2006).

2.7. Developing ancillary data products

The biophysical, vegetation, and historical data layers
developed from the above modeling process constitute a com-
prehensive set of spatial data sources for describing vegetation
characteristics and for use as input to simulation models
across the entire conterminous USA. However, the utility of
these data layers is limited because there are few applications
that directly use these layers in fire management. Similarly,
while the FRCC map can be used for the prioritization and
distribution of funding and resources to land management
agencies and regions, it has little use in designing and imple-
menting fuel and ecosystem restoration treatments. It became
obvious that additional data layers and software tools were
needed to provide local land management with applications
that were useful for planning and implementing treatments
and were consistent with other LANDFIRE products.

2.7.1. Fuels layers
Both surface and canopy fuels were mapped in the context
of fire behavior and fire effects modeling to ensure that the
spatial data could be used in many fire hazard analysis appli-
cations. The most commonly used fire behavior simulation
models require fuel models where the loadings have been
adjusted to predict expected fire behavior under common
weather scenarios (Anderson, 1982 standard 13 fire behav-
ior fuel models). These fire behavior fuel models are quite
broad and often don’t match the resolution needed to detect
subtle changes in fuel characteristics after fuel treatments.
As a result, a new set of 40 fire behavior fuel models using
funding from LANDFIRE (Scott and Burgan, 2005), which rep-
resents a significant improvement in detail and resolution
over 13 of Anderson (1982). These new fuel models are now
implemented in common fire behavior applications such as
BEHAVE (Andrews, 1986; Andrews and Bevins, 1999) and FAR-
SITE (Finney, 1998).

Fire effects fuel models differ from fire behavior fuel models
in that they represent real fuel loadings by fuel category, not
abstract representations of expected fire behavior. The loading
is used to calculate important fire effects such as fuel con-
sumption, soil heating, smoke, and tree mortality (Reinhardt
et al., 1997). At the start of this study there were no national
classifications of fuel loadings so we created our own clas-
sification called Fuel Loading Models (FLM) developed from
a clustering analysis of the variance of fuel loadings by fuel
category using an extensive dataset collected on plots from
sampling efforts across the nation (Lutes et al., 2006). Sam-
pled fuel loading was stratified by several fuel components:
four downed woody size classes, shrub, herbaceous, duff and

litter (Brown and See, 1981; Brown and Bevins, 1986). FLMs
match the scale of development specified in the LANDFIRE
guidelines and were designed for use in fire effects models
such as FOFEM (Reinhardt et al., 1997; Reinhardt and Keane,
1998) and CONSUME (Ottmar et al., 1993).

The three surface fuel model classifications (standard 13,
new 43, and FLMs) were mapped for each zone using a rule-
based approach where each PVT-cover type-structural stage
combination was assigned classes from each of the three fuel
model classifications (Keane et al., 2006b). Assignments were
based on an analysis of the meager fuels data in the reference
database, but there were insufficient data for most combina-
tions and fuel model classes so we were forced to assign the
fuel models based on the expert opinion of the authors of each
classification (Scott and Burgan, 2005; Lutes et al., 2006).

Most fire behavior and effects predictive models require
canopy characteristics to simulate crown fire initiation and
propagation (Finney, 1998; Rothermel, 1991; van Wagner, 1993).
These canopy characteristics include bulk density, height,
base height, and closure. Fortunately, EDC mapped canopy
height and closure using satellite imagery, but canopy bulk
density and canopy base height had to be mapped by the MFSL
using a statistical modeling approach similar to that used for
the PVT map. We did this by calculating canopy bulk den-
sity and base height from the tree inventory information in
the reference database using the FUELCALC (FUEL CALCula-
tion system) program. This program uses tree measurements
of species, height, and diameter to derive the vertical distribu-
tion of crown biomass from a set of canopy biomass equations
this is then used to compute the canopy base height and bulk
density (Reinhardt and Crookston, 2003). These two canopy
characteristics were computed for each plot containing trees
and then statistically modeled from variables represented in
all the biophysical layers using the CART statistical analy-
ses. FUELCALC is still under development but will be released
before the LANDFIRE project is finished (www.landfire.gov).

3. Results

The final LANDFIRE reference database for the two prototype
areas contained vegetation and fuels information from over
10,000 georeferenced plots with over 75% of these were FIA
plots. Plots were well distributed across the two map zones
(Fig. 5). We evaluated over 20,000 legacy plots for inclusion
into the reference database and found only about 10% met
our stringent criteria.

The important intermediate and final map layers arranged
along the procedural paths of the simulation process are
shown in Fig. 6 for zone 16 leading to the simulation of
the historical time series. Limited space precludes a detailed
description of all intermediate map products here but all lay-
ers are comprehensively described in Rollins and Frame (2006)
and posted to http://www.landfire.gov/. Table 1 presents the
results of an accuracy assessment of the three most important
layers used to simulate historical time series and calculate
departures along with accuracies, calculated using regression
analysis, for the two important canopy fuels layers that had
sufficient geo-referenced plot data (FIA plots) for a statistically
valid comparison (Vogelmann et al., 2006). Although the seven
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Fig. 5 – The distribution of georeferenced plots in the LANDFIRE reference database over the two map zones: (a) zone 16 and
(b) zone 19.

fuels layers in Fig. 6 were not used in the simulation of the his-
torical time series, they will be important in the planning and
implementation of fuel treatment activities and ecosystem
restoration.

The modeling and mapping process used to compute FRCC
from simulated historical time series is illustrated in Fig. 7

with the developed intermediate products. Areas of each PVT-
cover type-structural stage combination was simulated within
simulation landscapes and reported within each 900 m by
900 m landscape reporting unit (Fig. 4) for each output report-
ing interval. The historical time series was used as reference to
compute departure from current conditions and the departure

Fig. 6 – A general illustration of the important intermediate and final map products created by the LANDFIRE process to
ultimately compute departure and FRCC from the simulated historical time series.
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Fig. 7 – The synthesis of historical landscape composition time series from the simulated data for the landscape reporting
unit: The simulation landscape is stratified into 0.81 km2 square areas called landscape reporting units and the
LANDSUMv4 simulation results at 50 year intervals for 5,000 years are used to compute FRCC.
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Table 1 – Accuracy assessment of the three critical map data layer products (categorical maps) developed by the
LANDFIRE prototype project that were used to simulate historical time series to compare with current conditions to
determine departure and eventually FRCC

Map layer Created from Used for Map accuracya

Z16 Z19

Categorical maps
PVT Biophysical layers Mapping current vegetation; landscape

simulation modeling, fire regime
calculation

61.2 58.4

Cover type PVT, satellite imagery Describing current conditions and
computing departure and FRCC

63.0 62.6

Structural stage Canopy cover and canopy height from
imagery

Describing current conditions and
computing departure and FRCC

79.3 79.0

Continuous maps
Canopy bulk density Biophysical layers, cover type, imagery Modeling fire behavior, growth, and

spread, predicting smoke, calculating
carbon stores

76.0 66.0

Canopy base height Biophysical layers, cover type, imagery Modeling crown fire behavior 63.0 38.0

Accuracies for two canopy fuels layers (continuous maps) are provided for reference. A full accuracy assessment is presented in Rollins and
Frame (2006) and detailed in Vogelmann et al. (2006).
a Map accuracy estimates represent agreement between mapped values on the final LANDFIRE maps and measured values for the same pixel

using geo-referenced field data. For categorical maps, agreement is measured using standard cross validation analysis and contingency tables
so the number represents a percent agreement of mapped value to plot value. For continuous maps, the agreement is measured as a coefficient
of determination (R2) calculated by regressing predicted mapped values to observed values calculated for the plot.

(number between zero and one) was divided into categories to
create the FRCC map using HRVSTAT output and the FRCC map
using procedures specified in Hann (2004).

An important end product of the LANDSUMv4 simulations
is the creation of a set of four fire historical regime maps com-
piled from the simulations (shown for zone 19 in Fig. 8) (Keane
et al., 2003, 2004b). The fire frequency map represented by
the mean fire return interval (Fig. 8d) was computed from the
number of fires experienced by each pixel, while the three fire
severity maps represent the simulated probability of a stand
replacement fire, a mixed severity fire, and a non-lethal sur-
face fire, respectively (Fig. 8a–c). These maps provide a useful
reference for locating those areas having frequent fire so that
fuel treatments can be designed (using severity maps), located,
and scheduled.

4. Discussion

The methods presented here demonstrate the value of eco-
logical modeling to land management. A complex integration
of three modeling approaches (biogeochemical, statistical,
and landscape dynamics modeling) were used to successfully
derived a useful time series of historical landscape compo-
sition that was then used to compute departure of current
landscape conditions from the historical landscape conditions
and ultimately to estimate FRCCs across a large region at a spa-
tial resolution useful to land management. FRCCs can then be
used to prioritize regions, National Forests, and landscapes for
fuel treatment and ecological restoration (GAO, 2003). Results
from this prototyping effort have been refined, revised, and
implemented in comprehensive national mapping effort to
create maps critical for fire management for the entire United
States at 30 m resolution (http://www.landfire.gov/). This inte-

grated ecological modeling approach is perhaps the only
feasible means to provide consistent, comprehensive, and
temporally deep historical record across large regions to eval-
uate whether today’s landscapes are within historical bounds.
Moreover, this approach can be used at many scales and res-
olutions as the landscape reporting unit is adjusted to reflect
the scale of the application, and it can use landscape attributes
other than vegetation composition to compute departure such
as fuel model composition, landscape pattern, and canopy
bulk density. Last, the approach can be repeated so that land-
scapes can be monitored for changes in FRCC, departure, or
fuel conditions to evaluate the efficacy of the National Fire
Plan.

Limited geo-referenced field data across all mapped cate-
gories proved to be the most critical problem throughout the
project. The FIA data represents an important source of for-
est plot data but there were few FIA plots in rangelands and
non-forest types. Most non-FIA legacy georeferenced field data
compiled from government and university sources were sam-
pled with such a wide variety of methods and resolutions
that they were useless for statistical analysis and vegetation
classification. Some cover types important to management
did not have sufficient plots to warrant their mapping while
others were over-represented in the reference database. And,
some landscape succession model parameters and pathways
needed to be estimated from expert opinion because of the
lack of pertinent fire and succession data. The lack of cur-
rent, geo-referenced field data also precluded an extensive
assessment of the accuracy of many mapped layers, especially
the fuels layers (Table 1) (Vogelmann et al., 2006). We needed
most of the plots in the LANDFIRE reference database to build
the empirical CART models so very few plots could be set
aside to estimate map accuracy. While somewhat low (60–80%
for the three critical data layers), these accuracies could eas-



e c o l o g i c a l m o d e l l i n g 2 0 4 ( 2 0 0 7 ) 485–502 497

Fig. 8 – The fire regime maps produced by the LANDSUMv4 simulation model for mapping zone 16 Northern Rockies. Maps
show the percent of total fires that are (a) non-lethal surface fires, (b) mixed severity fires, and (c) stand-replacement fires.
The mean fire return interval (MFRI) is shown in the last map (d).

ily be improved with additional field data (Vogelmann et al.,
2006). The success of the LANDFIRE national project, and other
future national mapping efforts, will ultimately depend on the
availability, quality, and quantity of georeferenced field data,
especially surface and canopy fuels data which were lacking
in this project.

Despite our best efforts, some elements of subjectivity
crept into the set of methods described here. The cover type
layer probably contains the highest bias because the vegeta-
tion map unit classification was derived from an integration
of expert opinion and data analysis. It was difficult to cre-
ate a comprehensive list of cover types that matched the
sensitivity of the satellite imagery and simulation models
without some subjectivity because of the wide variety of cover
type classifications and vegetation communities possible for
each individual mapping zone and the inherent variabil-
ity of vegetation across the mapping landscape. A possible
solution would be to use an existing cover type classifica-
tion for the entire US so that bias is minimized and the
list of cover types remains constant across mapping zones;
the LANDFIRE national effort (http://www.landfire.gov/) has
decided to use the NCVS (Anderson et al., 1998) as the basis

for developing map units for creating layers of vegetation
composition.

Development of the fuels layers presented a special prob-
lem because mapped fuel model classifications are somewhat
new to management so fuel models were never assessed
on many geo-referenced plots in the LANDFIRE reference
database (Keane et al., 2006b). This meant that we could
not map fuel models with the statistical approach that was
used to create the other maps (i.e., CART), so we were forced
to use a more subjective, rule-based strategy where fuel
model categories were assigned to combinations of PVT-cover
type-structural stage categories. Most mapped fuel model
classifications also lacked a dichotomous key to consistently
identify fuel model from commonly collected field data. Future
efforts should attempt to derive a key that objectively assigns
fuel models based on the data collected in the field or present
in the reference database.

The landscape reporting unit size (0.81 km2) was probably
too small to adequately describe fire and vegetation dynamics.
Subsequent analyses found that reporting unit sizes ranging
from 15 to 30 km2 appear to capture sufficient variation in both
burned area and vegetation composition to produce ecologi-
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cally meaningful historical time series (Karau and Keane, in
press). We also found that the landscape reporting unit size
should probably be variable and sized to fit the fire and dis-
turbance dynamics of each mapping region or landscape. For
example, flat areas with frequent fire may need larger report-
ing units to effectively describe the high variation of fire size
and vegetation diversity.

There were some major limitations in the calculation of
the departure statistic and ultimately the quantification of
FRCC. The ranges used to create the FRCC index from classes
of the departure statistic were somewhat arbitrary and often
misleading. Some landscapes have such great variability in
historical landscape composition that departure statistics
rarely exceeded a value of 50 of 100 and the HRVSTAT proba-
bility values rarely exceeded 0.2. This resulted in maps where
most areas were in one or two FRCC classes and the ranges
needed to be adjusted to get adequate discrimination across
the mapping zone. The most extreme departures occurred on
landscape reporting units that contained a high proportion of
exotic plant cover types because exotic types were absent in
the historical time series. As a result, the high departures and
high FRCCs did not reflect the lack of fire from the landscape
and the need for fuel treatments, but rather the replacement
of native species with exotics. Some ecosystems experienced
changes in species composition resulting in high departures
but there were few changes in fuel characteristics indicating
no change in fire hazard. For these reasons, FRCCs are most
useful as an ecological measure of departure from historical
vegetation conditions rather than an index of fire hazard or
risk.

While the FRCC index has problems, such as a limited
three category index and spatial scale limitations, the depar-
ture statistic, on which FRCC is based, seems to have value
as a comprehensive index to determine the ecological status
of landscapes. Moreover, the idea of using simulated histor-
ical range and variation to drive assessments of ecosystem
and landscape condition appears to have great value to land
management (White and Walker, 1997). Wimberly et al. (2000)
uses a similar simulation approach to quantify the historical
variation in landscape composition to quantify optimal old
growth forest levels. The HRV of landscape composition and
structure were simulated for an Oregon Coast Range land-
scape using the LADS model (Nonaka and Spies, 2005). The
LANDIS model was used to simulate time series of fuel loads
(Shang et al., 2004) and fires (Yang et al., 2004) under vari-
ous management scenarios. Hummel and Cunningham (2006)
used the FVS model to estimate variation in forest struc-
ture for a landscape in the Cascade Range in Washington,
USA, while Boychuk and Perera (1997) used the FLAP-X model
to simulate variability in age classes for Canadian boreal
forests. Many spatially explicit ecosystem simulation mod-
els are available for quantifying HRV in patch dynamics (see
reviews by Gardner et al., 1999; Keane et al., 2004b; Mladenoff
and Baker, 1999).
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